[image: Balisage logo]Balisage: The Markup Conference

The Impossible Task of Comparing CALS Tables
Robin La Fontaine

John Francis

Balisage: The Markup Conference 2022
August 1 - 5, 2022

Copyright © 2022 DeltaXML Ltd. All Rights Reserved.

How to cite this paper
La Fontaine, Robin, and John Francis. "The Impossible Task of Comparing CALS Tables ." Presented at: Balisage: The Markup Conference 2022, Washington, DC, August 1 - 5, 2022. In Proceedings of Balisage: The Markup Conference 2022.
 Balisage Series on Markup Technologies vol. 27 (2022). https://doi.org/10.4242/BalisageVol27.LaFontaine01.

Abstract
Finding out what has changed in a CALS table is remarkably complicated. Some
 variant of the CALS standard is often used to represent tabular data in XML, but it
 permits considerable flexibility in the form of headers, footers, and spans.
 Additional complexity arises when authors use empty columns for layout or use column
 or row spans specified in unusual ways, or when applications simply do not follow
 the standard. In practice, comparing CALS tables directly is impossible. But maybe
 that is OK if all we need is a clear representation of the changes. And if we can
 represent them in a CALS table!

Balisage: The Markup Conference

 The Impossible Task of Comparing CALS Tables

 Table of Contents

 	Title Page

 	Introduction and Background

 	What do Humans see when tables change?

 	What do tables look like in XML?

 	What happens if we take a standard XML comparison approach to tables?

 	Building a content based approach

 	How do the results of the two approaches compare?

 	Different types of user, table variations and future challenges

 	Conclusions

 	About the Authors

 The Impossible Task of Comparing CALS Tables

Introduction and Background
Representing information in tabular form is not new. Prior Walcher was Prior of Great
 Malvern Priory way back in 1100, he was an astrologer and mathematician, and with his
 astrolabe (a clever device for measuring angles) created many tables showing the
 position of the moon and other heavenly bodies. So we find tables in ancient literature
 as well as modern technical manuals, data sheets, books and articles. Inevitably these
 tables are revised and changed, and these changes need to be identified for review or
 even so that changes can be published, as is the case now for ISO standards which are
 now available not just as ‘Version X’ but as a red-lined document showing changes
 between ‘Version X’ and ‘Version X+1’. This is much more useful for someone who is
 familiar with Version X, perhaps having just spent two years implementing it.
However, it is not trivial to determine what has changed in a table, and then not
 trivial to represent that change in a way that is easily understood. First, therefore,
 we will look at how a human views change to tables before moving on to looking at change
 in CALS tables themselves.
The CALS table format for XML is one that is widely used and very capable, and it has
 been in use for many years. It is capable, but complex. We will briefly describe its
 capabilities before moving on to the challenges of finding change between two tables
 that, ideally, have the same basic structure but in reality can be very different in
 structure and content.
How should we approach XML table comparison? Since the table is represented in XML,
 and we can align, compare and represent changes in XML, the obvious approach is to
 compare the XML and then transform the delta into a new table showing changes. We will
 see that this approach works well when the tables have identical structure but it soon
 hits problems when the structure is different: when we add in the complexities of column
 ordering and column and row spans, we soon discover what can only be described as an
 impossible problem when approached from the comparison of the XML itself.
Impossible problems that need to be solved are not uncommon, especially in
 engineering. The trick is to simplify the problem so that it can be solved and then, as
 far as possible, introduce some of the complexity back into the simplified solution. So
 this is what we do and the results turn out to be very much better than even intelligent
 comparison of the original XML.

What do Humans see when tables change?
The following should be obvious but it is worth focusing on how we see tables and what
 we expect to show up as changes.
 At its simplest we see tables as a grid, a rectangle divided up into rows and columns
 of equal size. We are all familiar with spread sheets and the terms row, column and
 cell.
[image:]
 In this paper we distinguish between the Content that a table contains, such as the
 string ‘Anna’ in two of the cells under the header with the content ‘Name’, and the
 Structure of the
 table which is the markup that gives it its shape.
There are lots of types of tables where this grid is used in different ways. For now,
 let us concentrate on the most common way that they are used. The columns here have
 headers which represent common properties of the entities which are shown in rows. So in
 our example we have three employees, two Annas and a Charlie, and we record values for
 their IDs, Name, Date of Birth and Office location. When we are comparing two tables we
 expect to be comparing Names with Names, Dates of Birth with Dates Of Birth etc. When
 comparing the rows we need to make sure we are matching an Anna born on 03/03/1989 and
 not matching an Anna who started work on that date. In simple terms we expect to align
 the columns first and then worry about the rows secondarily.[1]
What changes between table versions? Obviously, values can change, but so can the
 dimensions of the table. Columns can be added, deleted, and moved and so can
 rows.
[image:]
Note
We are going to be showing a lot of altered tables. We use the following conventions to show
 table changes in this paper. For Content changes to a single cell or span we show
 the deleted text in red strike through font. For inserted text we show it in a green
 underlined italic font. To make things clearer where edits extend to a whole row or
 column we just change the background to light red for deletions and to light green
 for insertions.
[image:]

