[image: Balisage logo]Balisage: The Markup Conference

ZenoString: A Data Structure for Processing XML Strings
Michael Kay
Founder and Director
Saxonica

<mike@saxonica.com>

Balisage: The Markup Conference 2021
August 2 - 6, 2021

Copyright ©2021 Saxonica Ltd.

How to cite this paper
Kay, Michael. "ZenoString: A Data Structure for Processing XML Strings." Presented at: Balisage: The Markup Conference 2021, Washington, DC, August 2 - 6, 2021. In Proceedings of Balisage: The Markup Conference 2021.
 Balisage Series on Markup Technologies vol. 26 (2021). https://doi.org/10.4242/BalisageVol26.Kay01.

Abstract
This paper describes a novel data structure for the
 representation of Unicode strings, designed to efficiently support the
 usage patterns that arise when processing XML using languages
 such as XSLT, XPath, and XQuery.

Balisage: The Markup Conference

 ZenoString: A Data Structure for Processing XML Strings

 Table of Contents

 	Title Page

 	Introduction

 	String Operations in XPath, XSLT, and XQuery

 	Existing data structures for strings
 	Monolithic char arrays

 	Strings in Saxon

 	Ropes

 	Finger Trees

 	ZenoStrings

 	Performance
 	Case Study: Dictionary-based Word Substitution

 	Case Study: Word-wrap

 	Conclusions

 	About the Author

 ZenoString: A Data Structure for Processing XML Strings

Introduction
XML is primarily about document processing, and documents are primarily text.
 Although the structural side of an XML document is important, the textual content
 is even more so. The textual content consists of strings of Unicode characters,
 so in any framework for XML processing, efficient manipulation of Unicode strings
 is critical. But algorithms and data structures specialized to Unicode string
 manipulation in XML seem to have received little attention.

A processor for XPath, XSLT, or XQuery will typically be written in a general-purpose
 procedural language such as Java, C#, Python, or Javascript, and the obvious implementation
 approach is to represent XDM[1] strings using
 the native string data type of the underlying
 programming language. This is not ideal however. The details vary from one programming
 language to another, but the following difficulties will generally be encountered:

	Native strings are limited in length. XML documents are getting bigger;
 multi-gigabyte documents are increasingly common, and memory is becoming
 sufficiently cheap that storing such documents in main memory is
 increasingly feasible. But the native strings of most programming
 languages are limited to 231 characters. And that’s a theoretical limit;
 the practical limit is much smaller, because strings typically require
 allocation of contiguous chunks of memory, and allocating a chunk of this
 length may fail because of memory fragmentation.

	Native strings are not codepoint-addressible. Typically a string is
 an array of char objects, where char objects only support 16-bit
 Unicode characters; characters needing more than 16 bits are represented
 using a surrogate pair. This means that direct addressing into strings
 based on counting Unicode characters is not possible.

	String concatenation often requires bulk copying. The details here
 depend on the host language; Javascript optimizes string concatenation,
 Java doesn’t. Any data structure that (a) makes strings immutable, and
 (b) requires strings to occupy contiguous memory, is going to involve
 bulk copying to concatenate two strings. The effect is that building
 a string by repeated appending of characters is going to take quadratic time.

	A substring() operation may also require copying. Again, the details
 depend on the programming language: Java’s substring() operation certainly
 copies the relevant part of the underlying array of characters. The same applies
 to other operations such as replace(): a replace() operation that only
 changes one character in a string of 10M characters will often copy the whole
 structure[2].

At the same time, using the native string data type of the host programming
 language has two major advantages for an XSLT or XQuery processor:

	Processing of native strings is likely to be optimized by the
 host language compiler, for example by use of optimized machine
 code taking advantage of the low-level instruction set of the target processor.

	An XSLT or XQuery processor doesn’t work in isolation. It will often
 interoperate with a third-party XML parser, and it is likely to make
 use of host-language library routines for operations such as sorting,
 Unicode normalisation, or number formatting, as well as input and output:
 all data interchange with external code is likely to use the native host-language
 string data type, and internal use of a different data structure is therefore
 likely to incur a data conversion penalty whenever data crosses such boundaries.

This paper explores how to reconcile these conflicting factors.

String Operations in XPath, XSLT, and XQuery
In this section we review the way strings are handled in the XPath, XSLT,
 and XQuery languages: the language specifications effectively define the functional requirements
 for string handling within the implementation.

As a first cut, the functional requirements are defined by the
 XPath operations on the xs:string data type, which include:

	addressing into strings using the substring() function

	string concatenation using the "||" operator, or functions such as
 concat() and string-join()

	searching within strings using functions such as contains(),
 substring-before(), and substring-after()

	string transformation functions such as upper-case(),
 lower-case(), normalize-space(), and normalize-unicode()

	regular expression processing (matches(), replace(), tokenize(), etc)

	conversion between xs:string and other data types.

But strings are also used to represent text and attribute nodes
 in XML documents, and the implicit operations on these strings play
 a key role. For example, one of the most performance-critical operations
 in XPath is atomization, which usually consists of extracting the string
 value of a text or attribute node. There are considerable gains to be
 achieved if this can be done without physically copying the content.
 The reverse operation – building an XML document in which the content
 of text and attribute nodes is supplied in the form of strings –
 should also not be neglected.

