[image: Balisage logo]Balisage: The Markup Conference

Experiences from declarative markup to improve the accessibility of HTML
Vincenzo Rubano
PHD student
Department of Computer Science and Engineering, University of Bologna

<vincenzo.rubano@unibo.it>

Fabio Vitali
Professor
Department of Computer Science and Engineering, University of Bologna

<fabio.vitali@unibo.it>

Balisage: The Markup Conference 2020
July 28 - 31, 2020

Copyright ©2020 by the authors. Used with permission.

How to cite this paper
Rubano, Vincenzo, and Fabio Vitali. "Experiences from declarative markup to improve the accessibility of HTML." Presented at: Balisage: The Markup Conference 2020, Washington, DC, July 27 - 31, 2020. In Proceedings of Balisage: The Markup Conference 2020.
 Balisage Series on Markup Technologies vol. 25 (2020). https://doi.org/10.4242/BalisageVol25.Vitali01.

Abstract
Producing accessible content for the Web is a rather complex task. Standards, rules and principles that
				offer largely useful recommendations for accessible content do indeed exist, but they are not adequately
				enforced and supported by actual implementations. It is fairly frequent for content authors to produce material
				that ends up not being accessible without even noticing it, even when using additional tools and
				services.
Yet, most of the existing recommendations for accessible web resources center around the addition of
				reasonably simple markup with a clear declarative purpose in their design. How therefore is it possible that
				producing truly accessible content is such a rare occurrence?
In this paper, we posit that an important justification of this, in addition to well-known lack of interest
				and lack of awareness, is the difficulty of evaluating and perceiving the correctness or wrongness of the
				generated assistive markup by non-disabled content authors and tool designers. Designers have serious
				difficulties when evaluating the effectiveness and correctness of the accessibility of their works, and existing
				tools do little or nothing to reduce the "handicap".
Under these assumptions, we aim to describe an innovative approach based on declarative markup to improve
				the design and evaluation the accessibility of web pages. In particular, our strategy encompasses the combined
				usage of a declarative framework of accessible web components, capable of enforcing best-practices and
				conformance to accessibility standards, as well as automated tools to test for the accessibility of web content
				and, in addition, a new approach to manual tools to let developers and content creators examine visually the
				accessibility issues so that they can make sense of their impact on people with disabilities.

Balisage: The Markup Conference

 Experiences from declarative markup to improve the accessibility of HTML

 Table of Contents

 	Title Page

 	Introduction

 	Related work
 	Accessibility standards

 	Declarative frameworks and the Web

 	Accessibility testing tools

 	Problems for the sighted developers

 	Helping the sighted developers
 	Declarative markup to the rescue.

 	A framework for sighted developers

 	The Saharian browser's extension

 	Testing tools

 	Conclusions and future developments

 	About the Authors

 Experiences from declarative markup to improve the accessibility of HTML

Introduction
Web Content Accessibility Guidelines (WCAG 2.1) is the reference international standard when it comes to
			digital content accessibility. They define the principles and guidelines that developers must adhere in order to
			produce accessible content, as well as success criteria and conformance level to assess the accessibility of their
			work and its conformance to the guidelines, settling a framework for evaluating the accessibility of digital
			content in a technology-agnostic way. Many support documents illustrating how to meet these guidelines that
			contain practical examples for specific technologies are also provided, even offering recommendations of best
			practices to follow, describing the most common failures and the most appropriate remediations for them. Yet, we
			argue that producing accessible content for the Web can still be considered a pretty complex task.
First off, it is technically possible to produce inaccessible content without even noticing it. Testing for
			accessibility, in fact, requires additional tools and/or services that are outside of the usual workflows adopted
			for creating web content. Such tools are provided in many different flavours (web services, browser extensions,
			automated testing frameworks, etc) and are sometimes built-in within the browser; however, they still are only
			optionally involved into developers' workflows, thus from a practical point of view their use can be skipped
			entirely. Additionally, understanding the output of such tools often requires specific knowledge about web
			accessibility, which may or may not be available to developers and that they may or may not be willing to
			acquire.
Considering this and the fact that web standards (i.e. HTML, CSS and JavaScript) allow to produce accessible
			content just as easily as to produce its inaccessible versions, we must conclude that accessibility support is
			nowadays a completely optional and opt-in feature in most web design processes, and that it is not adequately
			enforced and supported by actual implementations. Developers frequently end up producing inaccessible content
			without even being aware of it.
Lacking specific competencies and supporting tools, it is very hard for content authors and designers without
			disabilities to perceive what the effect of accessibility issues is, what aree the differences between
			inaccessible content and its accessible equivalent, and ultimately how accessible their product is. New tools must
			be provided and existing ones must be improved to better fill this gap.
Since the overwhelming majority of web designers and developers don't have disabilities, their full range of
			senses is preventing them to perceive the difficulties and the problems that their products generate on people
			with disabilities. Thus, they have to base their implementation decisions on third party reports, either from
			experts, testers or automatic tools. In a way, their sightedness acts as a handicap in the perception of the
			correctedness of their markup.
Interestingly, the key approach of assistive markup is to enrich the content of web documents with
				declarative annotations, so that specialized applications can render the content in a
			perceivable manner to specific users. Such declarative annotations do not deal with the visual representation of
			the content, but, rather, with the attribution of semantic and structural roles to specific fragments of the
			content, and, traditionally, XML designers are used to and well versed into the use of declarative markup that
			does not impact visual rendering.
Therefore, in this paper we describe a vision for the design of accessible web content based on the use of
			declarative markup of web pages aiding humans as well as automated and manual testing tools. We first describe a
			declarative framework of accessible web components capable of enforcing best-practices and conformance to
			accessibility standards, so that developers can easily produce accessible markup without specific awareness. We
			then describe a tool to help sighted designers perceive visually the assistive markup without interferences of the
			"usual" visual rendering. Finally, we describe a testing approach based on a rule-based engine to identify and
			report on run-time accessibility issues that would be quite hard to catch statically on HTML markup.
Key in our approach is to provide deep integration of existing tools for accessibility design, implementation
			and testing, so that it can be carried out within a standard web development workflow without particular effort by
			the developers. Each potential accessibility issue must be taken care of automatically or, at worst, presented so
			that developers with no or basic competencies about accessibility can make sense of it, find the specific code
			fragment causing it, fix it, and be able to immediately verify whether the fix solved the issue or not. Our
			approach is thus based on enabling developers and authors to directly perceive (e.g., visually) the accessibility
			quality of their content and the impact of eventual accessibility issues.
The remaining of this paper is organized as follows. In section “Related work” we examine existing
			accessibility standards, justify the reasons why a declarative framework is critical in our vision for improving
			web accessibility and briefly analyze the most significant tools and services that can be related to our proposal.
			In section “Problems for the sighted developers” we provide a deeper look at our approach, with practical examples on the use of
			the proposed framework to illustrate why and how it can improve the current situation with regards to
			accessibility design, and describe the purpose of both the automated and manual accessibility testing tools we
			propose. The foundational principles and some technical details about the implementation of our approach will be
			discussed in section “Helping the sighted developers”. Finally, in section “Conclusions and future developments” some final
			considerations are made, and some ideas for future developments and possibly related research topics are
			proposed.