So we know columns are important, but we cannot expect to compare them simply by their
 position on the grid because that changes. We might think that if columns have headers
 their position is not so important and that is certainly true in some cases. In the
 following example we would rather, I think, see the simple change to Anna’s email
 address rather than the fact that the column has moved.
[image:]
But in this example order is important.
[image:]
And lastly an author can make cells span across columns and rows.[2] Spans are most often seen in multi row headers but they can also be seen in
 the body of the table. And of course they can change size between versions. In the
 following it would appear that Annie is now managing all the Southern Region and acting
 as its Local Rep, taking over from Clive, Ant and Cecilia. We have chosen to show the
 content changes rather than preserving any information about any original span. It works
 well in this story, but may not in others.
[image:]
There are different types of users. Most users are interested in seeing the change to
 the values of the cells. But another group of users are technical and wish to see what
 parts of the markup have changed, for example when they are having problems rendering it
 after edits. Over time we encounter fewer of the later technical group and more of the
 former.

What do tables look like in XML?
There are a few variants of the CALS specification. The Exchange Table Model
 [1] is the most widely supported version. The behaviour
 of editors and renderers varies once you move away from the more basic structures, but
 in this synopsis we are only showing things which we have encountered or which can
 render.
It is probably easiest to give an overview of the CALS spec using a simple
 example:

<table frame="all">
 <title>A sample table</title>
 <tgroup cols="3">
 <thead>
 <row>
 <entry>Header 1</entry>
 <entry>Header 2</entry>
 <entry>Header 3</entry>
 </row>
 </thead>
 <tbody>
 <row>
 <entry>Row 1 Cell 1</entry>
 <entry>Row 1 Cell 2</entry>
 <entry>Row 1 Cell 3</entry>
 </row>
 <row>
 <entry>Row 2 Cell 1</entry>
 <entry>Row 2 Cell 2</entry>
 <entry>Row 2 Cell 3</entry>
 </row>
 </tbody>
 </tgroup>
</table>
In CALS the table element is an outer wrapper for grouping what we
 actually regard as tables. It is the tgroup element which represents the
 grid of columns and rows which we view as a table. The tgroup defines,
 using its cols attribute, the number of columns that all its constituent
 rows have. A tgroup then has two groups of rows: rows in an optional
 thead define the headers, and rows in the tbody describe
 the main body of the table.[3] Inside thead and tbody we then have the
 rows, and inside them entry elements define the cells. As
 we would expect, the above XML renders like this.
[image:]
 Things start to get more interesting when we add some spans across columns and
 rows. For horizontal or column spans CALS requires us to define colspec
 elements inside the tgroup to give the columns names. We can also use
 colnames on entrys to specify the absolute column an
 entry belongs to. For vertical spans we just use a
 morerows attribute on a starting cell.

<table frame="all">
 <title>A sample table</title>
 <tgroup cols="3">
 <colspec colname="c1"/>
 <colspec colname="c2"/>
 <colspec colname="c3"/>
 <thead>
 <row>
 <entry>Header 1</entry>
 <entry>Header 2</entry>
 <entry>Header 3</entry>
 </row>
 </thead>
 <tbody>
 <row>
 <entry namest="c1" nameend="c2" morerows="1">A Span across 2 Columns and 2 Rows</entry>
 <entry colname="c3">Row 1 Cell 3</entry>
 </row>
 <row>
 <entry>Row 2 Cell 3</entry>
 </row>
 </tbody>
 </tgroup>
</table>
which renders:
[image:]
So we have to take into account ‘over hangs’ from the preceding rows when working
 out the position of an entry: notice that there is only one cell specified
 in the second row of the tbody. Unlike HTML tables, CALS tables define the
 position and horizontal extent of each entry using text labels which are
 cross references to groups of colspec elements. This means we have to
 analyse the colspec elements to work out the column positions. CALS allows
 us to define colspecs only when necessary and use colnum
 attributes to specify the postion of a colspec.

<table frame="all">
 <title>A sample table 3</title>
 <tgroup cols="4">
 <colspec colname="c2" colnum="2"/>
 <colspec/>
 <colspec colname="c4"/>
 <thead>
 <row>
 <entry>Header 1</entry>
 <entry>Header 2</entry>
 <entry>Header 3</entry>
 <entry>Header 4</entry>
 </row>
 </thead>
 <tbody>
 <row>
 <entry>An entry in Column 1</entry>
 <entry namest="c2" nameend="c4">A Span across Columns 2, 3 and 4</entry>
 </row>
 </tbody>
 </tgroup>
</table>
which renders as:
[image:]
Lastly this mechanism means we do not have to specify any entry which
 is empty.

