[image: Balisage logo]Balisage: The Markup Conference

Converting typesetting codes to structured XML
Patrick Andries
Xcential Corporation

Lauren Wood
Xcential Corporation

Textuality Services, Inc.

Balisage: The Markup Conference 2020
July 28 - 31, 2020

Copyright ©2020 Xcential Corporation.

How to cite this paper
Andries, Patrick, and Lauren Wood. "Converting typesetting codes to structured XML." Presented at: Balisage: The Markup Conference 2020, Washington, DC, July 27 - 31, 2020. In Proceedings of Balisage: The Markup Conference 2020.
 Balisage Series on Markup Technologies vol. 25 (2020). https://doi.org/10.4242/BalisageVol25.Wood01.

Abstract
Before XML, the United States Government Publishing Office (GPO) created complex
 typography using non-hierarchical, line-based typesetting systems characterized by
 “locator” files which contain lines of typesetting instructions. Our mission
 is to convert years of locator files that describe U.S. government bills, laws, and statues
 (etc.) into structural XML, valid to the United States Legislative Markup (USLM) XML Schema.
 This was and is complicated, as locator files, in addition to being completely
 presentation-focused, use stylistic differences to communicate semantic significance. Our
 iterative analysis grew the mapping specification in stages. The conversion itself is in two parts.
 First, Java converts the locator files into hierarchical XML (the JAVA lexical, syntactical,
 decomposition, and generational phases are the focus of this paper). Then XSLT improves the
 resulting XML. Quality control and testing required additional programming and the creation
 and maintenance of a large set of reference samples.

Balisage: The Markup Conference

 Converting typesetting codes to structured XML

 Table of Contents

 	Title Page

 	Motivation

 	Locator files

 	Issues with conversion to XML

 	United States Legislative Markup language

 	Overall process

 	Stage One — Java
 	Phase 1 — Lexical

 	Phase 2 — Syntactical

 	Phase 3 — Decomposition (optional)

 	Phase 4 — Generation

 	Stage Two — XSLT

 	Quality control

 	Summary

 	Appendix A. Glossary

 	About the Authors

 Converting typesetting codes to structured XML

The authors wish to thank the reviewers for their questions and comments, which helped improve the paper.
 The authors further wish to thank Brad Chang for reviewing.
Motivation
This paper discusses part of the system used in a continuing set of projects at the U.S.
 Government Publishing Office that produce XML documents marked up to the United States
 Legislative Markup (USLM) schema. Although many legislative documents are authored in XML, others still use
 locator files for some part of the processing. Because of this, the smooth transition from locator- to XML-based tools
 requires conversion from the presentation-focused typesetting-style locator codes to semantically rich XML.
The results of this project are at https://github.com/usgpo/uslm in the proposed branch. The whole is part of the
 larger project described in the Testimony of the Clerk of the House on October 11, 2017.
So what is MicroComp, the system that is still used to create the print and PDF for
 legislative documents? The historical perspective at https://xml.house.gov/drafting.htm describes it thus:MTP, as well as the current PC-based Microcomp software, used “locator” codes to
 enable the specification of typesetting instructions to the phototypesetting equipment and
 was used to typeset legislation beginning in 1978. An example of a locator code is
 bell-I22. The “bell” character is the hex 07 character which is used to signify the
 beginning of a locator code. In this case, I22 represents the code used to generate a
 paragraph with a 2-em space indent and is used to generate the typesetting of subsections
 in legislation.

In other words, it is a flat line-based typesetting system, where hex-07 (the
 BEL character in ASCII, hence the bell terminology) is the
 character used to prefix the typesetting instructions codes. The locator file is
 presentation-focussed, and the many stylistic differences between parts of the documents are
 used to indicate semantic significance.
Note: there is a small glossary of terms in the appendix to this paper.

Locator files
Figure 1: Sample locator code
[image:]
This sample locator (typesetting) code file shows that each line starts with a
 BEL (hex-07, which in this font with the buffer encoding set
 to Latin-1 appears as ^G) character, followed by typesetting
 instructions.