Deriving performance requirements is somewhat subjective,
 because workloads are highly variable. Broadly, performance requirements
 split into three categories: time taken for key operations, memory occupancy,
 and scaleability limits as document sizes increase. The design inevitably
 involves finding the right trade-off between these constraints. The design
 that works best for a simple identity transform might not be the same
 as the design that works best for a transformation involving complex
 string manipulation.

It’s worth remembering that with modern computer hardware,
 performance of low-level operations is critically dependent on the
 effectiveness of CPU caching. The number of instructions executed is largely
 irrelevant: it’s the movement of data between main memory and the on-board
 CPU cache (or cache hierarchy) that really matters. Conventional analysis of
 algorithmic complexity often ignores this factor. And since this data is moved
 in chunks, there’s a strong advantage if adjacent characters in a string
 are stored in adjacent bytes of memory.

Existing data structures for strings
In this section I outline several existing ways of representing strings,
 with the advantages and disadvantages of each.

Monolithic char arrays
Java and C# represent a string as an array of 16-bit char units,
 in contiguous memory. A character above the 16-bit limit (a so-called
 astral character) is represented as a surrogate pair: that is,
 a sequence of two 16-bit numbers in a reserved range. This means that
 the number of bits per Unicode codepoint is variable (16 or 32), which
 in turn means that Unicode codepoints are not directly addressible.
Since Java 9, strings consisting entirely of 8-bit characters use an
 optimized representation that allocates 8 bits per character rather than 16.
 This creates a discontinuity: the space occupancy of a long string doubles
 as soon as it contains a single non-ASCII character. It also increases the cost
 of string concatenation if one of the operands needs to be widened from an 8-bit
 to a 16-bit representation.

The main disadvantages are:

	Maximum string length of 231 characters

	Not codepoint-addressable

	String concatenation requires copying of the operand strings, even
 though they are immutable

	Operations such as replace() require copying the unchanged parts of the
 string as well as the changed parts.

Building a large string incrementally in Java with a sequence of string concatenation operations
 notoriously has O(n2) performance, and to counter this, the language
 offers a mutable StringBuilder class to hold a string temporarily while under construction.
 This is fine to underpin some XPath operations such as string-join(), where there’s no problem using a mutable
 data structure transiently during the execution of the function. But it doesn’t work where the user
 application constructs a string incrementally, for example by use of a recursive function or by a
 fold-left() operation. In such cases each intermediate string needs to be fully accessible at every stage
 of processing, and immutable, so update operations such as concatenation are not allowed to modify their operands.

Strings in Saxon
In the Saxon XSLT processor[3] (at any rate, the version built using Java
 as the implementation language), a number of techniques are used to
 mitigate the disadvantages of the native string representation:

	In some situations (for example, regular expression processing and
 the translate() function) strings are expanded temporarily to an
 array of 32-bit integers, to provide codepoint addressibility.

	XDM string values are wrapped in an object that contains additional
 information about the string (for example, its XDM type). This
 additional information includes a bit that indicates when a string
 is known to contain no surrogate pairs; if this bit is set, XPath operations
 like substring() can be performed more efficiently, because they map directly
 on to underlying Java operations.

	Many internal interfaces use the CharSequence interface rather than
 java.lang.String. The CharSequence interface allows alternative
 representations of strings, including user-defined implementations.
 Saxon uses a number of custom implementations of CharSequence including:

	CharSlice, which is a view of a portion of a char array
 (useful for capturing the char array passed over by an XML
 parser implementing the SAX interface; but dangerous because
 the char array is mutable both in theory and in practice).

	CompressedWhitespace, a compressed representation of the
 whitespace text nodes that typically occur between XML elements:
 compression is achieved using run-length encoding.

	FastStringBuffer, an implementation designed to allow efficient
 in-situ appending to a string. Again dangerous because it is mutable.

Use of the CharSequence interface doesn’t solve all our problems.
 It’s still limited to 231 characters;
 and it still isn’t codepoint-addressable.
 What it does achieve is to reduce the amount of copying required by
 some operations, such as substring().

Saxon implements XDM node structures using a data structure called the TinyTree.
 This economises on space by avoiding the traditional one-Java-object-per-node
 tree design, and provides fast searching by representing node names
 in the tree as a single array of integer name codes. (If a document contains
 one million nodes, then searching for an element by name reduces to a sequential
 search of a contiguous array of one million 32-bit integers, which is extremely fast
 as a result of CPU caching: often faster than using an index.)
Text nodes in the tiny
 tree are represented using integer offsets into a LargeTextBuffer structure
 which is an array of fixed-length segments. Each segment except the last
 is exactly 65535 Unicode characters in length; segments represent characters
 using 8, 16, or 24 bits per character depending on the highest codepoint
 present in that segment. This achieves Unicode codepoint addressibility.
 In principle it allows more than 231 characters in a string, but we don’t
 actually exploit this because it uses 32-bit int values for addressing, and
 because many operations require XDM strings to be converted to Java strings.
 One of the original ideas was that the characters representing the string
 value of a non-leaf element (defined as the concatenation of its descendant
 text nodes) would be directly available as a contiguous section of the
 LargeTextBuffer, but again, we don’t actually exploit this capability,
 largely because of the complications caused by compressed whitespace text
 nodes. When an operation calls for atomization of an element or text node,
 we represent the result as a CharSequence: if the characters needed are
 contiguous in a single segment, we avoid any copying operations, but if the
 value spans segments, we make a copy.