<table frame="all">
 <title>A sample table 4 with missing entrys</title>
 <tgroup cols="4">
 <colspec colname="c2" colnum="2"/>
 <colspec/>
 <colspec colname="c4"/>
 <thead>
 <row>
 <entry>Header 1</entry>
 <entry>Header 2</entry>
 <entry>Header 3</entry>
 <entry>Header 4</entry>
 </row>
 </thead>
 <tbody>
 <row>
 <entry namest="c2" nameend="c3">A Span across Columns 2 and 3</entry>
 </row>
 </tbody>
 </tgroup>
</table>
which still renders correctly as:
[image:]

What happens if we take a standard XML comparison approach to tables?
As we saw in ‘What do Humans see when tables
 change?’ above, a key part of comparing tables is to align the columns. It is
 also obvious that CALS XML is a serialisation format and cells cannot be contained as
 child elements in both column and row wrappers. We also know that cells do not always
 appear one after the other as in a grid but straddle rows and in some cases where there
 is no data for a cell there may be no XML element to represent it. So we have to
 identify the cells as belonging to a column based on the attributes which reference
 them, colname, namest.
We can then use keying[4] to consistently align cells for each row. In this, our original approach to
 table comparison, we also had in mind two other principles. Firstly, we try to create an
 output which does not loose information about either input, and which can be used at any
 level of the hierarchy to ‘accept or reject’ changes. Secondly, a related principle is
 to show changes which a technical user might be interested in, particularly
 colspecs, and try to preserve their use as markup in the result. For
 the 80% of cases where the structure of the tables being compared was similar and
 colnames were used consistently, this approach works efficiently and
 well. However, in more complex cases this mind set proved limiting, and led to some
 changes being displayed at a much coarser level than they occurred and in other cases
 the changes were shown interleaved.
For example, where there are spans on one version of a row and not another, there is
 no way to show the change in native CALS markup, so we opted instead to show two
 separate rows, one added and one deleted in order not to lose information.
[image:]
 This is clear enough when the scope is the occasional row, but this approach to
 dealing with ‘structure conflicts’ rapidly escalates to show the whole
 tgroup as changed.
A further problem was in the reliance on colspec
 colnames themselves. There is nothing to say that an application should not
 regenerate these differently on every save, or that different authors must choose the
 same naming scheme. Two CALS table versions whose only difference is in the set of
 colnames they use are still the same table as far as the reader is
 concerned. This meant we also chose to use other comparison methods based on the
 position of cells or aligning based on the content of cells on a row-by-row basis.
 Heuristics at the end of the comparison chose between the tables based on validity
 [3]. In turn this led to the rejection of
 some comparisons based on minor technicalities. For example, opting not to use
 alignments where the original colnames were duplicated when we could simply
 have renamed them. So a simple column move is not shown where it could be.
[image:]

Building a content based approach
So treating table alignment as a variation on general XML alignment has its
 drawbacks. Originally our users were very technically aware and interested in the detail
 of the markup. Nowadays they are more interested in seeing the final result in a
 rendered table. In our Data products we have been working on algorithms to compare the
 content of structures using probabilities, and we use these techniques to decide which
 columns align best.
Before we can do this we need to regularise the tables which involves some fairly complex
 processing with the objective of representing the table in a regular rectangular grid on
 which the comparison can be performed. The result of this comparison is a standard XML
 file in our deltaV2 format [4] with every cell in its column along with metadata about
 how columns have been aligned.

deltaxml:table-column-alignment="A|1=B|1, A|2=B|2, B|3, A|3=B|4, A|4"
Whilst all the information has been preserved and only metadata in the deltaxml
 namespaces added, the result is complex and not a valid CALS table for rendering. Our
 users have been clear that having a valid table that renders is a major requirement for
 them since the documents are intended for reading. So in our output pipeline we now have
 to unwind the regularisation
 process and restore spans. Here we have departed from our previous principle that we
 should not lose information but instead we reworked information like
 colspecs to produce a valid table. We cannot show changed spans so we
 compromised by deciding to preserve the spans of the second or ‘B’ version, and show the
 changes of the content within that. We saw this approach in the first section where
 there is a span for the 2nd and
 3rd columns for the 3rd and
 4th rows in the second version but not the first.
[image:]
Our previous approach would have shown this as:
[image:]
In the case where a column or row consist of content only from the first or ‘A’
 version which is not overlapped by any span from the second version we keep the
 spans for that version as well.
[image:]