This sample makes it clear that MicroComp uses a custom character encoding. The standard
 ASCII printable characters are all used as defined in ASCII, but the characters in the
 C0 range (0-31) and the range 128-255 are used for system-specific purposes. For example, the character
 displayed as a ^X character in the Latin-1 view in the screenshot above is the hex-18
 or octal-030 (CAN) character and represents an EM space
 in the rendered output.
The complications don't stop there. The first line of the locator file defines the page
 format code for the document. This number (F6655 in this sample) defines things
 such as page sizes, and the rendering of the content directly after various locators, such as
 the I16 shown in the sample). The S6501 further down changes the
 rendering of the locators again. The rendering of the locators is defined with font grids (a
 collection of typefaces) and the typeface within that grid, along with the font size, leading,
 and other relevant information. There are hundreds of grids, each of which has four or five
 typefaces associated with it. The format which applies to most of the content of the document,
 S6501, has four grids, each with five typefaces associated with it. The default
 grid is grid 731, which uses the Century font in the typefaces Roman, Bold, Italic, and two
 versions of Roman with Caps and small caps.
You can see an example of switching the typeface within a particular grid at the line that
 starts ^GI20^GT3 — this indicates switching to typeface 3 in the default grid,
 i.e. to the italic font. The ^GT1 at the end of the line switches the font
 typeface back to the usual Roman value. I20 in this format is defined as font size 10pt, in
 grid 731, typeface 1, justified text (if the line has more than a defined number of characters), and other
 information required by a sophisticated typesetting system.
There is additionally a list of characters that can be generated using the grid and
 typeface system. For example, the plus-minus character ± is the rendered character
 003 within grid 731, typeface 1, while the copyright symbol © is the
 rendered character 005 within grid 6, typeface 1. Some of these characters can be
 encoded in several different ways. Ultimately all of these characters or character combinations
 can be mapped to the appropriate Unicode character sequence.
Note: in this paper we will refer to the ^G as variously
 <bell>, BEL, or bell. These are all equivalent
 formulations.
There is an introduction to the MicroComp locator format online in two formats: (HTML,
 best viewed in a browser where you can set the character encoding, such as Firefox) and Word. There
 are also more definitive documents at gpo.gov/vendors/composition.htm, for which you have to
 use the internet archive wayback machine (2009 was a good year).

Issues with conversion to XML
In summary, some of the issues we're faced with in the up-conversion to semantic,
 structured XML are:
	The custom character set.

	The emphasis on presentation in the input file.

	Variability of input to get the same output, for example there can be multiple ways to
 create a character outside the standard ASCII set. This includes switching grids and
 typefaces to get particular characters.

	Styling changes within documents, particularly when such documents are amending other
 documents and those amended documents have different styling. These styling changes have
 semantic meaning - the type of legislation, for example.
Examples of such styling variations include using a section mark (§), the word 'Section', or the
 abbreviation 'Sec.' to indicate a section number. These are visual clues to the reader
 that they are reading a particular type of document. The section mark indicates that we are
 referring to a section in the U.S. Code, while "Sec." hints that we are dealing with a section in a
 Bill, which may refer in its content to the U.S. Code Section.

	Inferring the correct nested hierarchy, which is context-dependent, from a flat
 structure. There can be several different levels of nested hierarchies, some of which can
 be quoted content blocks which each have their own level hierarchies.

	Quote characters have many different semantic meanings. There can be three levels of
 quoted content, each with their own nested level hierarchy.

It would be tempting to infer that any given bell code always maps to the same USLM element. Unfortunately, this is not the case. And, as a further complication, different bell codes may map to the same USLM element.
Let's take a look at the start of two very simple sections to illustrate this issue.
First the locator file:

🔔I81SUBCHAPTER III_CONCILIATION OF LABOR DISPUTES; NATIONAL EMERGENCIES

🔔I80 ÿ1A171

🔔I89. Declaration of purpose and policy

🔔I11It is the policy of the United States that_

🔔I12(a) sound and stable industrial peace ...