Related work
Accessibility standards
Currently, information on how to develop accessible websites and application and author accessible content
				is spread across various W3C recommendations and their related support documents. The Web Content Accessibility
				Guidelines (WCAG) 2.1 [wcag21] are the basis of such documentation, as they settle the four
				main principles which lay the foundations for anyone to access and use Web content. Accessible Web means content
				that is: 	Perceivable.
	Information and user interface components must be presentable to users in ways they can perceive.
								This means that users must be able to perceive the information being presented (it can't be invisible to
								all of their senses).

	Operable.
	User interface components and navigation must be operable. This means that users must be able to
								operate the interface (the interface cannot require interaction that a user cannot perform).

	Understandable.
	Information and the operation of user interface must be understandable. This means that users must
								be able to understand the information as well as the operation of the user interface (the content or
								operation cannot be beyond their understanding).

	Robust.
	Content must be robust enough that it can be interpreted reliably by a wide variety of user agents,
								including assistive technologies. This means that users must be able to access the content as
								technologies advance (as technologies and user agents evolve, the content should remain
								accessible).

			
other than the four accessibility foundational principles, WCAG 2.1 provides guidelines, i.e. abstract rules
				to follow in order to produce content respecting such principles. For each guideline, so called "success
				criteria" are provided, i.e. practically testable statements to check wether content conforms to it or not. This
				is clearly explained in "Understanding WCAG 2.1" [understandingwcag21], an informative (thus
				non-normative) document produced by the Accessibility Working Group at W3C providing any additional information
				on how to interpret the WCAG recommendation.
Information on how to comply with such guidelines when using specific technologies, along with practical
				examples of how to do that, are illustrated in Techniques for WCAG 2.1" [wcag21techniques],
				another informative document being constantly updated over time by the same group at W3C.
While such documents and attributes available in HTML where enough to make websites accessible, the advent
				of AJAX and complex desktop-like web applications introduced many new challenges for web accessibility. The
				WAI-ARIa specification [aria11], now at version 1.1, was born to address such challenges,
				especially in case of dynamic content and advanced user interface controls. To support developers implementing
				this specification in their projects, the WAI-ARIA authoring practices [aria11authoringpractices] is provided, a W3C working group note that explains how to make the most commonly used design patterns
				accessible leveraging this specification and providing code examples to implement them.
A W3C recommendation on how WAI-ARIA support should be implemented by user agents is available, but it
				currently refers to version 1.0 of the WAI-ARIA specification; its equivalent for the latest version is still in
				draft [aria11implementation]. A more in depth discussion on how user agents should be made
				accessible, and what information assistive technologies could expect to be exposed through native platform
				accessibility APIs, is available in User Agent Accessibility Guidelines (UAAG) 2.0 [uaag20],
				published as a W3C working group note.
Finally, another W3C recommendation has been specifically crafted with regards to authoring tools
				accessibility, i.e. any tool that allow to produce, edit or manipulate in any way content, including automatic
				conversions. Authoring Tools Accessibility Guidelines (ATAG) 2.0 [atag20]. This recommendation
				is divided in two parts: in part A principles, guidelines and testable success criteria are provided to ensure
				that such tools can be used by people with disabilities; in part B, the same is done with regards to the ability
				of such tools to allow and encourage end users, not limiting to those with disabilities, to produce content that
				is accessible and, in any case, to not deteriorate its accessibility during automatic processes (i.e. format
				conversions). Guidance on how to meet such guidelines, perform conformance testing and in dept practical
				examples are provided in a separate document [implementingatag20].