How do the results of the two approaches compare?
Our User Guide [5] has a more systematic run down of the cases based on our
 public bitbucket CALS samples [6]. Here we will show a
 few examples only.
The examples in this section are rendered in a slightly different way from the
 previous examples as they have been produced from DocBook sources compared using our
 product which styled them into HTML with a bespoke filter. They differ in that the
 values of cells that have changed are shown using fonts with a different background
 colour, and not using strike through, italics and underlining. Light red for deletions
 and light green for insertions.
For cases where the structure of the tables remains the same and the change is
 relatively limited the results from the old and new approaches are the same.
[image:]
In the case where a column moved, we now give a clearer result:
[image:]
Where we have overlapping changes like when an inserted column intersects a
 pre-existing span, the changes are now finer grained.
[image:]
Finally where we have complex cases where multiple changes intersect an otherwise
 unchanged span we still get fine grained results. In the following the row which begins
 with South East Upper has been deleted, the column headed Coordinator has been inserted
 and the value ‘South East Lower’ has been renamed just ‘South East’.
[image:]

Different types of user, table variations and future challenges
In moving to this new approach, we were guided by our users who gave us the
 following principles:
	To see changes to the values of cells wherever possible.

	The result should contain valid table markup which can be rendered.

	Not to have to spend lots of effort saying what type of table they are
 using, at least to begin with.

	To have the difference be more robust than focusing just on the structure
 of the underlying markup.

	They should be able to see clearly that a cell belongs to a certain row
 and column in the grid. Even when rows are ragged with missing cells, the cells
 should be positioned under the column header to which they belong.

We have concentrated in the latest approach on providing the best result out of
 the box following these user requirements. But as we said, not all tables and users
 are the same.
For those users who are interested in the fine detail of the markup changes they
 can still switch off table comparison, and compare the raw XML. But what about other
 table variations?
We have allowed users to specify whether the columns in an individual table should
 be treated as ordered or orderless. This provides users with control so they can treat
 the two examples we saw in the second section
 differently depending on their requirements.
[image:]
Another variation of table is where the user chooses to use columns to format
 tables in a consistent way, hiding columns by putting spans across sets of columns
 so they appear as one.
[image:]
A related ‘problem table type’ are those tables where most columns contain the
 same data. Currently the algorithm which compares columns is tuned to look for
 similarities which have a certain degree of significance (in the statistical analysis
 sense), and sometimes repeated data can cause problems. For now we allow users to
 specify via processing instructions that these types of columns should be compared using
 their position or colname. This allows users to take complete control over
 which columns should align. Without using this, the table comparison above gives a result
 like this:
[image:]
With this additional control over the table comparison, we get a better
 result:
[image:]
One type of table which we have not currently explicitly taken account of is the
 case where the role of columns and rows are switched as if the table had been rotated by
 90° anti clockwise:
[image:]
In some cases we made arbitrary choices on how we show the changes in line with
 our users’ requirement that it should just work without configuration. The core
 comparison of the tables is separate from the way that changes are displayed and we
 anticipate users might want to display changes in different ways. Providing this
 control would, of course, add complexity.
For example, where rows have been deleted and the latest version has spans which
 cross them, we show the span crossing the deleted row. Users might find it clearer to
 have the span break to show the whole row deleted, and this would certainly help
 making accept changes easier:
[image:]
whereas we could show it as:
[image:]

Conclusions
Coping with the wide range of ways a user can make changes to a table is challenging
 if we want to show the minimal amount of change. Restricting ourselves to comparing
 tables as XML markup may be useful to the technical user but is less satisfactory when
 looking at the rendered result, and it is this rendered result that is of interest now
 to the majority of users, who tend to be less technical. This paper describes an
 improved approach that centres on analysing the content of tables in a regularised form
 and making choices based on how a final reader of the document would perceive it. This
 gives a finer-grained rendering of changes and is likely to be more useful to a wider
 range of users.

References
[1] Norman Walsh et al. (1999) CALS Table Model Document Type Definition.
[2] Harvey Bingham et al. (1995) XML Exchange Table Model Document Type Definition.
[3] Nigel Whitaker (2016) CALS table processing with XSLT and Schematron. Presented at XML London 2016, June 4-5, 2016. In XML London 2016 — Conference Proceedings.
[4] DeltaXML Ltd. Two and Three Document DeltaV2 Format.
[5] DeltaXML Ltd. (2022) XML Compare 12.0.0 Tester User Guide.
[6] DeltaXML Ltd. Bitbucket XML Compare CALS Samples.
[7] David J. Birnbaum (2007) ‘Sometimes a table is only a table: And sometimes a row is a column’. Presented at Extreme Markup Languages 2007®, Montréal, Québec. In Proceedings of Extreme Markup Languages®.

[1] For a more in depth consideration of the nature of tables and their representation in markup, see [7].
[2] The CALS The Exchange Table Model specification [1] defines the term ‘straddle’ when cells cover more than one row, and ‘span’
 for cells that cover multiple columns. We will use the term ‘span’ for cells
 that cover multiple column and/or multiple rows.
[3] Other CALS specifications such as the full CALS specification [2] allow for a group of footer rows in the element
 tfoot.
[4] Keys are rather like parent scoped xml ids as they uniquely identify child
 elements across versions of a document. Unlike xml ids they are not global in
 scope. The comparison will then only align 2 child elements with the same
 key.