Now the corresponding USLM output file:

<section style="-uslm-lc:I80">
 <num value="171">§ 171.</num>
 <heading> Declaration of purpose and policy</heading>
 <chapeau style="-uslm-lc:I11" class="indent0">It is the policy of the United States that—</chapeau>
 <subsection style="-uslm-lc:I12" class="indent1">
 <num value="a">(a)</num>
 <content> sound and stable industrial peace ...</content>

Note how I12 maps to a <subsection> here.
Let's now look at the bell codes of another section in the same document:

🔔I80 ÿ1A1413

🔔I89. Partitions of eligible multiemployer plans

🔔I19(a) Authority of corporation

🔔I11(1) Upon the application ...

and its USLM mapping

<section style="-uslm-lc:I80">
 <num value="1413">§ 1413.</num>
 <heading> Partitions of eligible multiemployer plans</heading>
 <subsection style="-uslm-lc:I19" class="indent2 firstIndent-2">
 <num value="a" class="bold">(a)</num>
 <heading class="bold"> Authority of corporation</heading>
 <paragraph style="-uslm-lc:I11" class="indent0">
 <num value="1">(1)</num>
 <content> Upon the application...</content>
 </paragraph>

Here, the <subsection> is introduced by a I19 and I11 no longer maps to a <chapeau> but rather introduces a <paragraph>.

United States Legislative Markup language
The target for this conversion project is USLM 2, defined at https://github.com/usgpo/uslm. Many of the concepts in this markup language
 are the same as those defined for the Bill DTD at the Legislative Documents in XML at the United States House
 of Representatives reference site. The design was also informed by work done on
 Akoma Ntoso .

Overall process
We use Java to build the basic document in XML, with as much hierarchy as can reasonably
 be added by the parser. All input characters are converted to Unicode character sequences in
 this stage. All six major problems outlined earlier have been addressed by the end of the first stage.
 Then in a second stage we manipulate that XML document using XSLT, moving parts of
 the document around, adding context-dependent semantic markup, fixing invalid constructions
 etc.
Although we could have used different tools for the first stage, we chose Java for two main
 reasons.
First, we were familiar with Javacc, an efficient parsing engine that allows for the separation of
 lexical and syntactical phases, that we had used for previous conversion projects.
 Second, a general purpose imperative language is an efficient and flexible tool to use to
 operate on this type of content. All content is converted first to internal
 data-structures and processed in that form.

Stage One — Java
The program is implemented as a number of Java classes called by a JavaCC parser. The
 parser runs through a number of phases to create the XML from the typesetting locator codes.

Figure 2: Process phases
[image:]

Phase 1 — Lexical
The first phase is the lexical phase, which assigns distinct tokens to locators
 (sometimes a set of locators), page breaks, comments, and text.
Sample:

< DEFAULT, STATE5804, ACT, TOCACT, PUBL, STATUTESATLARGE, PROX, INDEX, IN_TABLE_BODY > TOKEN :
 {
 < PAGEBREAK : "\u0007A" | ("\u0007\u00AEMD" (~["\u00AF", "\u0007"])* "\u00AFA") >
 }

< DEFAULT, STATE5804, ACT, PUBL, TOCACT > TOKEN :
 {
 < TITLEROOT : "\u0007R01" >
 | < APPENDIXROOT : "\u0007R05" >
 | < ABOVESECTION : "\u0007R"["0"-"9"]["0"-"9"] >
 | < I81 : "\u0007I81" >
 | < STARTTABLE : (" ")* "\u0007c" > { stateBeforeTable = curLexState; } : DEFAULT
 }

< DEFAULT, STATE5804, ACT, PUBL, TOCACT, STATUTESATLARGE > TOKEN :
 {
 < GRAPHICFILE : "\u0007gs"(",il")?(",w"(["0"-"9"])+)?",d"(["0"-"9"])+(",rl")?("\r"|"\n")*"\u0007I9"("1"|"4"|"5")(" ")*>
 }