Declarative frameworks and the Web
Implementing a declarative framework on top of web technologies to make their use more effective and efficient
				is not new, as other examples have been already proposed in the literature over time. Hanus and Koschnicke
					[erdeclarativewebprogramming], for example, describe a declarative framework to support the
				implementation of web-based systems to manipulate data stored in relational databases. Li et all [echarts] proposed ECharts, an open-source, web-based, cross-platform framework that supports the
				rapid construction of interactive visualization and is regarded as a leading visualization development
				tool.
The more general topic of improving web application development by leveraging declarative languages has also
				been discussed in the literature. In [applicationembedding], Wild presents Application
				Embedding, a novel approach to application development which allows all aspects of a web application, including
				its business-logic, to be programmed declaratively. Lorenz & Rosenan [declarativeweb20]
				argue that the contextual nature of Web 2.0 content needs a better representation, and that the same can also be
				used to better describe the rich interfaces for applications building on that contextual content, identifying in
				a declarative way of representing Web 2.0 data such representation.
While the usage of a declarative framework to improve both specific and general aspects of web programming has
				already been adopted in the past with various success degrees, it is legitimate to wonder why a declarative
				framework is necessary in the specific case of web accessibility. True, WCAG 2.1 [wcag21]
				settle principles and guidelines that content should conform to in order to be considered accessible, as well as
				practically testable success criteria to assess its conformance to the standard according to determined levels
				(A, AA and AAA), and documents such as [wcag21techniques] provide practical examples and
				detailed resources on how to create such content leveraging specific technologies. Yet, web authors still have a
				hard time understanding and applying accessibility guidelines, as they are considered too technical, and not
				supporting adequately problem identification and solving [personasaccessibilitytesting]. This
				can be mitigated by providing better support for markup that is "accessible by default", i.e. without any
				specific intervention by the developer, and creating more advanced testing tools that do not require having
				previous competencies about web accessibility in order to detect issues and understand how to fix them.
Regarding the generation of accessible markup, HTML 5 can be considered a step in the right direction. This
				version (and the following ones) added to the language many features commonly used in web applications that, not
				being available in a standardized implementation, had to be implemented leveraging external solutions (think of
				audio and video playback) with a varying degree of accessibility. However, many commonly used interactive
				widgets have not natively become part of HTML and still require markup and code that may or may not be
				accessible. Other language features have been included in later versions, but are not supported properly by
				browsers and/or assistive technologies: for instance, according to the standard, autocomplete fields should be
				populated by a datalist element; yet, when using it, there is no indication that the field it is associated with
				supports autocompletion, and it looks exactly like a regular text field, so that screen readers treat the field
				exactly as a plain textbox.
Another commonly used widget that is often the source of subtle accessibility problems is the modal dialog,
				which, according to HTML 5, should be implemented by element dialog; however, many browsers
				still do not support this element at all (e.g., Apple Safari), others require its support to be enabled
				explicitly in their advanced preferences (e.g., Mozilla Firefox), and others implement it natively
					but with critical accessibility issues. Finally, many controls commonly used by web
				applications (for instance, tabs and associated tab panels, menu bars, toolbars, trees, to name a few) have
				still to find a good and agreed upon markup representation in HTML to build good accessibility support upon. In
				addition to this, even in the best possible scenario, no guarantee is made about whether all these widgets will
				be implemented consistently across browsers, or that styling them will be supported in the same way.
Due to this, many controls required by complex web applications have to be implemented by leveraging generic
				HTML tags enhanced with JavaScript code. Such elements can be made accessible by using the WAI-ARIA
				specification [aria11], which allows to enrich the semantics of HTML elements by adding markup
				(e.g., specific attributes, and in particular the role attribute) that defines the
				semantics of the element in terms of accessibility. However, in this scenario the developer is responsible for
				manually implementing the exact behavior expected by assistive technology users for each element: marking an
				element as having a certain ARIA role is a promise, but the developer is responsible for fulfilling it:
				differently than HTML elements, ARIA roles do not directly cause browsers to provide keyboard behaviours or
				styling [aria11authoringpractices].

Accessibility testing tools
With regards to accessibility testing, there is no automated tool that can compete with a human in terms of
				quality and depth of the analysis. Unfortunately, manual accessibility testing is a costly process in time and
				money, and requires specific and non-trivial competence. Thus, most projects in the real world are unwilling or
				stingy in spending about this. in truth, many automated tools have been proposed over time to facilitate web
				developers and content authors in identifying accessibility issues and determining appropriate fixes for them.
				Such tools come in different forms, and often the same tool is provided in different flavours to suit specific
				needs in different web development workflows. While they serve the exact same purpose, of course each tool can
				have characteristics and features that differentiates it from its competitors.
Automated accessibility testing tools are available as web services, both free to use [achecker] and commercial [tenon.io], that allow checking a page for accessibility issues by url or by
				requiring its source code to be uploaded directly; some even support crawling an entire website starting from a
				certain page, so as to generate a single report for all accessibility issues contained in a whole site or
				subsite. Other tools ([lighthouse], [wave]) are available as browser
				extensions, and allow to quickly test the page currently viewed in the browser for accessibility issues,
				sometimes highlighting where the errors generate and suggesting solutions for fixing them. More recently,
				automated testing tools have been made available as frameworks to support test driven development and command
				line tools [axe] exist for development workflows in which continuous integration (and therefore
				automated testing) play a critical role.
Finally, there is another critical aspect to consider when evaluating available automated accessibility testing
				tools. Thanks to JavaScript, more and more web pages are nowadays built and/or updated dynamically client-side,
				causing the runtime Document Object Model (DOM) to be vastly different from the one found in the static source
				code. Therefore, it is critical for automated accessibility testing tools to be able to work with the actual DOM
				of the page, and not just the original source code, as otherwise it would potentially miss many accessibility
				issues.

Problems for the sighted developers
Blinded by his sight
Wrapped up in misuse
Another scripter in the night
— (with apologies to Bruce Springsteen)

Our approach to web accessibility encompasses the combined use of a declarative framework implemented on top
			of existing web technologies, a deep integration of automated accessibility testing and the creation of innovative
			tools to let developers, designers and content authors manually test web pages for accessibility issues and
			directly perceive their impact on people with disabilities. We believe that such a
			combination can help target users produce accessible content.
First we point out that, given the overwhelming presence of people without disabilities among web content
			developers, there is no direct experience of accessibility issues in most web projects. Non-disabled people cannot
			perceive the content of their work in the way disabled people would, and cannot perceive personally and precisely
			the issues they have allowed to arise. The usual edit-reload-watch cycle of most developments efforts does not
			work for accessibility, because developers cannot directly "watch" the effect of the latest edit cycle, but have
			to rely on indirect witnesses, be they people with disabilities enrolled as testers, validation tools, or
			third-party experts. Additionally, the more indirect is this witness, the more difficult it is to fix the issues
			that were found, since accessibility validation is either blocking all other development activities (and therefore
			very expensive in the context of a usually late project) or performed in parallel with other activities (which
			therefore keep on modifying the code base that is being reviewed, making the review itself either pointless,
			outdated or unaware of additional accessibility issues being introduced in the meantime).
Our approach arises from a different point of view, that is that of 	abstracting away from developers and designers the burden of determining whether the generated code is
						accessible or not

	allowing developers and designers to directly perceive accessibility issues in the generated code

	bringing accessibility validation closer to, and tighltly integrated with, development frameworks used
						by developers and designers.