Balisage: The Markup Conference

The Impossible Task of Comparing CALS Tables
Robin La Fontaine
Robin La Fontaine is the founder and CEO of DeltaXML. His background includes
 computer aided design software, and he has been addressing the challenges and
 opportunities associated with information change for many years. DeltaXML tools
 are now providing critical comparison and merge support for corporate and
 commercial publishing systems around the world, and are integrated into content
 management, financial, and network management applications supplied by major
 players. Robin studied Engineering Science at Worcester College, Oxford, and
 Computer Science at the University of Hertford. He is a Chartered Engineer and
 member of the Institution of Mechanical Engineers. He has three adult children,
 four grandchildren, and never finds quite enough time for walking, gardening and
 woodworking.

John Francis
After a brief career as an Archaeologist, John Francis has had a long career in
 Computing working on many bleeding edge technologies from distributed multi-media office systems to the first portable GUI frameworks and one of the first
 UK internet shops. At DeltaXML, John is the lead R&D developer responsible for
 many of our new comparison algorithms. John’s ambition is to return to digging
 sometime when he can afford it.

Balisage: The Markup Conference

content/images/LaFontaine01-020.png
First Version

Second Version

ID |Name | start Email Office ID [Name [Email Start Office
1[Anna | 03/03/1989 | anna.a@work.com | London 1| Anna anna.a@work.com | 03/03/1989 | London
2| Anna | 10/01/2012 | annie.b@work.com | Rockville 2| Anna | annie.b@dev.work.com | 10/01/2012 | Rockville
3| Charlie | 01/01/1990 | charles.c@work.com | Prague 3 | charlie charles.c@work.com | 01/01/1990 | Prague

Column order change shown

ID [Name [Email Start Email Office
1] Anna anna.a@work.com | 03/03/1989 | anna.a@work.com London
2| Anna | annie.b@dev.work.com | 10/01/2012 | annie.b@work.com | Rockville
3 | Charlie charles.c@work.com | 01/01/1990 | charles.c@work.com | Prague

Column order ignored (orderless)

b ID [Name [Email Start Office
1] Anna anna.a@work.com | 03/03/1989 | London
2| Anna | annie.b@dev.work.com | 10/01/2012 | Rockville
3| Charlie charles.c@work.com | 01/01/1990 | Prague

content/images/LaFontaine01-002.png
First Version ‘A’

Second Version

D Name Dpos Start Office D Name Start Email Office
1| Anna 01/01/1970 | 03/03/1989 | London 1 | Anna 03/03/1989 | anna.a@work.com London
2 [Anna 03/03/1989 | 01/01/2012 | Prague 2 [Anna 10/01/2012 | annie.b@work.com | Rockville
3| Charlie | 01/01/1970 | 01/01/1990 | Rockville 3 | Charlie 01/01/1990 | charles.c@work.com | Prague
D Name DOB Start Email Office
Anna 01/01/1970 | 03/03/1989 | anna.a@work.com | London
Anna 03/03/1989 | 0210/01/2012 | annie.b@work.com | PragueRockville
Charlie 01/01/1970 | 01/01/1990 | charles.c@work.com | ReckvittePrague

content/images/LaFontaine01-024.png
sr Name Email DOB
1 Joe joe@gmail.com | 01/01/1985

2 Anna anna@gmail.com | 02/02/1985

3 Chris chris@gmail.com | 03/03/1985

4 Dave dave@gmail.com | 04/04/1985

sr 1 2 3 4

Name Joe Anna Chris Dave

Email joe@gmail.com | anna@gmail.com | chris@gmail.com | dave@gmail.com
DOB 01/01/1985 02/02/1985 03/03/1985 04/04/1985

content/images/LaFontaine01-001.png
Headers

ROW s

ID Name |DOB Start Office
1| Anna 01/01/1970]03/03/1989 | London
2| Anna 03/03/1989 | 01/01/2012 Prague
3- 01/01/1970|01/01/1990 | Rockville

Cell

Column

content/images/LaFontaine01-023.png
Problems with short wide tables with many hidden columns

1/0 Type 1 1/0 Type 2

32 [4 |3 |2]|2

content/images/LaFontaine01-022.png
Problems with short wide tables with many hidden columns

110 Type 2

2

content/images/LaFontaine01-021.png
A B

Problems with short wide tables with many hidden columns Problems with short wide tables with many hidden columns
110 Type 1 110 Type 2 1/0 Type 1 1/0 Type 2
1 Dis-abled 32 [4 |3a2]2]2 1 Disabled 32 |4 |32 |22

