
How long is my SVG <text> 
element?
David J. Birnbaum and Charlie Taylor, University of Pittsburgh

Presented at Balisage 2021



The Problem

Developers rely on dimensions of objects to determine their position

Text rendering depends on the widths of individual characters 一 information is not 

accessible in a regular developing environment



Problem example: Van 
Gogh data

Which <location> element will take up the 

most space when transformed to an SVG 

<text> element?

How long will that <text> element be?



XSLT approach

Query font metrics (extracted from TrueType TTF files and formatted as XML), create 

mapping from characters to their given width

Dimensions of <text> bounding box will be 

1. Height: the font size (approximately)

2. Width: the sum of character widths in the string

E.g., width of “A” in Times New Roman, size 16 is 11.5546875 px.



XSLT Approach: font metrics formatted as XML



XSLT approach



XSLT approach

Firefox Chrome Safari



Firefox Chrome Safari



XSLT approach

Calculate sum of character widths and 

find the longest

Treat this as a dimension of bounding 

box 



XSLT approach

Calculate sum of character widths and 

find the longest

Treat this as a dimension of bounding 

box 



XSLT approach: diagonal text

Sum of character widths represents 

length of diagonal text

Use this alongside the known angle of 

rotation to find the vertical space 

occupied by text

E.g., hypotenuse * cosθ



JavaScript approach

Output components as separate <svg> elements, @height and @width not specified

Compute dimensions of bounding box using the element.getBBox() function

Write those dimensions into the DOM, arrange components using CSS Flexbox



JavaScript approach



JavaScript approach

Graph divided into multiple <svg> 
elements wrapped in HTML <div> 
elements

Arrange <div> elements using CSS 

Flexbox



JavaScript approach

Graph divided into multiple <svg> 
elements wrapped in HTML <div> 
elements

Arrange <div> elements using CSS 

Flexbox



JavaScript approach

Graph divided into multiple <svg> 
elements wrapped in HTML <div> 
elements

Arrange <div> elements using CSS 

Flexbox



Centering text in ellipses

Using XSLT approach, compute @rx (horizontal radius) as half the length of the text, plus padding

@cx and @cy values of ellipses will equal @x and @y values of text

(when @dominant-baseline and @text-anchor are "middle")



XSLT approach

+ Typical of the way we usually work with 
SVG

+ Generally not browser-dependant 
(except for browser kerning)

+ Easier to use outside browser 
environments

- Only accesses glyph widths, ignores font 
effects

- Requires preparation of metrics for 
every font family/size used

+ No preparation of font metric info
+ Adapts to viewing environment: 

dimensions will be correct no matter the 
font

+ Does not require dealing with font 
effects

- Requires knowledge of JavaScript
- Cannot create SVG independent of an 

HTML file

JavaScript approach



Loose ends



Questions and comments?

David J. Birnbaum
Professor of Slavic Languages and Literatures
University of Pittsburgh

djbpitt@gmail.com

Charlie Taylor
Undergraduate teaching assistant
University of Pittsburgh

CLT76@pitt.edu