The < DEFAULT> or < ACT> part are what is called
 the "lexical state" of the parser. A lexical state is usually set by the
 <bell>F[0-9]+ or <bell>S[0-9]+ styles found in the
 input, so that when the parser recognizes a <bell>S used in Public Laws
 it sets the PUBL state.
Let us look at the first three lines of lexical definitions above:
< DEFAULT, STATE5804, ACT, TOCACT, PUBL, STATUTESATLARGE, PROX, INDEX,
 IN_TABLE_BODY > are the states for which the following token is defined.
<PAGEBREAK> is the lexical token being defined, following the ":" is
 a JavaCC regular expression matching the token. That is either a bell 0x07
 followed by an ASCII "A"
 or a sequence made from a 0x07 (a bell) followed by 0x0AE, itself
 followed by the ASCII string "MD", then a series of bytes
 containing neither a 0xAF nor a 0x07 byte and closed by a
 0xAF byte followed by an ASCII "A".
The textual content of the token is available to further phases. We will see how this is
 done later.

Phase 2 — Syntactical
The second phase is the syntactical phase. It uses and analyzes the tokens produced
 by the lexical phase according to a formal grammar defined in JavaCC. This grammar is
 defined by the syntactic specification of the input.
When a token specified in the lexical analysis is matched, it is returned into a Token
 variable which may be used by the syntactical parser. The Token contains several fields, notably:
	int beginLine: beginning line position of the token as it appeared in the input stream

	String image: the actual string which causes this token to be generated as it appeared in the input stream.

So, in the syntactic specification, the code t = < I15STATS >
 means that if the input stream matches the < I15STATS > lexical token,
 t will contain a Token object containing the fields mentioned above. t.image will contain "\u0007I15" since the token I15STATS was defined as:
 < I15STATS : "\u0007I15" >.
A syntactical code snippet may look like the sample below which handles Front Matter
 Notes in Statutes:

[< PAGEBREAK > { ipi = new InlineProcessInstruction("page", new ArrayList<TextRun >()); ipi.generate(gen); }]

 {
 gen.println("<note>");
 }

 (
 t = < I15STATS > formattedLine() { gen.genericP(getCurrLoc(t), t.beginLine, ctrl); }
 |
 t = < I20STATS > formattedLine() { gen.genericP(getCurrLoc(t), t.beginLine, ctrl); }
 |
 t = < I21STATS > formattedLine() { gen.genericP(getCurrLoc(t), t.beginLine, ctrl); }
 |
 t = < I22STATS > formattedLine() { gen.genericP(getCurrLoc(t), t.beginLine, ctrl); }
 |
 t = < I23STATS > formattedLine() { gen.genericP(getCurrLoc(t), t.beginLine, ctrl); }
 |
 t = < I24STATS > formattedLine() { gen.genericP(getCurrLoc(t), t.beginLine, ctrl); }
 |
 t = < I25STATS > formattedLine() { gen.genericP(getCurrLoc(t), t.beginLine, ctrl); }
 |
 t = < I26STATS > formattedLine() { gen.genericP(getCurrLoc(t), t.beginLine, ctrl); }
 |
 t = < I27STATS > formattedLine() { gen.genericP(getCurrLoc(t), t.beginLine, ctrl); }
 |
 t = < I37STATS > formattedLine() { gen.genericP(getCurrLoc(t), t.beginLine, ctrl); }
 |
 t = < PAGEPUBL > { ipi = new InlineProcessInstruction("page", extractPagePubl(t)); ipi.generate(gen);}
 |
 t = < I39STATS > formattedLine() { gen.genericP(getCurrLoc(t), t.beginLine, ctrl); }
 |
 < F9787 >
) +

 {
 gen.println("</note>");
 }

This can be read as follows:
a note may be preceded by an optional PAGEBREAK token, if a
 PAGEBREAK is encountered then the code between the braces
 "{...}" is executed: an InlineProcessInstruction of type
 "page" is created and immediately generated (added to the output file). Then
 follows the note itself, which may contain I15/I20/I21/... locators (in the
 STATS [statutes] state) as well as page numbers or F9787 format
 codes, which are ignored.
Each of these IxxSTATS (where xx indicates a number such as
 the 20 in the locator code I20) line may be followed by what is
 known as a formattedLine() itself a set of rules. These
 formattedLine contain text which maybe styled (include italics, bold
 characters, etc.) A series of characters styled the same way is called a Text Run. The
 formattedLine() methods returns a set of text runs stored in a global
 variable called ctrl (current text run list).
Each of these IxxSTATS will generate a <P> in the note
 opened. The gen.genericP() method has three arguments: the locator saved in the
 t variable, the line where the IxxStats locator was encountered
 in the input file (for debugging purposes) and the set of Text Runs returned by the
 formattedLine().
Some notes may also contain an image file, the parser then adds these lines in that
 case:

t = < GRAPHICFILE > formattedLineNoQ() {
 Graphic g = new Graphic(getCurrLoc(t), t.beginLine, t.image, ctrl);
 g.generate(gen);
}

which can be read as follows: when a GRAPHICFILE token is encountered and followed
 by a formattedLine containing no <bell>Q, save this token and its
 associated data in the t variable. Then, execute the code between the braces
 {...}, viz. create a Graphic object, where t.image corresponds to the
 actual string which matches the GRAPHICFILE token defined as a regular
 expression. Then the graphic object is generated in the output file. We will see how this is
 done in phase 4.
When an unexpected character is parsed, the parser will raise an error, complaining of
 an "illegal" sequence. This is almost always triggered by either an unknown locator code, or
 one that is unexpected in that particular context. Pure ASCII text is allowed
 almost anywhere by the parser.
This "unexpected character" error was a deliberate design decision to ensure that we properly analyzed the input
 file and did not drop or ignore semantically important constructs. This creates a strict
 and rigorous parser, which is important since the locator files do not have a well-defined
 grammar. In fact, since there are potentially many ways to create the same apparent output
 (whether print or PDF), it is important to catch any potential errors so that the parser does
 not miss any important structures. The approach chosen was one of slow refinement of the
 parser to remove successive "illegal" sequence exceptions. However, the parser may handle
 input we do not want to interpret in detail by using the "lexical state" mentioned in the
 lexical parser phase.
The lexical definition below states that in the STATE5804 state (typically,
 this means the last <bell>S encountered was a S8504) any
 unknown locator (<bell> I [0-9][0-9]) will be treated as a
 S5804LOCATOR token.

< STATE5804 > TOKEN :
 {
 < S5804LOCATOR : "\u0007I"["0"-"9"]["0"-"9"] >
 }

The dumpLine() method consumes such S5804LOCATORs and the text
 runs following them and simply adds them to a RawContent. These will later be
 generated as a series of <P> elements each containing the text found after that
 locator.

void dumpLine(RawContent rc) throws ParserInternalException :
 {
 Token t;
 int lineNo;
 }
 {
 ...
 |
 (t = < S5800LOCATOR > formattedLineFN() { rc.addText(getCurrLoc(t), t.beginLine, ctrl);})
 |
 ...
 }

Let's look at another snippet of code from the syntactical phase: an extract of the
 parser for Sections. The code snippet in {...} calls the generation phase using
 the internal structures produced during the parsing

 void section() throws ParserInternalException :
 {
 // local variables
 Token format,headerTok;
 List<TextRun> sectionTr;
 SectionLevel s;
 escapeNotes = false;
 }
 {
 // grammar

 format = < SECTIONLEVEL > formattedLineFN()
 // a section starts with a section level token (🔔I80) followed by a formatted line (a list of Text Runs).
 {
 sectionTr = ctrl;
 // if I80 was matched, execute this Java code. It saves the global current text run list
 // to a local copy called sectionTr
 }

 headerTok = < SECTIONHEADER > formattedLineFN()
 // a section header starts with (I89)
 {
 s = new SectionLevel(getCurrLoc(format), format.beginLine, sectionTr, getCurrLoc(headerTok), ctrl);
 // create a new section Level object, pass it sectionTr, and the text runs after 🔔I89
 s.generateBegin(gen);
 // call the generation of start of the section (<section><num><heading>)
 }