<table Frame="al1" rowsep="1" -colsep="1" -Ld="table_pj4_tfl_1th">
<titlesProblens with short wide tables with many hidden columsk/titles.
<tgroup col5-"20">
<colspec colnase="c1" colnum="
<colspec colnane-"c2" colnum-"
<colspec colname-"c3" colnum-"
~<colspec -colname="c4" -colnum="

<table frame="all" romsep="1" -colsep="1" -id="table_pjé_tfl 1tb">u
<title>Problens with short wide tables with many hidden columd/titles.
<tgroup ol 5-"20"> 0
<colspec colname="c1" colnum="1" -Colwidth="5""/> o
s <colspec colnme="c2" Colnum="2" -ColWidth="5""/>
oo <colspec colname="c3" -colnum="3" ColWidth="5""/>
nlovec colnme"c5® colmm."5* colwidth-"F*"/o 0 -<colspec -colname="c4" -colnum="4" -Colwidth="5*"/>a
B A <olspec colrane=" 5" ol 5" ol o
PR - o <colspec <olname="c6" Colnm="6" ColWidth="5""/>a
et ol ot cotmisr s SEmlspec colnme-T 7 ol 7 colwidthTS
o - o <colspec colname="cB" -colnm="8" ColWidth="5""/>
et oGl ot o s Dl Sl ol clnanS Lo
<colspec colname="cl1" -colnum="11" Colmi dth="5*"/>u oolspec colname-"cl8 colmm- 17 coluldth 5 /e
<colspec -colname="C12" -colnum="12" -colwidth="5%"/>u <colspec m|m!-‘m- (n\llllb‘n- cohvldt?—-s"bu
<colspec -colname="C13" -colnum="13" -Colwidth="5%"/>u <colspec cn\m!-'rll' cnllulh,ll- co\v\ﬂtl-S:‘bu
<colspec -colnane="C14" colnum="14" -colwidth="5*"/>us ‘<colspec -colname="c13" colnum="13" -colwidth="5"/>us
<col: colname="c15" -colnum="15" -colwidt} S <colspec -colname="c14" -colnum="14" -Colwidth="5*"/>u
<colspec colname="c1E" -colnum="16" colmidth-"5%"/>us e Lt s
<colspec colname="c17" -colnum="17" colmidth="5%"/>us e s s
<colspec -colname="C18" -colnum-"18" -colwidth="5*"/>u <colspec colname-"cl77 -colnum-7177 colmidth-7577/50
<colspec colname-"c19" colnum-"19" <colspec colname-"c18” colnum-"18" coluldth-"5/>
Pl - <colspec colname="c19" ‘colnum="19" colwidth-"5*"/>es
Seotspec <colspec colname="c20" -colnum="20" colwidth="5%"/>u
o <heads
~<entry nomest="cl" nameend="c10">1/0 Type 1 </entry> <

o B ~centry namest="cl" nameend="c10">1/0 Type 1 </entry> o
~centry namest="c11" nameend="c20">1/0 Type 2</entry> o e
<Srowu centry nanest="cll” naneend-"c20°>1/0 Type 2</entry>«

colmidth="5""/>0s
colwidth="5*"/>¢s

oy s
petivest Seooay
G oo
Sty 1entry. ety

<entry nanest-"c2" rameend="c10">Dis-abled</entry>
<entry nanest="cl1" naneend="c15">3. 2</entry>a

~centry nanes
~<centry nanes

2" naneend-"c10">Disabled</entry>.
11" nameend="c15>3. 2 entry> o

entrp</entryso u
<entry3</entrys s Centry3</entrys s
entryp2/entrys s entrypz/entrys o
entryp2/entrys s D i
<entrys2/entrys s

o P
< < </tbody>u

e <tgrow>u

<Stableo e

content/images/LaFontaine01-006.png
First Version ‘A’

Second Version ‘B’

Region Manager | Local Rep | Secretary Region Manager | Local Rep | Secretary
Adam Calum | Dave

North | Adam Calum | Dave North
- - Doreen

Southwest | Annie Clive | Doreen Southwest Annie

o Danny

southeast | ATt Cecilia | Danny Southeast
cast | ASh Colin| Dodie East | A" Colin | Dodie
- Art Connor | Dahiia

West | ATt Connor | Dahiia West

Region Manager | Local Rep | Secretary

North | Adam Calum | Dave

Southwest | Annie Cive Ant Doreen

Southeast Danny

cast | ASh Colin| Dodie

West | ATt Connor | Dahiia

content/images/LaFontaine01-005.png
First Version

Second Version

D |Name | January | February | Total D |Name | January | February | March | April | May | Total
Anna 100 70| 170 1| Anna 100 70] 60| 55| 90| 375
Anna 10 30| 40 2 [Anna 10 30| 50| 60| 70| 220
Charlie 9 31| 40 3 Charlie 9 31| 55| 60| 65| 220