For example, consider the very simple case of representing a plain text field to collect a person's name in a
			registration form. From a pure HTML point of view it is perfectly legal to ignore accessibility-related markup
			altogether, creating an inaccessible representation of the field, such as the following.
			Name:
<input type="text">

			
			When performing general
			markup validation, and when checking the rendering on a normal user agent, this representation is perfectly fine.
			Hence accessibility is not enforced at the implementation level, and specific efforts by the developer are
			required to check for markup accessibility and to identify the best approach to improve it. For instance, a blind
			user needs non-spatial guidance to associate the input field to the text describing its nature and purpose, and
			simple visual closeness is not meaningful.
In HTML, there are at least five different ways to represent our example in a way that is accessible: 	replacing the "span" element with a "label" element so that it wraps also the "input" field, e.g.
						<label>Name: <input type="text"></label>

	replacing the "span" element with a "label" element, but specifying the relationship between the "input"
						field and its label by means of attributes "id" in the input element and "for" in the label, e.g.
						<label for="name-input">Name:</label>
<input type="text" id="name-input">

	Specifying an accessible name for the "input" field by means of the "title" attribute, e.g.
						Name:
<input type="text" title="Name:">

	Using the "aria-label" attribute from the WAI-ARIA specification, e.g.
						Name:
<input type="text" aria-label="Name:">

	Using the "aria-labelledby" attribute from the WAI-ARIA specification, e.g.
						Name:
<input type="text" aria-labelledby="name-input-label">

While having all those representations makes it possible to create an accessible text field in different
			contexts, this introduces a cognitive effort for the developer to understand which one to choose, and the reason
			why one is preferrable to the other in general and in this specific context. One may legitimately argue that this
			flexibility is required in order to support a multitude of features, such as allowing for better positioning and
			styling of both the field and its label, but this richness comes at a cost that in many cases is not acceptable.
			Better yet, are we sure we really need so much flexibility? Couldn't we achieve astonishing designs
			differently?
In fact, HTML, when used correctly and precisely, is already mostly accessible. Assistive technologies are
			available to provide accessible representations of HTML elements as they were originally designed to be used. The
			problem is given by the number of possible semantical characterizations of HTML elements that are not and cannot
			be reflected in the actual syntax.
For instance, when is used to mark actual spans, and <button> is used to
			mark actual buttons, syntax and semantics coincide and this gives no problem for assistive technologies. But if we
			write, for instance, ... , the markup is syntactically a
				span but semantically a button. This is where accessibility problems
			arise: unless the author of the markup signals (for instance leveraging the ARIA specification
				role="button") that there is a conceptual similarity between this span and a button, the assistive
			technology cannot convey a meaningful accessible representation of the element. Consider also that there are many
			different of ways to turn a syntactical span into a semantic button, such as: 	plain HTML with inline
						Javascript: ...

	plain HTML with separated Javascript:
						 ...
...
document.getElementsByClassName("myClass").onclick = doSomething;

	plain HTML with
						JQuery: ...
...
$(".myClass").click(doSomething);
or: ...
...
$(".myClass").on("click", doSomething);

	Angular, React or
						Vue: ... (Angular)
 ... (AngularJS)
 ... (React)
 ... (Vue)

	plain HTML with JQuery and
						delegation: ...
...
$(document).on("click", ".myClass", doSomething);

… and the list could go on.
The last example is particularly vicious, yet extremely common and frequent on the web: rather than binding a
			callback function to the click event on spans of class "myClass", this code delegates the handling of the click
			event to the document root node, but only if the click happens on an element of class
			"myClass". This is very frequent and common because it allows the programmer to bind callbacks to elements that do
			not exist yet, and maybe will be created after some user's actions or loading additional content through an Ajax
			call: since at binding time (usually before the page is shown to the user) the destination of the callback binding
			is not in the DOM, the developer binds the callback to a different node (as long that it exists and will end up
			containing the correct element, e.g., a container or the root node), and delegates to it the task of calling the
			callback function when the event fires within the intended target element. Thus any element of the containment
			chain between the root node and the target callback can be chosen as the destination of the binding that
			transforms a plain into a bona fide button.
As seen, allowing assistive technologies to help disabled users rely on its ability to identify the correct
			role, purpose and behavior of the elements in the document, yet the HTML language is neither sufficiently
			prescriptive to prevent abuses of the semantic characterization of its elements, nor sufficiently descriptive to
			support features that are common and expected in many web applications, and for which there is no specific markup:
			from more traditional controls like tabs, collapsible elements, dropdown menubars, modal panels, all the way to
			more exoteric carousels, accordions, etc., the HTML language is much less expressive than the functions that a
			little CSS and a little Javascript let browsers provide.

Helping the sighted developers
Having discussed some existing accessibility-related tools and the potential of our approach for improving the
			current situation, we can now highlight some of the key implementation principles that will be followed in the
			implementation phase as well as the reasons why they are important.
Declarative markup to the rescue.
According to the original authoritative sources on the topic ([sgml]),Generalized markup is based on two postulates:	Markup should describe a document's structure and other attributes rather than specify processing
									to be performed on it, as descriptive markup need be done only once and will suffice for all future
									processing.

	Markup should be rigorous so that the techniques available for rigorously-defined objects like
									programs and data bases can be used for processing documents as well.

					

A declarative style of markup in web design is therefore the specification of permanent logical, structural
				and semantic characteristics of all parts and fragments of a web page or application, rather than of their
				transient and task-specific characteristics such as presentation, in-browser behavior, etc. In our vision, this
				is exactly what is needed to help assistive tools make web pages and applications accessible and usable by
				people with disabilities: designers and authors are not expected to provide special services, but just to
				describe the content and features of the page/application in a sufficiently precise way to allow (existing)
				assistive technologies to perform their job in the right way and at the right time.
As such, scholars of declarative markup styles learned in the ways of SGML and XML would immediately see the
				problem and the way to address the problem. They are the standard ways to use markup in
				this world:

					Create a rich and expressive language that describes the permanent logical, structural and semantic
							characteristics of the page and application, rather than forcing and stretching the interpretation of
							generic building blocks originally meant only for presentational purpose.

	Allow for transient and tasks-specific characteristics (e.g., visual rendering) to be toggled on/off at will
							and easily replaced with different ones, so as to verify directly the generality and universality of the
							chosen markup by comparing the effectiveness of different presentations.

	Validate the result by creating a rule system that can be applied to the final markup to identify
							violations to best practices or expectations.