 [
 LOOKAHEAD(2) sectionContent(s)
 // look ahead a couple of lexical tokens, to know if this section has content rather than only notes,
 // if so call sectionContent() method which parses all the section content and stores it inside
 // the SectionLevel s object.
 { s.generateSectionContent(gen); }
 // at the end of the section content parsing, generate and thus decompose the section level's content
]

 notesAndSourceCredit(s)
 // gather notes and sourceCredit into s

 {
 s.generateEnd(gen); // generate end of section level
 escapeNotes = false;
 }
 }

Phase 3 — Decomposition (optional)
The decomposition phase is an optional first step of the generation. It is only necessary for structures which may be nested such as sections or quoted content which may itself contain parts of sections. For other constructs such as images which may not be nested, the XML output can be generated without any decomposition of the object being necessary.
Let's assume we have this locator input corresponding to the start of a section:

🔔I80 ÿ1A309

🔔I89. Application for license

🔔I19(a) Considerations in granting application

🔔I11Subject to the provisions...

🔔I19(b) Time of granting application

🔔I11Except as provided in subsection (c) of this section, no such application_

🔔I12(1) for an instrument of authorization in the case of a station in the broadcasting or common carrier services, or

🔔I12(2) for an instrument of authorization in the case of a station in any of the following categories:

🔔I13(A) industrial radio positioning stations for which frequencies are assigned on an exclusive basis,

🔔I13(B) aeronautical en route stations,

🔔I13(C) aeronautical advisory stations, ...

by the end of the syntactical phase (phase 2) we have produced an internal structure equivalent to

<section style="-uslm-lc:I580080">
 <num value="309">§ 309.</num>
 <heading style="-uslm-lc:I580089"> Application for license</heading>
 <content>
 <p style="-uslm-lc:I580019" class="indent2 firstIndent-2">(a) Considerations in granting
 application</p>
 <p style="-uslm-lc:I580011" class="indent0">Subject to the provisions...</p>
 <p style="-uslm-lc:I580019" class="indent2 firstIndent-2">(b) Time of granting
 application</p>
 <p style="-uslm-lc:I580011" class="indent0">Except as provided in subsection (c) of this
 section, no such application—</p>
 <p style="-uslm-lc:I580012" class="indent1">(1) for an instrument of authorization in the
 case of a station in the broadcasting or common carrier services, or</p>
 <p style="-uslm-lc:I580012" class="indent1">(2) for an instrument of authorization in the
 case of a station in any of the following categories:</p>
 <p style="-uslm-lc:I580013" class="indent2">(A) industrial radio positioning stations for
 which frequencies are assigned on an exclusive basis,</p>
 <p style="-uslm-lc:I580013" class="indent2">(B) aeronautical en route stations,</p>
 <p style="-uslm-lc:I580013" class="indent2">(C) aeronautical advisory stations,</p>
 ... </content>
</section>

This is the XML output we would produce at this stage without any further processing.
But large constructs such as sections, quotedBlock, or tables are not immediately generated.
 The parser adds all the components of such constructs (usually as P's for sections) to an
 internal structure representing the said construct.
The raw internal structure of sections is then analyzed and the list of P's is
 transformed into a hierarchy with internal structure (subsections, paragraphs, subparagraphs,
 continuations, clauses, etc.) according to a set of rules mostly based on the leading
 <num> of each such level but not exclusively since these may be
 ambiguous, inconsistent or even incorrect.
This process is recursive since sections may contain quoted content (up to three levels)
 which may themselves contain hierarchical levels.
The decomposition phase is usually called as an optional first step of the generation. A
 syntactical phase might for instance have between braces :

{
 s.generateSectionContent(gen)
}

 where s is a SectionLevel object (an instance of a Java
 class).
SectionLevel.generateSectionContent() then calls the decomposition
 phase.