One of the disadvantages of the extensive reliance on the CharSequence
 interface is that it has no equivalent in the C# language[4]. The way in
 which we derive Saxon products for both the Java and C# platforms from
 a single code base [Kay 2021] is beyond the scope of this paper; but the requirement
 to do so means that we make our life easier if we confine ourselves to
 functionality available in both languages.

The overall effect of these various techniques has been to give reasonably
 good all-round performance. But the limitations mean that we have been
 looking for something better.

Ropes
A relatively little-known data structure for handling strings is the rope
 [Boehm, Atkinson, and Plass 1995].

A rope represents a string as an immutable binary tree of short segments.
 Typically each non-leaf node in the tree represents a substring of the overall
 string, and contains pointers to left and right substrings[5], plus a length field.
 Substring operations extract a subtree; concatenation forms a supertree.
 Operations such as replace() can reuse parts of the original
 string that are unaffected by the change, without copying. The structure thus
 affords a good solution for most of the requirements, including addressibility,
 scaleability, and immutability without excessive copying.

The main problems are keeping the tree balanced, and preventing excessive
 fragmentation. The definitive paper on ropes sketches an algorithm for keeping
 the tree balanced, but it makes no attempt to prevent fragmentation: specifically,
 a string built by appending a large number of small substrings will not be
 consolidated into a smaller set of larger substrings, which means that the number
 of objects used to represent the tree can become very large, and the depth of
 the tree can also grow to an uncomfortable level. A fragmented tree also leads
 to poor locality of reference and therefore poor CPU cache effectiveness.

Finger Trees
A finger tree [Hinze and Paterson 1995] is
 a flexible functional data structure used to represent ordered sequences or lists. It’s designed
 to provide efficient implementation of a broad range of operations including insertion, deletion,
 scanning, and searching; a particular characteristic compared with other tree representations is
 that the tree is shallower at its extremes, and deepest in the centre, which makes addition of entries
 at either end of the sequence particularly efficient.
Although strings are sequences of characters, general purpose list structures are not well suited
 for storing strings because of the space overhead, and because of the need for locality of reference
 (which implies using contiguous storage for adjacent characters where possible). Of course a rope,
 as described in the previous section, is a tree of substrings, and there is no reason why this tree should
 not be implemented as a finger tree.
But any structure that maintains strings as a list of substrings needs to consider how and when
 adjacent substrings should be consolidated. As mentioned above, the literature on ropes has little
 to say on this subject, and implementing the tree as a finger tree doesn’t solve the problem.
The key idea with finger trees, which are shallower at the extremities to provide extra efficiency for
 prepend and append operations, suggests that a similar idea might be applied to the consolidation
 of substrings within a rope structure, namely using shorter segments at either end of the string.
 This is the principle of the ZenoString structure presented in the next section.

ZenoStrings
The ZenoString is a proposed representation for strings that takes
 inspiration from a number of existing sources, but which (as far as the author can tell)
 is otherwise novel.

A ZenoString is essentially a list of string segments. The segments can be different lengths, and they
 can use different string representations internally[6]. The objects in the top-level array
 contain two fields:

	a pointer to the corresponding segment at the next level

	an integer offset representing the character position of the start
 of this segment in the overall string.

[image:]
In pseudocode, we can express the data structure as:
 ZenoString = {Entry[]};
 Entry = {int64 offset, Segment segment};
 Segment = {int24[] characters}
where X[] represents a list or array whose entries are of type X,
 int64 represents a 64-bit integer[7], and int24 represents
 a 24-bit Unicode codepoint; fewer bits per character are used where possible,
 but the characters in a segment all use the same representation.
The structure can be seen as an implementation tree of constant depth 3: the root is represented implicitly
 by the ZenoString object; the nodes at the second level are the entries, and the nodes at the third
 level are the individual characters.
To find the character at a particular position, the relevant segment
 can be located by a binary-chop search of the top-level list of entries. To extract
 the substring of characters between two given positions, a new ZenoString
 can then be formed by constructing a new top-level array of entries, making a partial
 copy of segments that are partially included in
 the result, and reusing segments, without copying, if they are included in the
 result in their entirety. (In our implementation, we represent the result of a substring
 operation using a simpler data structure if it contains only one segment.)

To concatenate two ZenoStrings, in principle it is merely necessary to
 copy the entries in the two top-level arrays, adjusting the segment offsets as appropriate.
 The underlying segments can be reused, since they are immutable.
 However, this would lead to fragmentation when a string is built by
 incremental concatenation. We therefore take the opportunity at this
 stage to perform some consolidation to reduce the number of segments.
 Our first-cut algorithm for consolidation is to apply the following rule:

If the length of any segment other than the last
 is less than or equal to the length of its right-hand neighbour,
 then combine the two segments into one.