			
Our proposal therefore is threefold: 	guarantee that the generated markup is always accessible. This is achieved by extending
							the HTML markup language through ready-to-use fragments called components that are
							specific to the logical, structural and semantic characteristics of their intended use, and whose markup
							is fully accessible by construction.

	represent visually the markup for accessibility. Sighted developers can be made to
							perceive directly the accessibility markup by replacing the normal presentation of the page with a special
							visual representation based only on the accessibility markup: styling and positioning choices are
							deactivated and replaced with ones totally and completely based on the accessibility information conveyed
							to assistive technologies, and the usual interactive behaviours allowed by the browser are mapped onto the
							corresponding actions that the page allows to perform via any assistive technology. The end result is that
							the developer keeps on using mouse and keyboard and eyes to test the web application that is being
							designed, but in a different visual context that is completely based on the accessibility markup, one that
							makes the page understandable and usable proportionally to the correctness of the accessibility markup
							only.

	provide in-browser automated testing. Including automated tests has two significant
							advantages. First, they can act as a barrier for developers who may intentionally or unintentionally alter
							the markup generated by our framework, since unfortunately preventing this is technically impossible.
							Second, automated tests are performed on the actual DOM corresponding to the generated markup, so that
							they can catch runtime issues that could not be taken care of by the framework itself: for example,visual
							issues that could be introduced by styling the markup, such as color contrast or font sizes
							problems.
While there is evidence that only up to 50% of accessibility issues can be caught by fully automated tests
								[automatedaccessibilitytoolsbenchmark], we believe there is potential for a combination
							of such testing techniques with a declarative framework to increase this number, provided that the
							framework is designed and implemented appropriately. Yet, manual accessibility testing will always be
							required, and thus must be part of our approach to improve the current situation.

In order to facilitate their adoption, our tools are designed to be used even without our declarative
				framework. The automated testing integration provided by the declarative framework enables a developer to test
				even parts of a web page that are not generated by the framework itself, and our manual accessibility
				visualizer, Saharian, is useable on any website, without any specific additional requirement other than
				installing the tool itself.

A framework for sighted developers
The implementation of a declarative framework of accessible web components as required by our approach is a
				challenging process, and providing a full featured solution is likely to require more iterations over time as
				well as gathering feedback from the community and acting consequently. The necessity of creating a highly
				extensible and maintainable solution naturally arises from these simple considerations. We also believe that
				good documentation is key to the success of such a framework, therefore significant efforts are being dedicated
				to documenting its components (the public API) as well as its internals, in order to provide web developers and
				content authors all they need to use it at the maximum of its potential.
By definition, the framework should enforce the generation of accessible markup as much as possible. The
				nature of a declarative solution helps with this, as the correctness of hierarchical relationships (i.e. prevent
				using an input of type "radio" outside of a fieldset) can be easily enforced as required in order to generate
				accessible markup. Not only that, but specifying required parameters when instantiating components (take the
				case of form control labels as an example) can be enforced as well. When such conditions are not met, the
				framework should not render the offending component or make it de-facto unusable, rendering the error in an
				appropriate way and providing instructions on how to fix it instead.
Our idea is based on the extension of the markup language through the use of
				components. Introduced and shamelessly promoted by all three of the major web development
				libraries currently in favour (Angular, React and Vue, and recently even standardized by W3C), components are
				small, autonomous modules containing markup, styling and executable code that can be aggregated and composed to
				build full web applications with reliable and sophisticated functionalities. The HTML language is therefore
				replaced by an open set of elements each of which is mapped onto a complete component providing for its
				deployment, including the markup to make it presented on screen. A framework can then become responsible for
				ensuring the accessibility of the generated markup, and determining the most suitable HTML markup representation
				of the many that are possible, shifting this burden away from the developers. By doing so, it also shifts away
				from the developer the responsibility of looking at guidelines and techniques for implementing that component in
				a way that is accessible, and most of the effort to determine which solution is the most appropriate to each
				case.
In contrast to the scenarios described above, consider instantiating the input field to become be as simple
				as writing: <textfield label="Name:">

This is clearly not an HTML tag, but a markup placeholder for a textfield component
				handled by our framework. Upon rendering the page on the browser, or through a compilation process, the above
				markup is automatically converted into a combination of markup, styling and code, whose markup contribution
				automatically includes accessibility specifications (chosen from any of the above-mentioned approaches): the
				developer is not faced with the task of studying and choosing solutions, yet the final result is perfectly
				accessible for disabled users.
As is often the case for newly introduced frameworks, it is very important for our solution to be able to
				coexist with parts of a web page that do not use it. This would allow developers and content authors to
				gradually adopt the framework, as well as letting consumers use it since its early development phases, even if
				it does not include every component they need. We argue that this could significantly increase its adoption rate
				since the early stages, and allow us to gather feedback even in the earliest development stages. For the same
				reason, we need to be compatible with older browsers even if adopting the latest and greatest modern web
				development practices and language features; in this context, however, supported browsers need to be determined
				by keeping into account the degree of support offered for the essential accessibility features leveraged by the
				generated markup.
Another important point to note is that our framework is not meant as a replacement for very well established
				Javascript libraries designed to facilitate web application development, like JQuery, Angular, React or Vue, to
				name a few. Instead, we want to design it to be low-level enough to be used in combination
					with such libraries.
One might argue that in such a situation a developer could easily mess up with the framework internals, thus
				vanishing the original efforts in guaranteeing the accessibility of its generated markup. In order to minimize
				this risk, UI state management (operations such as enabling a checkbox) is built-in into the framework, so that
				a developer does not need to manually change and/or alter the markup generated by the framework. Rather, the
				ability to provide callbacks for being notified and act upon significant events is provided at the framework
				level, so as to minimize unwanted side effects caused by their custom implementation. Whenever necessary to
				guarantee the accessibility of a certain component, handling of significant events (for example support of
				specific keyboard shortcuts) is built-in into those components.
Finally, in order to provide the accessible equivalent of a majority of components whose use is nowadays
				widespread in web development, a strong, possibly controversial principle has been adopted: making an
					opinionated decision is better than not making a decision at all. Application of this principle
				should be restricted to the minimum, so that the framework does not condition unduly the developer, yet its
				adoption is critical in order to provide working components even in situations in which multiple solutions may
				be acceptable but would need a conscious implementation strategy. For instance, there are many different ways to
				implement accessible date pickers in HTML, each of which would require a different markup approach. We are
				choosing just ONE of such approaches to the detriment of all others that may have been preferred by some
				developers.