Phase 4 — Generation
Finally, the generation phase is invoked to generate the XML. It always operates on internal structures
 created by the second or third phases.
Let's take the example of Graphic generation seen above. The generation phase is called
 by g.generate(gen); where g is a Graphic object and
 gen is the "generator" an object encapsulating the output style (USLM here,
 it could in theory be HTML or XSL:FO) and the output destination (a file or output stream in
 this case).
a) So, if the input file contained

🔔gs,w318,d386,r1
🔔I25ED04JA07.005

 the lexical token
 < GRAPHICFILE :
 "\u0007gs"(",il")?(",w"(["0"-"9"])+)?",d"(["0"-"9"])+(",rl")?("\r"|"\n")*"\u0007I9"("1"|"4"|"5")("
 ")*> matches this first line and the following 🔔I25.
b) The parser then consumes t = < GRAPHICFILE >
 formattedLineNoQ()
As seen above we then instantiate a new Graphic object (new Graphic(getCurrLoc(t),
 t.beginLine, t.image, ctrl);)
t.image contains 🔔gs,w318,d386,r1\n🔔I25 while
 ctrl contains ED04JA07.005.
c) the generation phase then produces this in the output file, by calling
 Graphic.generate() with these two parameters
<figure style="-uslm-lc:gs,w318,d386,r1"><img src="file:///ED04JA07.005"
 style="width:318pt; height:386pt; "/></figure>
Notice how the XML output produced preserves as much of the original input information as possible in
 the figure/@style attribute. This is useful for debugging and ensuring that no information
 is inadvertently lost during the transformation from locator code to XML.

Stage Two — XSLT
Stage Two is the XSLT stage, which takes the XML file created by Stage One, and manipulates it to
 create the valid USLM 2 file.
The type of manipulations required vary according to the final document type (statutes at large,
 public and private laws, or enrolled bills). The results
 can be seen on the govinfo website. Enrolled Bills from the 113th Congress to the latest in
 USLM 2 are at Congressional Bills, Public
 and Private laws also from the 113th Congress to the latest at Public and Private Laws, and
 the Statutes at Large from Volume 117 to the latest at United States Statutes at
 Large.
Stage two for each document type: 	Recognises references to standard types of documents, such as the U.S. Code, Public
 Laws, or the Statutes at Large.

	Recognises short titles, terminology, and other important constructs in various
 contexts and adds the appropriate markup. It's important to note that this recognition
 depends on reliable clues. The principle is that if the construct cannot be reliably
 recognised, the tags are not added. For example, if standard language is used for an amendment, such
 as "is amended to add", then the matching instruction can be marked as an amending instruction.
 If some other language were to be used, a phrase that is not in the relevant style guide, this would not be recognised.

	Rearranges punctuation around and in quoted content blocks to meet the GPO Style
 Guide requirements.

	Rearranges elements as needed to make the document valid.

Quality control
The conversions are tested to make sure no text content is dropped or moved, and that the
 resulting XML is valid.
 After that, spot checks are carried out to make sure the resulting XML
 is as correct as is reasonable, given the starting point.
The check of textual content uses a version of the Library of Congress locator
 processor, converting the input locator file to flat text instead of HTML, and adding other characters as needed. The
 flat text files created from this process ("locator text") are compared to those created by
 flattening the output USLM 2 file using XSLT "USLM text"). This is not the default text
 output, since characters outside the ASCII character set have to be converted into the same
 Unicode character as the locator text file for a true comparison.
Another issue with the text comparison is in tables and tables of content. The line-based locator code and the table-cell based USLM do not a priori give the results in the same order, so we needed to add a conversion step to line those up appropriately.
We compared those two versions of the complete sample set (multiple years of Enrolled
 Bills, Public and Private Laws, and Statutes at Large, and allowing for differing line breaks
 in some files, which showed us missing and moved content.
To check the quality of the XML conversion, once the files are validated, we have a
 reference set of samples (chiefly Enrolled Bills and Public and Private Laws) that are
 compared each time the conversion is updated. These files were created over the main
 development period of the project, and are known good samples.

Summary
Conversion is a crucial, painstaking, detailed and iterative process. Large legacy systems
 cannot realistically all be replaced and adopt the XML format in a short period. New tools
 have to be slowly upgraded. In large settings, old tools and new tools have to live
 side-by-side for years.
 To allow a smooth migration from the old technology, conversions between the old format
 and the new one often have to be supported for many years. Conversion has to be fast, precise,
 efficient, and preserve as much information as possible. We have focused in this paper on the
 conversion from the old presentation format to the new XML one, since it is the hardest one.
 However, the reverse process must usually be available to ensure the coexistence of old and
 new tools during the transition.
 The approach presented above has allowed such a transition as the Congress of the United
 States is migrating its documents from a paper and presentation-focused format to a richer
 semantic and structured format that is better suited to a world where information may be served in
 many formats, both electronically and on paper.