To examine the effect of this rule, consider first the case where
 single characters are appended at the right hand end of the string.
 The string will tend towards a structure containing log2(N) segments
 where N is the length of the string, with the longest segments near
 the start: for example segments of length (256, 128, 64, 32)[8]. When we add 26 individual characters to build up a string, the effect is demonstrated by the sequence below:
A
AB
AB C
ABCD
ABCD E
ABCD EF
ABCD EF G
ABCDEFGH
ABCDEFGH I
ABCDEFGH IJ
ABCDEFGH IJ K
ABCDEFGH IJKL
ABCDEFGH IJKL M
ABCDEFGH IJKL MN
ABCDEFGH IJKL MN O
ABCDEFGHIJKLMNOP
ABCDEFGHIJKLMNOP Q
ABCDEFGHIJKLMNOP QR
ABCDEFGHIJKLMNOP QR S
ABCDEFGHIJKLMNOP QRST
ABCDEFGHIJKLMNOP QRST U
ABCDEFGHIJKLMNOP QRST UV
ABCDEFGHIJKLMNOP QRST UV W
ABCDEFGHIJKLMNOP QRSTUVWX
ABCDEFGHIJKLMNOP QRSTUVWX Y
ABCDEFGHIJKLMNOP QRSTUVWX YZ

 After appending 19,999 individual characters, the
 segment lengths will be (16384, 2048, 1024, 512, 16, 8, 4, 2, 1), while with one million
 characters the lengths will be (524288, 262144, 131072, 65536, 16384, 512, 64).

In fact the very short segments at the end serve no useful purpose, so to avoid short segments we refine the rule
 as follows:
If the length of any segment other than the last
 is less than or equal to the length of its right-hand neighbour,
 or if the combined length of the two segments is less than 32,
 then combine the two segments into one.

With this rule, a string built by appending 19,999 individual characters has
 segments with lengths (16384, 2048, 1024, 512, 31), while with a million characters
 the lengths are now (524288, 262144, 131072, 65536, 16384, 512, 32, 32)
The significance of having shorter segments near the end, where new
 data is likely to be added, is that adding a new character to an existing
 segment is cheaper if the segment is short, because it reduces the amount of
 character copying. But we don’t want all the
 segments to be short, because that increases the per-object space overhead,
 increases the length of the search needed for substring operations, and reduces
 locality of reference when processing the entire string.

 The key operations on a ZenoString perform as follows:

	Scanning the string: O(n). This simply involves scanning each of the segments in turn.
 Note that the cost of scanning is for practical purposes independant of the the number of segments
 or their size distribution.

	Finding the Nth character of the string
 (or a substring from positions M to N): O(log N). The relevant
 segment or segments can be found by a binary chop on the index array. The operation of extracting a substring
 has already been discussed.

	Searching for a substring: O(n). The positions where a particular
 character occurs can be obtained by scanning the string looking for that character; to search
 for a substring (needed for example to support contains()), search for the first
 character, then scan forwards to compare the subsequent characters with those of the required substring.

	Appending a character: O(1). This either involves creating a new segment, or adding the character
 to the last segment. It may also involve some consolidation of preceding segments, but this is
 sufficiently rare that it does not contribute significantly to the cost. During string construction
 each character is copied log(N) times where N is the
 final length of the string.

	Inserting or removing a character or substring other than at the end: O(N).
 If the position of the insertion or removal is random, then on average a little over 25% of the
 characters in the existing string will need to be moved, on the assumption that the largest segment contains half
 the string, and inserting or removing into this segment involves moving all the characters in this segment. So
 50% of the time, 50% of the characters will need to be moved; 25% of the time, 25% will need to be moved, and so on,
 giving the overall average number of character moves as N × (1/4 + 1/16 + 1/64...).

	Concatenating two strings: O(1). In the simplest case this just involves copying the index arrays and
 adjusting the offsets accordingly (the actual segments can be reused, they do not need to be copied).
 There is the option of consolidating the segments to reduce fragmentation: this is discussed below, but it is not
 an expensive operation.

 If, instead of appending characters one at a time, a string is built incrementally by appending strings that
 are less predictable in length, the segment lengths will follow the same general
 pattern, but without such perfect regularity. For example if we build a string by concatenating the words of
 Shakespeare’s Othello (one word at a time)[9], we get a string with segment lengths
 (93820, 25652, 2667, 233, 215, 118, 64, 61, 26, 13).

Of course, appending short strings to a long (and lengthening) string is not the
 only use case to consider. Several other use cases for string concatenation in particular
 are worth considering:
	Building a string by successive prepend operations.

	Concatenating two large strings, each containing multiple segments.

	Replacement of internal substrings: for example using the replace() operation
 to match short substrings and replace them. (This was in fact the use case that
 motivated this research.)

The problem for incremental prepend is that the rule proposed earlier always results in the entire
 string occupying a single segment. To tackle this case we can modify the rule for merging adjacent segments
 as follows:
If any segment other than the first or last
 is shorter than or equal to both its neighbours,
 or if the combined length of the segment and its right-hand neighbour is less than 32,
 then combine the segment with its right-hand neighbour.

