[image: Balisage logo]Balisage: The Markup Conference

Syntax-From-Doc
A Case Study of Powering IDE Code Completion from XML Documentation
C. Edward Porter

Balisage: The Markup Conference 2020
July 28 - 31, 2020

Copyright ©2020 SAS Institute Inc., Cary, NC, USA. All Rights Reserved.

How to cite this paper
Porter, C. Edward. "Syntax-From-Doc." Presented at: Balisage: The Markup Conference 2020, Washington, DC, July 27 - 31, 2020. In Proceedings of Balisage: The Markup Conference 2020.
 Balisage Series on Markup Technologies vol. 25 (2020). https://doi.org/10.4242/BalisageVol25.Porter01.

Abstract
Producing syntax highlighting, code completion, and context-aware code
 documentation in IDEs is hard. It is especially hard at SAS where the age and
 complexity of the SAS programming language begets quirks and edge cases. To support
 the features expected in modern IDEs, SAS has historically relied on syntax
 information produced in an unscalable, opaque manual process. This article presents
 a case study of the multi-year project to replace this legacy process with a
 "syntax-from-doc" REST service that stores and serves syntax information as JSON
 objects that are extracted from SAS XML documentation. The goal of the project is to
 produce a scalable, continually updated single-sourcing process by which all SAS
 syntax information can be made uniform and available across our myriad products and
 services. Though not without bumps and bruises to show for the stumbles along the
 way, this project serves as an interesting example of leveraging modern continuous
 integration/continuous delivery tooling, multiple markup languages, and a diverse
 technology stack to solve a hard problem.

Balisage: The Markup Conference

 Syntax-From-Doc

 A Case Study of Powering IDE Code Completion from XML Documentation

 Table of Contents

 	Title Page

 	Project Justification—Or, What's So Wrong With the Status Quo?

 	Guiding Principles

 	Documenting Syntax
 	Legacy XML Review

 	JSON Design and Documentation

 	Documentation XML Design

 	Conversion and Reauthoring

 	The Syntax Extraction and Service
 	Extracting Syntax From Doc

 	The Syntax Service

 	The Syntax Viewer

 	Challenges and Lessons Learned
 	Author Communication and Tagging Quality

 	Evolving Requirements

 	Formatting Syntax and Help Content

 	LaTeX Doc

 	Current State and Next Steps

 	Appendix A. PROC HTTP Sample Syntax
 	Legacy XML

 	Documentation XML

 	JSON Object

 	About the Author

 Syntax-From-Doc
A Case Study of Powering IDE Code Completion from XML Documentation

The foundation of the SAS analytics ecosystem is the SAS programming language. First
 developed in the 1970s, SAS has since grown organically to become a powerful, robust
 language with the quirks and edge cases one would expect in a 40-year-old language.
 Documenting its features, functionality, and syntax for SAS users is a core responsibility
 of the Documentation Department.
Historically, to support syntax highlighting and code completion in IDEs (see Figure 1), a single
 employee in another department monitored changes in the SAS documentation and made updates
 to source code for the IDE. This was a race condition with no way to measure accuracy.
 Previous attempts to replace this manual process by extracting syntax from the SAS code base
 were unsuccessful due to the aforementioned nuances of a mature, organically growing
 programming language. As release cadence accelerates and the organization moves to a
 continuous integration/continuous delivery construct, this process has become increasingly
 unmaintainable.
Figure 1: PROC HTTP Procedure Statement code completion
[image:]