Appendix A. Glossary
	Bell code
	A bell character (HEX 07) signals that a command immediately follows. The character that immediately follows a bell indicates the type of command which may itself be followed by an argument. <bell>I21, is a bell-I command with a parameter of 21.

	Congressional bills
	Legislative proposals from the House of Representatives and the Senate. https://www.govinfo.gov/help/bills

	Enrolled bills
	The final official copy of the bill or joint resolution which both the House and the Senate have passed in identical form. https://www.govinfo.gov/help/bills

	Format
	Formats are designated by a four- or five-digit number that follows a bell-F or bell-S. Each format is associated with a set of definitions for 99 bell-I codes (bell-I01 to bell-I99). Each format number defines page layout and new set of bell-I codes.

	GPO
	The United States Government Publishing Office. The office produces and distributes official publications, notably of the Supreme Court and the Congress. https://www.gpo.gov/

	Grid
	The rendering of the locators is defined with font grids (a collection of typefaces) and the typeface within that grid, along with the font size, leading, and other relevant information. Each locator code contains a default grid and typeface value. These values can be overridden, however, using <bell>g codes followed by the new grid number.

	Locator code
	A synonym for Bell code.

	MicroComp
	Typesetting software developed in-house by GPO at the end of 1980s. Replaced the earlier MTP software. https://xml.house.gov/drafting.htm

	MTP
	Multi-Typography Program was a typesetting software developed in-house by GPO in the mid-1970s. It was replaced by MicroComp. https://xml.house.gov/drafting.htm

	USLM 2
	The second version of the United States Legislative Markup (USLM) schema, formally describes legislative XML documents such as USC titles, bills and statutes. https://github.com/usgpo/uslm

Balisage: The Markup Conference

Converting typesetting codes to structured XML
Patrick Andries
Xcential Corporation

Patrick Andries is a senior consultant with Xcential Legislative Technologies. He is
 the chief architect, designer, and developer of Xcential's software to convert legacy
 typesetting data to XML, as well as one of Xcential's main developers of systems to
 publish XML documents and edit Legislative XML documents. He has vast experience in
 multilingual software, internationalization and Unicode support. He is a long-standing
 member of the Unicode consortium.

Lauren Wood
Xcential Corporation

Textuality Services, Inc.

Lauren Wood is the principal consultant at Textuality Services Inc, with Xcential
 Legislative Technologies as a major client. Her projects in legislative documents for
 Xcential focus on document analysis, modelling, and XSLT transformations. She is also
 managing editor of XML.com and the course director at the XML Summer School. Lauren has a
 long history in standards committees for both OASIS and W3C, worked in healthcare
 standards for Lantana Consulting Group, and was part of the privacy and identity standards
 group at Sun Microsystems.

Balisage: The Markup Conference

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

content/images/Wood01-002.png
Locator Input XML Output
file/stream file/stream
o I_ -

Decomposition
Phase

content/images/Wood01-001.png
"GI16Agreed to February 10, 2017°X XXX

"G1020ne Hundred Fifteenth Congress

“cqe2

61020 the

“cee2

"GI02United States of America

"GIO3AG7ET TY7EG7ENG7EGTEE Fy7EG7ELG7EGTERZEGTESYZEGTET SYTEY7EEY7EGTESY7EYTESH7EGTEGTEGTEOGTEGTEN

"GIO4Begun and held at the City of Washington on Tuesday, ~GIOAthe third day of January, two thousand and seventeen
"GI05Concurrent Resolution

656501

"GI20°GT3"X"XResolved by the House of Representatives (the Senate concurring),”6T1

"GI72SECTION 1. USE OF ROTUNDA FOR HOLOGAUST DAYS OF REMEMBRANCE CEREMONY.

“GI26"X"XThe rotunda of the Capitol is authorized to be used on April 25, 2617, for a ceremony as part of the commemoration