The effect of this rule is to create a sequence of segments with short segments at both ends, and longer
 segments in the middle. When we build the text of Othello by appending individual words we now get segment lengths of:
(29, 57, 62, 119, 133, 141, 365, 1193, 2422, 2455, 6835,
 9420, 15864, 23299, 31426, 25652, 2667, 233, 215, 118, 64, 61, 26, 13)
And when we build it by prepending one word at a time the segment lengths are:
(13, 46, 86, 168, 411, 826, 2021, 3486, 4209, 4353, 10873, 16147, 43964,
 29580, 2105, 1428, 1010, 923, 586, 234, 164, 116, 64, 56)
So in both cases we end up with a sequence where the segments near the ends are shortest, meaning that the
 bulk of the existing segments can be reused when data is added at either end.
How does this work for the general case of concatenating two strings of arbitrary
 length? If the two strings are ZenoStrings, then we would expect the final segments of the
 first operand, and the initial segments of the second operand, to be quite short, and a natural
 strategy is to coalesce the short segments in this region into one larger segment.
This situation arises in the course of implementing the replace()
 function. If we choose, for example, to replace all occurrences of "'d" in Shakespeare’s Othello by "ed"
 (so "embark'd" becomes "embarked", and "call'd" becomes "called"), this is likely to result in a sequence of concatenations,
 with the operands being long substrings of the original text (average length around 1000 characters)
 interspersed with occurrences of the short 2-character replacement string. Is it better to leave
 the short replacement strings as individual unconsolidated segments in the result, or is it better
 to combine them with their neighbours to reduce the fragmentation of the string? The answer is,
 it depends on how the string is subsequently used[10].
In fact there is no need to use the same consolidation algorithm after every operation; we could
 use right-consolidation (producing shorter segments at the right hand end) after
 appending a short string, and left-consolidation (producing shorter segments at the left hand end)
 after prepending a short string. In each case we are optimising the resulting string on the assumption that a sequence
 of similar operations is likely to follow. The downside of this approach, however, is that consolidation is no
 longer idempotent, which creates the risk that a sequence of dissimilar operations will cause expensive oscillation
 between two different states. A solution to this might be to perform only local consolidation after each operation
 (confined, say, to the first or last few segments) until the string as a whole crosses some threshold, such as having
 more than P segments whose length is less than Q, for suitable values of P and Q.
Strings, like most other data structures, tend to have phases of processing in which they are subject to frequent
 modification, and phases in which they are largely read-only. Modifying strings is fastest when the string is more fragmented,
 and using the string is fastest when it is less fragmented. This calls for an adaptive approach in which consolidation
 operations respond to the usage pattern.
Another factor that could influence how best to consolidate strings is the variable width of characters.
 Segments can be implemented as contiguous arrays using a constant number of bits
 per character (8, 16, or 24) depending on the largest codepoint appearing
 in the segment. A possible variation is to avoid merging segments if their
 character widths differ, but I have not explored the effect of this.
 It is also possible to refrain from merging segments beyond some maximum
 length (say 16M characters) to make it easier for the underlying memory
 management to allocate suitable memory segments, at the cost of making
 substring operations on very large strings take rather longer.

Performance
No paper that proposes a new data structure or algorithm would be complete without a section
 demonstrating that the innovation delivers measurable performance benefits.
Demonstrating this, however, is easier said than done. We need to decide what to measure, and we need
 to decide what to compare it with.
In choosing what to measure, we need to convince the sceptical reader that we have not simply
 chosen a use case that demonstrates the technique in ideal circumstances, and that the benefits
 for this use case do not result in hidden costs elsewhere. We also need to be aware of
 Goodhart’s Law[11]:
 When a measure becomes a target, it ceases to be a good measure. The point
 here is that when we choose one particular workload to demonstrate the superior characteristics
 of the algorithm, we will naturally tend to tweak the algorithm to optimise its performance
 for that particular task, regardless of whether these adjustments have any effect (either beneficial or adverse)
 on other tasks that might be equally important, but which are not being measured.
We also need to consider what baseline to use for comparison.
The use case that motivated this study was a transformation that performed multiple
 string replacements on an input text. The string replacements were taken from a supplied
 dictionary, and were variable in number: imagine, for illustration, that all English spellings
 of German cities are to be replaced with their local spellings, so Cologne
 becomes Köln, Nuremberg becomes Nürnberg,
 Brunswick becomes Braunschweig, and so on.
One approach is to take this as the definitive use case, and measure the effect
 of the algorithm on this particular transformation. But it’s not as simple as this:
	The results depend greatly on the length of the text, and the number of replacements
 to be performed. They are also sensitive to details such as the incidence of characters requiring
 8, 16, or 24 bits for their Unicode codepoints. In particular, we know if we take the existing
 Saxon product as our baseline, then there are worst-case scenarios involving input strings
 with surrogate pairs. Should we include such scenarios in our baseline, given that we know
 they are rare?

	While working on this problem, optimizations were found that have little to do with the
 new data structure or algorithm. The biggest benefit was to change the implementation
 of replace() so that in cases where there is no match on the replacement string, the input string
 is returned unchanged. Should our baseline include this optimization, or not?

	After the sequence of replacements is complete, the degree of fragmentation in the
 resulting string affects the performance of subsequent operations on that string.
 How can we construct a benchmark that takes this into account?

	What should we compare with? Should we compare Saxon using ZenoStrings with the
 released Saxon product? Or should we produce an alternative implementation that
 enhances Saxon to use Ropes, and use that as the baseline for comparison?

There is no definitive right answer to any of these questions.

 Despite all these caveats, we can only have confidence in the algorithm if we measure something,
 and I have chosen two benchmarks which I hope will yield useful insights. They are presented in
 the next two sections.
Case Study: Dictionary-based Word Substitution

 The first task I propose to measure is as follows: for a sequence of a dozen or so pairs of short strings (X, Y),
 replace all occurrences of X in a text of moderate length by Y. For our input text we’ll use the text
 of Shakespeare’s Othello, and for our replacement strings we’ll take the dramatis personae (Othello,
 Desdemona, Iago, Emilia, etc: eleven names in total), and wrap these names in square brackets so they become [Othello],
 [Desdemona] etc. So Roderigo’s line[12] Is that true? why, then Othello and Desdemona
 return again to Venice becomes Is that true? why, then [Othello] and [Desdemona]
 return again to Venice.