Given the lack of automation and the barrier to self-documentation in our existing
 code base, we embarked on a collaborative effort to develop a new process for extracting
 code-completion syntax from the XML for the software documentation and hosting it in a REST
 service. Since writers update software documentation simultaneously with changes to the
 software, syntax extracted from it should always be current.
In the following paper, we explore various aspects of interest in this ongoing
 project: project justification, guiding principles, information architecture, conversion,
 and reauthoring; the XSL→JSON→service pipeline; lessons learned; and current status. It
 should serve as a case study for similar endeavors and as an alternative approach to
 software, API, and language self-documentation from source code where circumstances make
 such modern documentation practices untenable.
Project Justification—Or, What's So Wrong With the Status Quo?
SAS is a unique programming language. The sum of its parts allows programmatic access
 to most of the software across the entire SAS ecosystem; thus, it has an extensive
 vocabulary. It is also a language that has evolved for over 40 years, and its organic
 maturation is apparent. While syntax rules exists, it is far from entirely consistent,
 and edge cases make it hard to infer the lexical meaning of a given element in a SAS
 program based on syntax alone. Further, during the 40 years since its genesis,
 additional languages emerged. Programs from entirely different languages—Lua, Groovy,
 SQL, even XSLT—can be wrapped in the SAS Procedures and executed in SAS. Given this
 complexity, code completion and code highlighting is a challenge, and SAS IDEs often
 highlight incorrectly and inconsistently. Access to a complete language dictionary would
 simplify this task greatly.
Such a dictionary currently exists; however, it is want for improvement. The existing
 syntax XML and maintenance process lacks automation and scalability. It has no DTD or
 schema, and its tagging dictionary is particularly spartan. It is maintained by a single
 person in R&D, who watches for documentation changes and updates accordingly. Large
 swathes of modern corners of the SAS language remain undocumented as a result of the
 inefficiences of this process. Sample legacy XML can be found in Appendix A. A brief review of the legacy XML reveals many deficiencies,
 such as: 	Semantic information of interest to its consumers is captured in comments
 or within the "help" text, e.g., <!--Required Arguments-->,
 preventing consumers from identifying:
	required vs. optional arguments

	allowed values for arguments with a controlled list

	required delimiters

	Most text is captured in <![CDATA[]]> in an effort to produce
 formatting

	Headings like "Syntax" are keyed into the <ProcedureHelp/> presenting
 internationalization inefficiencies

Guiding Principles
With the goal of replacing the existing R&D-maintained syntax extraction in mind,
 the team began the project with some general guiding principles. The first principle for
 this project is one that will no doubt be familiar to XML practitioners:
 single-sourcing. The existing source XML maintained by R&D exists outside both the
 documentation and the software development cycle. By designing a process to extract and
 deliver syntax content from the documentation, this decoupling will be addressed by
 single-sourcing, reducing maintenance overhead and inconsistency. Focus was also placed
 on producing adequate content with the least tagging requirements. As detailed in the
 next section, SAS XML has a history of verbosity allowing for myriad ways to achieve the
 same rendered output. Further, avoiding undue tagging burden on the technical writing
 staff was a primary concern given ever increasing documentation responsibilities and
 constrained resources. This principle necessitated striking a balance between requiring
 explicit, thorough tagging and algorithmic syntax information extraction.

Documenting Syntax
Before designing the service, the team undertook an exercise in information
 architecture to define the best XML structures to capture syntax information that would
 both facilitate extraction for the syntax service and production of traditional
 documentation deliverables. That work is summarized in this section, in which the team
 explored the structure of the legacy syntax information XML and the design
 considerations and requirements for the JSON objects and developed the new architecture
 of the documentation XML from which it would be derived. Included in Appendix A is an abridged sample of the legacy XML, the corresponding
 documentation XML, the transformed JSON object, and a sample of the results for code
 completion in SAS Studio.[1]
Legacy XML Review
Foundational to this project was an effort to clearly define the needs of the
 proposed syntax service. The project began with an analysis of the existing legacy
 R&D-maintained syntax XML to define a satisfactory JSON model and to map
 documentation XML to the new model. Without a DTD, literal document-by-document
 analysis was required to discern structure and content. As discussed in the project
 justification section above, the shortcomings of both the structure and content of
 the XML were fairly clear as is the process for developing and maintaining this XML.
 From this baseline, the team next worked with R&D to define the object model for
 the new syntax prior to designing XML from which it would be derived.