The Saharian browser's extension
And you may tell yourself
This is not my beautiful page!
And you may tell yourself
This is not my beautiful style!
And you may ask yourself
Am I right? Am I wrong?
And you may say yourself
"My God! What have I done?"
— (with apologies to Talking Heads)

Even if there is some margin for possible improvements of automated accessibility testing, checking a page
				manually for accessibility issues is nowadays required. We believe that tools to help developers perceive
				accessible issues as they arise should be provided, so as to let them perceive their impact on people with
				disabilities. While negative effects of accessibility issues are often documented, in fact, we believe that
				mapping their effects to concepts that developers and content authors are more familiar with could make them
				more perceivable, thus help users recognize their gravity. It's our intention to develop a set of tools to
				implement this philosophy, the main of which is "Saharian".

Figure 1: The main interface of Saharian
[image:]
The main interface of Saharian, allowing to activate, deactivate and switch between document
							and application modes.

Saharian is a browser extension (currently working on Chrome and Firefox) aimed at letting developers perceive
				the effects of ARIA annotations (roles, states and properties) used to enrich a certain web page, but in an
				innovative way. Unlike existing solutions (e.g. [visualaria]), Saharian does not limit its
				features to visualizing aria annotations and offering recommendations to implement the correct behaviours to
				support them in JavaScript, but rather uses the existing annotations and their supporting behaviours as
				implemented by the author to create a visual and alternative
				representation of the generated page.
For example, things like incomplete or inappropriate ARIA annotations will result in inappropriate
					visualizations of the corresponding elements; incorrect keyboard support will be
				translated into incorrect behaviours of those elements for mouse users (for instance, if an
				element cannot be focused or activated via the keyboard, the user won't be able to focus or activate it by using
				the mouse), etc.. Saharian is the first in a series of tools that will be developed over time to complement our
				approach.
Figure 2: The usual visual display of a web page
[image:]
A normal web page, as it is shown visually by a browser.
					

SAHARIAN (which stands for "Sighted Architect's Helper for ARIA Notation") performs the
				above-mentioned purpose by	deactivating the usual CSS and inner styling choices of the page and replacing them with default
							ones.

	replacing all multimedia items with default images with the alternative text in full sight

	rerouting all interactive callbacks to mouse event handlers to corresponding keyboard ones

	routinely verifying the update and modification of the DOM in order to capture and reorganize the new
							content in a similar fashion as the rest

Figure 3: The Saharian visual rendering of the same web page
[image:]
The same web page, shown on the same browser, with visual styles replaced by
							Saharian.
					

As a result, the sighted developer is still able to interact and check visually with all the features of the
				application or content being developed. Yet, these interactions and visual checks are done on a page that is on
				purpose limited to only the visual styles and the behaviors that are allowed by the ARIA markup, and is as
				usable and comprehensible visually by the developer as much as it is usable and comprehensible in a non-visual
				way by a blind user.
In this perspective, a sighted developer can easily and rapidly verify the impact on the accessibility of the
				page of a well thought out design choice or a rushed last minute edit: by activating the SAHARIAN tool,
				developers are forced to rely only on the ARIA notation to make sense of the page and interact with its items,
				and, even if sighted, they will be able to carry out tests and activities on the page only
					if the ARIA notation is correct and adequate.

Testing tools
Testing the end result of the design process is always a complicated process, and, as we know, there is
				never a last bug. Some considerations need to be made regarding the testing tools that are
				part of our proposal so as to illustrate the significant role they play in our vison.
Testing in our approach is not performed through an homemade tool, but by extending and customizing existing
				ones. We believe reinventing the wheel is not a good idea, especially when dealing with complex topics such as
				web accessibility testing: if valuable and open-source solutions exist, it is better to base our work on them
				instead of building everything from scratch.
For this reason we make use of axe-core [axecore], a rule-based
				automated accessibility testing engine. The fact that Axe is rule-based makes it easily extensible, as the only
				requirement for implementing new automated accessibility tests is to implement a few new rules, and flexible, as
				we can decide which tests should be run at any given time and how results should be presented. In addition, this
				tool is highly popular in the accessibility community, the company behind its development is authoritative and
				reliable and many professional solutions by tech giants like Google and Microsoft rely on it.
Let's consider a simple example. WCAG 2.1 states that a color contrast of at least 4.5:1 for small text or
				3:1 for large text is appropriate, even when the text is part of an image, to ensure it is readable by users
				with low vision or color blindness (success criterion 1.4.3). Enforcing conformance to this
				rule within the framework, i.e. during the generation of the markup, would be easy, yet pointless: many factors
				will affect the color scheme of an element, including the loading of external resources (e.g., images),
				conditional styling, and even browser defaults. The perfect time to perform such checks is therefore not
				statically on the markup, but at runtime, after the page is loaded in the browser, all CSS styling has been
				applied and all external resources have been fully loaded. Static testing of the markup in the fully dynamic
				world of modern web design is basically futile.
The Axe library already provides this rule and many others out of the box, but it is the runtime of our
				framework that is responsible for running it at the most appropriate moment within the page/app lifecycle (e.g.,
				after the loading process is completed, after new content is inserted, or existing content is deleted, or
				replaced, etc) and translate its results in a form suitable for our examination. In particular, the default test
				results from Axe include a selector pointing to the DOM element that failed it, but do not highlight it in any
				way: it is the responsibility of our framework to parse these results and show the violations reported using the
				same mode and styles of accessibility issues ascertained statically in the markup generation phase (e.g.,
				highlighting the visual rendering of the component to facilitate the developer understanding the issue and how
				to act upon it). This offers a consistent experience for the developers, and maximizes the usability of our
				design tools.
Another important concern for our testing tools is the so called "zero-false-positives
					principle": if something is reported as an accessibility issue, it must be an accessibility issue. There are times when something that looks like an accessibility
				issue (for instance, an image with an empty alt text) is not actually an accessibility issue (the image is
				decorative), thus automated testing in this regard may bring uncertainty on the table. In order to be reliable
				and trusted by designers, our tools should never report false positives. While automated testing on a bare HTML
				page is not able to discriminate such situations, our framework is in a good position to do so: in a truly
				"declarative fashion", decorative and content images are represented by different components, in order to have
				all the information necessary to disambiguate the situation at runtime. The img element is
				a good example of an HTML tag that is overloaded with many possible semantics, an evidence that the cooperation
				between a declarative framework and an automated runtime testing tool makes the overall result more reliable and
				less prone to ambiguity.
Eventually, whenever an accessibility error is detected (regardless of whether it was done by the components of
				the declarative framework during the markup generation phase, the automated testing tool or the manual
				accessibility visualizer), it should be reported prominently to the designer; the final goal of our system is to
				make it impossible for clear accessibility issues to end up unnoticed.
Finally, there is another aspect about accessibility testing tools that is worth discussing. More often than
				not, such tools report the line number of the source code that contain the error. We believe this is not the
				most effective representation to let non-disabled people perceive the impact of accessibility issues on people
				with disabilities; not only the source for runtime problems may be the result of several independent and
				apparently harmless bits of code spread in the HTML, CSS, Javascript and any of the various libraries being
				imported: the real need for a sighted designer is being informed of the impact on disabled users that the
				problem is causing in a manner that make these issues easier to grasp (such as the visual appearance of the
				page) without looking up additional documentation or external resources. This is the reason why components
				provided by our framework are designed so as to "visualize" accessibility issues to sighted developers: whenever
				a code fragment causes an accessibility issue, its visual rendering is altered to let the developer know what
				the issue is about and perceive its impact on people with disabilities. Once again, this is possible thanks to
				the abstraction provided by leveraging declarative markup to let the developer describe his/her intentions
				semantically.