Note: this task is not the one for which the design of ZenoStrings is optimized: changes to the content
 of a string can occur anywhere within the string, so there is no particular benefit from having short segments at the
 string’s extremities.

 We can express this task using the following XPath 3.1 implementation (where $text is
 the input text, as a single string)[13]:

let $personae :=
 ('Othello', 'Desdemona', 'Iago', 'Emilia',
 'Brabantio', 'Gratiano', 'Lodovico', 'Cassio',
 'Roderigo', 'Montano', 'Bianca')
return fold-left($personae, $text, function($str, $persona) {
 replace($str, $persona, '[' || $persona || ']')
}
Now, it happens that under the released product Saxon 10.5, this query gives perfectly acceptable performance
 when we use the system function fn:replace() to do the string replacement. It executes in an average of
 12.8ms, using peak memory of 320Mb[14]. If we expand the source document from 250Kb to 2.5Mb
 (ten copies of Othello concatenated end-to-end),
 it still executes in 88ms, with a similar memory requirement. That's because fn:replace(),
 being a system function, already optimizes the way it assembles the result string by using a mutable Java StringBuilder
 internally[15].
 Trying to improve this using a ZenoString internally (in the hope of saving time or space by reusing the long substrings
 that are copied unchanged from the input to the output) turns out to give no benefits: on the contrary, execution time increases
 to 14.5ms in the 250Kb case and 392ms in the 2.5Mb case.
This changes if, instead of using the system function fn:replace, similar logic is implemented in user code,
 for example using the XQuery 3.1 function:
declare function local:replace($text, $old, $new) {
 if (contains($text, $old))
 then substring-before($text, $old) || $new ||
 (substring-after($old) => local:replace($old, $new))
 else $text
};
(It’s easy to find a slight variation in the requirements that would necessitate such logic: for example, changing
 all the matched strings to upper-case is beyond the capabilities of fn:replace().)
In fact with a large number of matches, this user-written function fails with a stack overflow
 exception because it recurses too deeply.
 We can avoid this problem by rewriting it to take advantage of tail call optimization:
declare function local:replace($text, $old, $new) {
 local:replace2("", $text, $old, $new)
};
declare function local:replace2($left, $right, $old, $new) {
 if (contains($right, $old))
 then local:replace2($left || substring-before($right, $old) || $new,
 substring-after($right, $old), $old, $new)
 else $left || $right
};
Using the released product Saxon 10.5, this query takes 29.8ms.
 When we scale up the source document from 250Kb to 2.5Mb, the elapsed time increases rather dramatically to 1911ms.
With ZenoStrings used to hold intermediate results, the elapsed time drops to 11.2ms for the 250Kb document,
 537.4ms for the 2.5Mb case: around three times as fast. Furthermore, Saxon 10.5 shows peak memory usage of 550Mb,
 while the ZenoString solution is steady at around 300Mb.
Analyzing the behaviour of the two implementations (one using the system function fn:replace(),
 one using a home-grown alternative), it’s not hard to see why the ZenoString implementation should deliver benefits
 only in the second case.
	With fn:replace(), every unchanged character in the input is being copied 11 times,
 once for each call on fn:replace(). So the total number of characters being copied
 is about 1.35M (or 13.5M with the larger text), and they are copied in large contiguous chunks
 so the action is highly efficient. This is not enough of a problem for
 ZenoStrings to deliver any benefits. The solution scales linearly for the larger input text.

	With Saxon 10.5 using the home-grown recursive replace function, every unchanged character in the input is being
 copied on average 11 × N times, where N is the average number of occurrences of the
 personae names in the input text (around 30 in the shorter text, 300 in the longer).

 This shows why the solution does not scale linearly: for the 250Kb text we
 copy 250,000 × 11 × 30 = 82.5M characters; for the 2.5Mb text the number is 2,500,000 × 11 × 300 =
 8.25G characters.

	With ZenoStrings, again using the home-grown recursive replace function, it is harder to
 calculate the number of character copying operations, as it depends on the detailed operation
 of the consolidation algorithm. However, internal instrumentation shows that consolidation
 of ZenoStrings accounts for copying of 1.2M characters (in 128 chunks) for the smaller input document, and
 18.9M (in 847 chunks) for the larger document. Because of CPU caching effects, the number of
 chunks being copied is probably more signficant than the size of the chunks. But note that the number
 of characters being copied is not growing quadratically with the size of the input, as it does in the
 Saxon 10.5 solution.

For what it’s worth, the final result of the ZenoString solution (as currently implemented), is
 a ZenoString with segment lengths (25, 501, 16295, 24987, 30408, 39241, 21561, 16868, 4747) for the shorter
 input text, and (25, 501, 16295, 24987, 30408, 39241, 59997, 154633, 309266, 618532, 154633, 55395, 39241, 21561, 16868, 4747)
 for the longer.