JSON Design and Documentation
As part of a wider organization-wide initiative to standardize API
 development, SAS has adopted OpenAPI for API documentation and mandated that
 services should, at the least, support the application/json media type.
 With this requirement in mind, the R&D consumers of the syntax service have
 designed around and made a requirement that the service be primarily focused on
 syntax elements modeled in JSON objects. Thus, the team first established the JSON
 model with the intention of working from it to develop adequate XML markup. The
 design process began with an analysis of the language element it should model. Each
 SAS language element has lexical features unique to its element class relevant to
 its model. In the case of procedures, the model is as follows:	Each Procedure has:
	a name

	one or more statements, including the procedure statement (the
 procedure that begins with the procedure name)

	Each statement in a procedure has:
	a name

	one or more arguments

	optional aliases

	Each statement argument has:
	a name

	a type

	possible nested arguments

This structure is illustrated in Figure 2, which captures a brief SAS procedure and highlighting its arguments and
 statements.
Figure 2: Example Means Procedure
[image:]

In addition to the literal statements and arguments associated with a given
 procedure, R&D identified additional required metadata that would be of use to
 syntax consumers at each level of a procedure to be included in the JSON object in
 the syntax service:	Procedures:
	Product groups – the SAS products in which a given procedure
 is available

	SAS Release – the SAS software release with which a given
 procedure is associated

	Locale – the language of the object

	Interactivity – a boolean value indicating whether or not a
 procedure is interactive

	Statements:
	Description

	Example syntax

	Arguments
	Description

	Example syntax

	Optional – is the argument required?

	Placeholder – Is the text displayed for the argument name text
 to be replaced by the user?

	Follows delimiter – does the argument appear after a
 delimiting character?

	Type – each argument can be one of the following types:
	dataset

	standalone

	value

	standalone or value

	choice

Additionally each level of the syntax requires support site
 information, such that consumers of the syntax object could easily link from a
 nested syntax object to the documentation on SAS support sites from which it was
 extracted, for supplemental information.
The final procedure JSON structure appears
 below.{
 "id": "string",
 "name": "string",
 "updated": "string",
 "locale": "string",
 "sasRelease": "string",
 "productGroups": [
 {
 "name": "string"
 }
],
 "interactive": true,
 "statements": [
 {
 "name": "string",
 "description": "string",
 "help": "string",
 "aliases": [
 "string"
],
 "arguments": [
 {
 "name": "string",
 "optional": true,
 "placeholder": true,
 "followsDelimiter": "string",
 "aliases": [
 "string"
],
 "description": "string",
 "help": "string",
 "type": "string",
 "arguments": [
 null
],
 "supportSiteTargetFragment": "string"
 }
],
 "supportSiteTargetFile": "string"
 }
],
 "supportSiteInformation": {
 "docsetId": "string",
 "docsetVersion": "string",
 "docsetTargetFile": "string"
 },
 "version": 0
}

Documentation XML Design
SAS documentation has used a proprietary DTD since migrating from SGML. The
 traditional DTD, informally known as the authoring.dtd, had various
 means of documenting the SAS language, depending on the type of language element and
 the intent of the writer. Developed organically through feature requests and
 requirements changes, the DTD grew to contain over 500 elements. Several years ago,
 an effort to create a new, streamlined DTD began. The new DTD, named the
 document.dtd, was designed without extraneous tags and features
 until equivalency with the authoring.dtd was explicitly
 requested.
Analysis of the R&D syntax documentation requirements revealed both gaps
 in the authoring.dtd tagging structure and too lenient a tagging
 structure to produce consistent syntax extraction results. Rather than introduce
 breaking changes to the authoring.dtd, requiring conversion and
 manipulation of legacy content, the Document Architecture group decided to develop a
 new syntax documentation model in the document.dtd and to create XSLT
 to convert old authoring.dtd content to the new DTD to migrate all
 syntax documentation when necessary. Where possible redundant elements were
 consolidated and eliminated. The resulting final version of the
 document.dtd with full feature parity for
 authoring.dtd is currently 348 elements—a substantially smaller tag
 set. Some examples of element refactoring and consolidation are illustrated in Figure 3.
Figure 3: Refactored Elements Related to Syntax Extraction
[image:]