Conclusions and future developments
After trying to explain the main problems that developers and content authors have to face in order to produce
			accessible content, as well as highlighting the most significant support resources and tools available to assist
			them in such a complex job, we have described our approach to improve the current situation and facilitate a more
			widespread creation of accessible content by means of a declarative framework built on top of the existing web
			technologies, automated accessibility testing and innovative tools to let developers perceive the impact of
			accessibility issues on people with disabilities in ways they can understand without reading any technical
			documentation.
We strongly believe that this approach has a great potential in facilitating a more widespread production of
			accessible web content, as it offers tools to alleviate some of the most significant difficulties that developers,
			designers and content authors have to face in order to do that with the tools available today. The tools we
			propose are being implemented with an iterative process to refine and improve them over time, gathering feedback
			from the community and taking it into account to maximize their impact.
But their development opens up many possibilities for further research and provides important questions which
			as of today are not as easy to answer as they should be. The main purpose of our declarative framework, for
			example, is to provide components commonly used when developing websites and applications that are accessible by
			default. But which components should be included in such a set to consider it complete? What are the most commonly
			used components across web pages? Finding an answer to this question can maximize the impact of our framework, as
			development may be prioritized by the popularity of (i.e. how necessary are) certain components over the
			others.
We have described how we intend to offer a tight integration existing automated accessibility tools, so as to
			provide more accurate tests and facilitate their adoption to ceck for accessibility issues both the markup
			generated by our declarative framework and parts of a web page or application that are not implemented using it.
			Currently such tools have technical limitations that influence their efficacy, but could they be improved to open
			up new horizons for automated accessibility testing? With artificial intelligence and natural language processing
			techniques, which are promisingly arising in recent years, we believe there is a potential for such improvements
			that deserves being explored.
Finally, Saharian might be the first of a new generation of manual accessibility testing tools, specifically
			designed to help developers perceive the impact of accessibility issues on people with disabilities in a more
			comprehensive way than simply visualizing and suggesting appropriate fixes for them. Similar tools could be
			provided in a more generalized form, that supports making accessibility perceivable not only for the WAI-ARIA
			specific annotations but for any HTML element and attribute that influences how a page is conveyed to assistive
			technology users.
Lastly, as our approach leverages the usage of a declarative framework on top of existing web technologies,
			intriguing opportunities arise by this choice; for instance, the framework could be exploited so as to allow
			easily creating accessible multi-modal applications for whichthe web is only one of the means to be accessed by.
			With the population aging phenomenon currently going on, the known difficulties of elderly people when it comes to
			dealing with modern technologies and the fact that many countries still lack access to fast internet connections,
			this might become a critical aspect to take care about in the future. We believe that by definition our approach
			can help with these topics as well, thus there's another win for our approach!