Case Study: Word-wrap
The second task chosen for performance benchmarking is word-wrapping of text: that is, taking
 an input string and arranging it in such a way that each word is added to the current line if it
 fits within some maximum line length, or placing it on a new line otherwise[16].
Once again I’ve written the code to take advantage of tail-call optimisation, so it reads like this:
declare variable $NL := codepoints-to-string(10);
declare function local:wordwrap($text, $lineLength) {
 local:wordwrap2("", tokenize($text), 0, $lineLength)
};
declare function local:wordwrap2($result, $tokens,
 $currentLineLength, $maxLineLength) {
 if (empty($tokens))
 then $result
 else if ($currentLineLength + string-length(head($tokens)) ge $maxLineLength)
 then local:wordwrap2($result || $NL || head($tokens),
 tail($tokens),
 string-length(head($tokens)),
 $maxLineLength)
 else local:wordwrap2($result || ' ' || head($tokens),
 tail($tokens),
 $currentLineLength + string-length(head($tokens)) + 1,
 $maxLineLength)
};
local:wordwrap($input, 80)
For readers unfamiliar with XQuery, tokenize() splits a string on whitespace
 boundaries returning a sequence of strings; || performs string concatenation, head()
 and tail() return the first item in a sequence, and the remainder of the sequence, respectively;
 string-length() returns the length of a string in Unicode codepoints; empty()
 tests whether a sequence is zero-length.

 We’ll exercise this code by running it with samples of Lorem Ipsum text
 of different lengths (measured in words, defined here as space-separated tokens). The text is
 all lower-case ASCII alphabetic characters.

 For short input texts (texts that are representative of the paragraphs that are likely to be
 word-wrapped in a real publishing application), the performance is excellent with both the conventional string
 representation in Saxon 10.5, and with the new ZenoString code. In both cases it appears to scale linearly
 with the length of the text, and the ZenoString gives an improvement that is around a factor of two:
[image: Chart showing performance of wordwrap query for inputs of 100 to 1000 words]Time (in ms) to word-wrap inputs of 100 to 1000 words

Table I
Time (in ms) to word-wrap inputs of 100 to 1000 words

	Length of text (words)	Conventional strings	ZenoStrings
	100	1.38ms	1.14ms
	200	2.17ms	1.44ms
	300	2.79ms	1.76ms
	400	5.09ms	2.06ms
	500	5.74ms	2.54ms
	600	6.90ms	3.04ms
	700	7.10ms	3.40ms
	800	7.93ms	3.52ms
	900	9.45ms	4.27ms
	1000	8.40ms	4.29ms

Further investigation, however, shows that the apparent linear scaleability is an illusion. There is actually
 a quadratic element to the cost: the elapsed time can be expressed as
 Equation (a)
a + bx + cx2

 where c is sufficiently small that the last term is insignificant for small values of x.
 The quadratic effect shows up when we measure the performance for larger input strings:
[image: Chart showing performance of wordwrap query for inputs of 100 to 1000 words]Time (in seconds) to word-wrap inputs of 100K to 500K words

Table II
Time (in seconds) to word-wrap inputs of 100K to 500K words

	Length of text (words)	Conventional strings	ZenoStrings
	100K	10.31s	117ms
	200K	43.32s	228ms
	300K	112.5s	429ms
	400K	240.9s	563ms
	500K	342.6s	699ms

The quadratic element arises from the cost of string concatenation. On each recursive call of the wordwrap
 function, we are adding one token to the result string, and with the conventional approach, this involves
 copying the existing string, which has a cost proportional to the length of the string. With the ZenoString,
 concatenation has constant cost, which eliminates the quadratic element of the total elapsed time
 of the query.
In this case study, ZenoStrings show only a modest benefit for workloads that are likely to be
 encountered in everyday practice. But the case study also shows that they can deliver very substantial
 improvements for more extreme workloads; and perhaps as importantly, that the additional complexity
 does not cause any problems when applied at the smaller scale.
Unlike the previous case study, this task plays to the ZenoString’s strengths: because we are
 repetitively adding small increments at the end of a long string, the consolidation algorithm’s policy
 of leaving the shortest segments at the right-hand end of the string leads directly to the improved
 bottom line in query execution time. However, we've resisted the temptation to tweak the algorithm
 to give even better results: we could exploit the fact nothing is being done with the wordwrapped
 string other than to send it to the serializer, but we haven't done so.

Conclusions
The new data structure gives the following benefits:

	Direct addressing of Unicode codepoints, without wasting space
 in the typical case where there are very few characters needing
 more than 16 bits (or indeed, more than 8 bits).

	Use of arrays containing 32 or more characters economizes
 on the Java per-object overhead and also ensures locality of
 reference. This is important to take maximum advantage of CPU
 memory caching, which plays a vital rule in execution speed
 since fetching data from memory into CPU cache is often the
 critical bottleneck.

	Substring, concatenation, and selective replace operations
 can all reuse unchanged segments from an input string in the
 result string.

	There is no 2G limit on string size.

The potential performance benefits depend on how the data structure is used. The biggest
 gains come when repetitive (typically, recursive) user-written string operations build
 strings incrementally. The data structure does not supersede the use of mutable string builders
 for constructing strings internally within a system function such as fn:replace
 or fn:string-join, when intermediate results do
 not need to be exposed.
The main drawbacks of the structure are:
	The cost of interoperation
 with other software components using interfaces that rely on the native String datatype. This typically
 means that strings need to be converted whenever data
 is passed across a component boundary. The overhead can be reduced
 by using our own implementations of functions such as upper-case(),
 lower-case(), and normalize-unicode() – which is often needed anyway, as the XPath semantics
 frequently differ from the Java semantics. In mitigation, any operations that rely on addressibility of Unicode
 codepoints (notable fn:substring and fn:translate already need to do such
 a conversion; and Saxon already has its own regular expression engine, using its own
 internal representation of Unicode strings, which can be readily adapted to use ZenoStrings.