D |Name | January | February [Total | March| April | May | Total
1| Anna 100 70| 170 60| 55| 90| 375
2 [Anna 10 30| 40| 50| 60| 70| 220
3 Charlie 9 31| 40| 55| 60| 65| 220

content/images/LaFontaine01-004.png
First Version

Second Version

ID |Name | start Email Office ID [Name [Email Start Office
1[Anna | 03/03/1989 | anna.a@work.com | London 1| Anna anna.a@work.com | 03/03/1989 | London
2| Anna | 10/01/2012 | annie.b@work.com | Rockville 2| Anna | annie.b@dev.work.com | 10/01/2012 | Rockville
3| Charlie | 01/01/1990 | charles.c@work.com | Prague 3 | charlie charles.c@work.com | 01/01/1990 | Prague

Column order change shown

ID [Name [Email Start Email Office
1] Anna anna.a@work.com | 03/03/1989 | anna.a@work.com London
2| Anna | annie.b@dev.work.com | 10/01/2012 | annie.b@work.com | Rockville
3 | Charlie charles.c@work.com | 01/01/1990 | charles.c@work.com | Prague

Column order ignored (orderless)

b ID [Name [Email Start Office
1] Anna anna.a@work.com | 03/03/1989 | London
2| Anna | annie.b@dev.work.com | 10/01/2012 | Rockville
3| Charlie charles.c@work.com | 01/01/1990 | Prague

content/images/LaFontaine01-026.png
Region Manager | Local Rep | Secretary
North | Adam Callum Dave
Annie Clive| Doreen

South West
South East | Ant Cecilia | Danny

Upper
South East | Annie Clive | Delphine

Lower | Andre Caspar

Anhil Charvi Diu

Other

content/images/LaFontaine01-003.png
Whole Inserted Columns / Rows

Whole Deleted Columns / Rows

5 Red Textin St

Inserted Green Text in underlined Italics

content/images/LaFontaine01-025.png
First Version

Second Version

Region Manager | Local Rep | Secretary Region Manager | Local Rep | Secretary
North | Adam Callum Dave North | Adam Callum Dave
South West Annie Clive Doreen South West Anni ai Doreen
— nnie ive -
Sou(CEas(Ant Cecilia Danny South East Delphine
pper - - -
Anhil Charvi Diu
South East | Andre Caspar | Delphine Other
Lower
Other | Anhil Charvi Diu
Region Manager | Local Rep | Secretary
North | Adam Callum Dave
South West Annie CI!\{e Doreen
South East | 7 Ceellia M5y
Upper dre Caspa
South East Delphine
Lower
Other | Anhil Charvi Diu

content/images/LaFontaine01-009.png
Table 3. A sample table 3

Header 1 | Header 2 Header 3 Header 4
An entry in Column 1 ‘A ‘Span across Columns 2, 3 and 4

content/images/LaFontaine01-008.png
Table 2. A sample table

Header 1 Header 2 Header 3
A Span across 2 Columns and 2 Rows Row 1 Cell 3
Row 2 Cell 3

content/images/LaFontaine01-007.png
Table 1. A sample table

Header 1 |Header 2 Header 3
Row 1 Cell 1 |Row 1 cell2 Row 1 Cell 3
Row 2 Cell 1 |Row 2 cell2

Row 2 Cell 3

content/images/LaFontaine01-013.png
First Version

Second Version

Region Manager | Local Rep | Secretary

North Adam Callum Dave

Southwest . Doreen
Annie 5

Southeast anny

East | ASh Colin | Dodie

Wwest | ATt Connor | Dahlia

Region Manager | Local Rep | Secretary
North Adam Callum Dave
Southwest | Annie Clive | Doreen
Southeast | ATt Cecilia | Danny
East | ASh Colin | Dodie
Wwest | ATt Connor | Dahlia

Region Manager | Local Rep | Secretary

North Adam Callum Dave

Southwest | AnMie Clive Ant Doreen

Southeast Danny

East | ASh Colin | Dodie

Wwest | ATt Connor | Dahlia

content/images/LaFontaine01-012.png
First Version

Second Version

sr Name Email DOB sr Name DOB Email
1 Joe joe@gmail.com | 01/01/1985 1 Joe 01/01/1985 | joe@gmail.com
2 Anna anna@gmail.com | 02/02/1985 2 Anna 02/02/1985 | anna@gmail.com
3 Chris chris@gmail.com | 03/03/1985 3 Chris 03/03/1985 | chris@gmail.com
a Dave dave@gmail.com | 04/04/1985 4 Dave 04/04/1985 | dave@gmail.com
&
br Name Ermail DOB DOB Email
1 Joe joe@gmaikcom | 01/01/1985
01/01/1985 joe@gmail.com
2 Anna anna@gmail.com | 02/02/1985
02/02/1985 anna@gmail.com
3 Chris chris@gmaikcom | 03/03/1985
03/03/1985 chris@gmail.com
2 Dave dave@gmailcom | 04/04/1985
04/04/1985 dave@gmail.com

content/images/LaFontaine01-011.png
First Version ‘A’