References
[axecore] DequeLabs. Axe-core: Accessibility engine for automated Web UI testing. Online
			available at https://github.com/dequelabs/axe-core. Last accessed April 15, 2020.
[axe] Deque Systems, INC. Axe: accessibility testing for development teams. Online available at https://www.deque.com/axe/. Last accessed April 10, 2020.
[achecker] Gay, G., and Li, C. Q. (2010, April). AChecker: open, interactive, customizable, web
			accessibility checking. In Proceedings of the 2010 International Cross Disciplinary Conference on Web
			Accessibility (W4A) (pp. 1-2). doi:https://doi.org/10.1145/1805986.1806019.
[lighthouse] Google INC. Lighthouse | Tools for Web Developers. Online available at
				https://developers.google.com/web/tools/lighthouse. Last accessed April 12, 2020.
[erdeclarativewebprogramming] Hanus, M., & Koschnicke, S. (2010, January). An ER-based
			framework for declarative web programming. In International Symposium on Practical Aspects of Declarative
			Languages (pp. 201-216). Springer, Berlin, Heidelberg. doi:https://doi.org/10.1017/S1471068412000385.
[personasaccessibilitytesting] Henka, A., & Zimmermann, G. (2014, June). Persona based
			accessibility testing. In International Conference on Human-Computer Interaction (pp. 226-231). Springer, Cham. doi:https://doi.org/10.1007/978-3-319-07854-0_40.
[echarts] Li, D., Mei, H., Shen, Y., Su, S., Zhang, W., Wang, J., ... & Chen, W. (2018).
			ECharts: A declarative framework for rapid construction of web-based visualization. Visual Informatics, 2(2),
			136-146. doi:https://doi.org/10.1016/j.visinf.2018.04.011.
[applicationembedding] Lorenz, D. H., & Rosenan, B. (2017). Application Embedding: A
			Language Approach to Declarative Web Programming. arXiv preprint arXiv:1701.08119. doi:https://doi.org/10.22152/programming-journal.org/2017/1/2.
[tenon.io] Tenon. HomePage | tenon.io. Online available at https://tenon.io. Last
			accessed April 11, 2020.
[automatedaccessibilitytoolsbenchmark] Vigo, M., Brown, J., & Conway, V. (2013, May).
			Benchmarking web accessibility evaluation tools: measuring the harm of sole reliance on automated tests. In
			Proceedings of the 10th International Cross-Disciplinary Conference on Web Accessibility (pp. 1-10). doi:https://doi.org/10.1145/2461121.2461124.
[wave] WebAIM. Wave - Web Accessibility Evaluation Tool. Online available at
				https://wave.webaim.org. Last accessed April 11, 2020.
[visualaria] WhatSock. The Visual ARIA Bookmarklet. Online available at
				http://whatsock.com/training/matrices/visual-aria.htm. Last accessed April 10, 2020.
[declarativeweb20] Wilde, E. (2007, August). Declarative Web 2.0. In 2007 IEEE international
			conference on information reuse and integration (pp. 612-617). IEEE. doi:https://doi.org/ 	
10.1109/IRI.2007.4296688.
[atag20] World Wide Web Consortium (W3C) (2015, September). Authoring Tools Accessibility
				Guidelines (ATAG 2.0) 2.0. W3C Recommendation 24 September 2015. Online available at
					https://www.w3.org/TR/ATAG20/.
[aria11] World Wide Web Consortium (W3C), 2017. Accessible Rich Internet Applications
 (WAI-ARIA) 1.1. W3C Recommendation 14 December 2017. Online available at
				https://www.w3.org/TR/wai-aria-1.1/.
[aria11authoringpractices] World Wide Web Consortium (W3C), 2019. WAI-ARIA Authoring
 Practices 1.1. W3C Working Group Note 14 August 2019. Online available at https://www.w3.org/TR/wai-aria-practices-1.1/.
[aria11implementation] World Wide Web Consortium (W3C), 2014. WAI-ARIA 1.1 User Agent
			Implementation Guide. W3C Editors' Draft 25 March 2014. Online available at
				https://www.w3.org/WAI/PF/aria-implementation-1.1/.
[implementingatag20] World Wide Web Consortium (W3C) (2015, September). Implementing ATAG 2.0: A
			guide to understanding and implementing Authoring Tool Accessibility Guidelines 2.0. W3C Working Group Note 24
			September 2015. Online available at https://www.w3.org/TR/2015/NOTE-IMPLEMENTING-ATAG20-20150924/.
[wcag21techniques] World Wide Web Consortium (W3C). Techniques for WCAG 2.1. Online available at
				https://www.w3.org/WAI/WCAG21/Techniques/. Last accessed April 12, 2020.
[understandingwcag21] World Wide Web Consortium (W3C). Understanding WCAG 2.1. Online available
			at https://www.w3.org/WAI/WCAG21/Understanding/. Last accessed April 12, 2020.
[uaag20] World Wide Web Consortium (W3C), 2015. User Agent Accessibility Guidelines. W3C Working
			Group Note 15 December 2015. Online available at https://www.w3.org/TR/UAAG20/.
[wcag21] World Wide Web Consortium (W3C) (2018, June). Web Content Accessibility Guidelines
			(WCAG) 2.1. W3C Recommendation 05 June 2018. Online available at https://www.w3.org/TR/WCAG21/.
[sgml] ISO (1986). Introduction to Generalized Markup, Annex A of ISO 8879:1986 Information
			processing — Text and office systems — Standard Generalized Markup Language (SGML). Online available at
				http://www.sgmlsource.com/history/AnnexA.htm.

Balisage: The Markup Conference

Experiences from declarative markup to improve the accessibility of HTML
Vincenzo Rubano
PHD student
Department of Computer Science and Engineering, University of Bologna

<vincenzo.rubano@unibo.it>

Fabio Vitali
Professor
Department of Computer Science and Engineering, University of Bologna

<fabio.vitali@unibo.it>

Balisage: The Markup Conference

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

content/images/Vitali01-003.png
Skip to main content

News, sport and opinion from the Guardian's global edition

Coronavirus

Sunday
3 May 2020

Live Coronavirus: Bolsonaro stokes Brazil protests in defiance of health advice

6m ago Coronavirus test kits used in Tanzania have been dismissed as faulty by President John Magufuli because he said they had
returned positive results on samples taken from a goat and a pawpaw. Magufuli, whose government has already drawn criticism for being
secretive about the coronavirus outbreak and has previously asked Tanzanians to pray the coronavirus away, said the kits had “technical
errors”. The Covid-19 testing kits had been imported from abroad, Magufuli said during an event in Chato in t

13m ago You can get in touch with me on Twitter @cleaskopeliti. Thanks to everyone who has written in so far today.

42m ago Good Morning Britain presenter Piers Morgan will not be hosting the programme tomorrow as he waits for the results of a Covid-
19 test after experiencing a “mild symptom”. “On medical advice, and out of an abundance of caution for a mild symptom that arose in past
48hrs, I've had a test for Covid-19 and so won’t be working on @GMB until | get the result back, which should be tomorrow,” he tweeted.

No image information available

No image information available

content/images/Vitali01-001.png
& nytimes.com

U.S. Politics N.Y. Business

ENGLISH ESPANOL

Ehe New ﬁork Eimes

Opinion Tech Science Health Sports Arts

Books

Style Food Travel N

to ‘The Sunday Read’
he's kayaked across the
> alone. Three times.

Sign Up: ‘Watching’
Get recommendations on the best
TV shows and movies to watch.

Sign Up: ‘Coronavirus |
An informed guide to thy
outbreak.

Defends

sahARIAN

The Signted Architect's

Helper for ARIA Notation

Min

Max

content/images/Vitali01-002.png
Support The Guardian Search jobs | @ Signin O, Search v The International edition v

Available for everyone, funded by readers []
uardian

News Opinion Sport Culture Lifestyle More v

Coronavirus World UK Environment Science Global development Football Tech Business Obituaries

2020“3"““5 Coronavirus: Bolsonaro stokes Brazil

unda ° .

) protests in defiance of health advice
6m ago Coronavirus test kits 14m ago You can get in touch 42m ago Good Morning Britain
used in Tanzania have been with me on Twitter presenter Piers Morgan will
dismissed as faulty by ... @cleaskopeliti. Thanks te.. not be hosting the progr...

@®Live / Coronavirus
US: Cuomo says
‘government
essential to human
life’

Global report / Spain and
Italy ease Covid-19
lockdown but Russia hits
daily high