	
 The fact that the Java compiler and run-time system (including the hot-spot compiler) perform
 heavy optimization of operations on strings, which is lost when we use a different representation.
 (I have not been able to quantify this effect.)

We have only begun to explore the variations possible in the way segments
 within a ZenoString are consolidated after different operations. The algorithm presented
 in this paper (which leads to the characteristic feature whereby segments near the centre
 of the string are longer than segments at its extremes) appears to give good all-round
 performance over a range of operations, but there is no reason to believe it is optimal.

References
[Boehm, Atkinson, and Plass 1995]
 Hans-J Boehm, Russ Atkinson, and Michael Plass.
 Ropes: an Alternative to Strings.
 Software Practice & Experience 25(12):1315–1330. doi:https://doi.org/10.1002/spe.4380251203.

[Hinze and Paterson 1995]
 Ralf Hinze and Ross Paterson.
 Finger trees: a simple general-purpose data structure.
 Journal of Functional Programming 16(2):197–217, 2006.
 http://www.staff.city.ac.uk/~ross/papers/FingerTree.pdf.
 doi:https://doi.org/10.1017/S0956796805005769.

[Kay 2021]
 Michael Kay.
 <transpile from="Java" to="C#" via="XML" with="XSLT"/>.
 Markup UK, London, 2021.
 https://markupuk.org/pdf/Markup-UK-2021-proceedings.pdf pp34-49.

[1] XPath Data Model: the definition of the
 data types manipulated by XPath, XSLT, and XQuery.
[2] The use case that stimulated this research was a stylesheet that performed
 a sequence of 20 or 30 string replacements within a one-million character string. With the
 current implementation in Saxon,
 each replace operation constructed a new million-character
 string internally; and the way the replacements were done in a recursive function meant
 that the old strings could not be garbage-collected until the whole operation was finished.
[3] https://www.saxonica.com/
[4] The class
 Span<char> has similarities, but we haven’t found it
 useful.
[5] Throughout
 this paper the terms left and right in
 relation to character strings refer to the relative position of characters
 in their ordered processing sequence 1..n, which is not necessarily related to
 the positional relationship of the characters when rendered on the printed page.
[6] In principle a segment could itself be a ZenoString.
 A ZenoString would then become a tree of arbitrary depth. Although this would function perfectly well, it would
 raise all the questions previously discussed concerning tree balancing and fragmentation. The performance analysis
 in this paper assumes that segments will be stored in contiguous memory.
[7] The current implementation
 is "64-bit ready" in that the API uses 64-bit integers for all offsets and lengths within
 a string. The need for interoperability with Java strings, however, restricts the ability to
 exploit this in practice.
[8]
 hence the name ZenoString, after Zeno of Elea, famous for his paradoxes
 involving infinite but converging sequences.
[9] 27,910 words with an
 average length of 4.4 characters
[10] But see the Performance section
 below, where we observe that the existing implementation of fn:replace using an internal mutable string builder
 beats anything we can construct with ZenoStrings
[11] As with most such aphorisms, the attribution to the British economist
 Charles Goodhart is questionable: see the Wikipedia article on
 Goodhart's Law for details.
[12] Act IV, Scene 2
[13] Some readers may appreciate an explanation of how this works.
 The fold-left function (following a well-established tradition in functional programming) takes three
 arguments: a sequence (here, the list of names to be replaced); an initial value (here, the input text before
 any modifications are made), and a function which is to be called once for each member of the input sequence. This
 function in our case makes one of the string replacements, and passes the result of doing so as input to the next
 function invocation, which performs the next string replacement. The result of the final string replacement is returned
 as the result of fold-left.
[14] Measured
 using XQuery from the command line using the options -t and -repeat:50; output
 sent to a file. The measurement excludes query compile time (143ms) and source document
 parsing time (40ms).
[15] Actually, a modified StringBuilder that handles surrogate pairs differently.
[16] Real-life word-wrapping
 algorithms can be much more complex, of course, dealing intelligently with punctuation and hyphenation,
 with word-breaking rules for different natural languages, and even
 subtleties like avoiding consecutive lines starting with the same word; but a simplified version
 of the algorithm is perfectly adequate for demonstrating performance characteristics. Also,
 there's a bug in the code whereby the first line is indented by one space; I decided
 not to complicate things by fixing it.

Balisage: The Markup Conference

ZenoString: A Data Structure for Processing XML Strings
Michael Kay
Founder and Director
Saxonica

<mike@saxonica.com>
Michael Kay is the lead developer of the Saxon XSLT and XQuery processor,
 and was the editor of the XSLT 2.0 and 3.0 specifications. His company,
 Saxonica, was founded in 2004 and continues the development of
 products implementing the specifications in the XML family.
 He is based in Reading, UK.

Balisage: The Markup Conference

content/images/Kay01-001.svg

content/images/Kay01-002.png
 Conventional Strings 4 ZenoStrings

10.00

8.00

6.00

4.00

2.00

0.00

0 100 200 300 400 500 600 700 800 900 1000

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

content/images/Kay01-003.png
400.00

320.00

240.00

160.00

80.00

0.00

0K

Conventional Strings

100K

200K

4 ZenoStrings

300K

400K

500K