Second Version ‘B’

Emaill

Email2 DOB Sr| Name | Emaill Email2 DOB
1 [Joe joe@gmail.com | joe@work.com | 01/01/1985 1 [Joe joe@work.com 01/01/1985
2 [Anna__| anna@gmail.com | anna@ work .com | 02/02/1985 2 [Anna__| anna@gmail.com | anna@ work .com | 02/02/1985
3 [Chris__ | chris@gmail.com | chris@ work .com | 03/03/1985 3 [Chris__ | chris@gmail.com | chris@ work .com | 03/03/1985
4 | Dave | dave@gmail.com | dave@ work .com | 04/04/1985 4 | Dave | dave@gmail.com | dave@ work .com | 04/04/1985

Sr| Name | Emaill Email2 DOB

1 [loe joe@gmail.com | joe@work.com | 01/01/1985

1 [Joe joe@work.com 01/01/1985

2 [Anna | anna@gmail.com | anna@ work 02/02/1985

.com
3 [Chris__ | chris@gmail.com | chris@ work .com | 03/03/1985
4 |Dave | dave@gmail.com | dave@ work .com | 04/04/1985

content/images/LaFontaine01-010.png
Table 4. A sample table 4 with missing entrys

Header 1 | Header 2 Header 3 Header 4

‘A ‘Span across Columns 2 and 3

content/images/LaFontaine01-017.png
old

New
Example 17: Email and DOB Columns swapped along with their Example 17: Email and DOB Columns swapped along with their
colnames colnam
Sr | Name EmailDOB. DOBEmail sr
1| voo | Ios@omacomt-1- [[Joe@gmail.com
2 anna@gmail.com
2 | Anna ﬁ + 3 chris@gmail.com
o | omis T . 4 dave@gmail.com
¢ | ome | CROSTEEE | sessossa@omatican

content/images/LaFontaine01-016.png
Example 1: Content only changed

sr Name Email DoB
1 Joe joe@gmail.com 1-1-1985
2 Anna anna@gmail.com 2-2-1985
3 | ChrisChristina | chrischristina@gmail.com | 3-3-1985
4 Dave dave@gmail.com 4-4-1985
Example 2: Row added

sr Name Email DOB

1 Joe ioe@gmail.com 1-1-1985

2 Anna anna@gmail.com 2-2-1985

3 Chri chris@gmail.com 3-3-1985

4 Dave dave@gmail.com 4-4-1985

Example 3: Column deleted

sr Name

1 Joe

2 Anna

3 Chris

4 Dave

content/images/LaFontaine01-015.png
First Version

Second Version ‘B’

Region Manager | Local Rep | Secretary Region Manager | Local Rep | Secretary
Adam Callum Dave
North Adam Callum Dave North
? i Doreen
Southwest | Annie Clive | Doreen Southwest Annie
i Danny
Southeast | ANt Cecilia | Danny Southeast
East Ash
West
Region Manager | Local Rep | Secretary
North Adam Callum Dave
Southwest | AnMie Clive Ant Doreen
Southeast Danny
East o
West

content/images/LaFontaine01-014.png
Region Manager | Local Rep | Secretary
North | Adam Callum Dave
Southwest | AMnie Clive | Doreen
Southeast | A"t Cecilia | Danny
Southwest e Doreen
Southeast Danny
East | ASh Colin | Dodie

West | At Connor | Dahlia

content/images/LaFontaine01-019.png
Example 18: Column inserted, Row d

Versiol

n'A'

ed in middle of Span

Version 'B'

Example 18: Column inserted, Row deleted in middle of Span

Region Manager | Local Rep | Secretary Region | Manager | Caordinator | 42521 | Secretary
North Adam Callum Diane
North Adam Beth Callum Diane
South West Dodie
South Dodie
South East Upper Annie Dylan West Annie
South East Lower Dahlia South East Dahlia
East Ash Cecilia Dave East Ash el Dave
West Art Colin Danny West Art Bruce Danny
old New

Example 18: Column inserte

Row deleted in middle of Span

Example 18: Column inserted, Row deleted in middle of Span

. Local
Region Manager Rep | Secretary
Adam Callum | Diane
Dodie
Annie -
South East §
Eovier Dahlia
East Ash Dave
West Art Danny

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

content/images/LaFontaine01-018.png
oid

 Contlicting Column

Example 11: Conflicting Column

st | Name Email DOB.

1| Joe Josjoe@gmail.com | 1-1-1985
2 [Anna anna@gmail.com | 2-2-1985
3 | cnris chris@gmail.com | 3-3-1985
4 [Dave dave@gmail.com | 4-4-1985