Most important to syntax extraction is the <refBlock> element. It replaced
 two elements in the authoring.dtd and is designed to be flexible enough
 to capture syntax documentation for numerous SAS language elements, including
 statements, functions, formats, and informats. By designing this element to document
 most SAS language elements, the XSL for syntax extraction can share code for
 extracting these different elements and vary only slightly at the edges, reducing
 transformation complexity. <refBlock> are the child of either <refProc> or
 <refDictEntryCollection>. <refDictEntryCollection> is a tag retaining its
 authoring.dtd name intended to group numerous related refBlock
 describing language elements. <refProc> is a tag designed to document SAS
 procedures, and it contains both syntax and also information supplemental to the
 syntax documentation. It produces a special organizational structure in the output,
 for an example see the [HTTP Procedure] in
 the Base SAS Procedures Guide.
From a <refBlock>, its <name> maps to the name of a language element,
 and its <shortDescription> maps to the description. The syntactic structure of
 the syntax is captured in <syntaxSimple> within the <syntax> element, while
 the arguments are documented in <argDescriptionPair> within the
 <syntaxDescription> element. To facilitate documenting nested arguments,
 <argumentDescription>s can contain nested <argDescriptionPair>, producing the
 nested argument objects as shown in Appendix A. Figure 4 demonstrates how some of the XML maps to content
 in the code completion window.
Figure 4: Procedure arguments and syntax help
[image:]

The improvements over the legacy R&D maintained syntax XML are numerous.
 Whereas previously, the syntax for a language element was keyed in CDATA, the new
 XML contains numerous semantic tags. This produces better formatting in the code
 completion window and facilitates algorithmic identification of argument type in the
 extraction, such that writers do not have to tag arguments with their type.
 Procedure statements are now grouped in several semantically significant parent tags
 (<requiredArgGroup>, <optionalArgGroup>, <otherArgGroup>). By grouping in
 this manner, the service will be able to indicate which statements are required and
 which are optional—information previously only present in the CDATA of the
 <statementHelp> and not accessible to syntax documentation consumers. This should
 allow for future enhancements to the code completion to sort code completion
 suggestions and warn of missing required arguments. Additionally, now that the
 syntax information is extracted from the documentation, direct links from the code
 completion to relevant documentation are possible by including the UUID of source in
 the syntax objects. Prior to this new service, the IDE simply linked by way of a
 link to search results for the topic in our documentation.

Conversion and Reauthoring
Despite best efforts, the changes necessary to the document.dtd
 necessitated significant conversion and reauthoring work. There were breaking
 changes to the document.dtd, namely the elimination of redundant tags
 and some restructuring. Additionally, all existing syntax documentation was authored
 in the authoring.dtd, so the team developed both an
 authoring-to-document and a document-to-document XSL transformation.
To facilitate tech writer use, the team created a parameterized [Jenkins] job through which authors could batch
 convert their documentation projects to the new DTD. Where possible, the conversion
 was hands off, but where incompatibilities and questions arose, the conversion
 inserted processing instructions with comments configured to surface when the author
 transformed the content to an HTML preview, if possible, or included DTD validation
 failures in the Jenkins job log to debug and triage.

The Syntax Extraction and Service
The deployed syntax-from-doc service is comprised of three components developed by
 documentation engineering: 1) the syntax extraction XSL, 2) the syntax REST API service,
 and 3) the syntax viewer. The following section explores these three components
 structure and functionality. Figure 5 represents the flow of
 syntax documentation to the syntax service.
Figure 5: Syntax extraction flow from XML to REST Service
[image:]

Extracting Syntax From Doc
The majority of the SAS language documentation is authored in XML maintained
 in projects versioned in CVS. When writers commit changes to CVS, [Jenkins] builds produce build artifacts (e.g., HTML,
 PDF, ePub) stored in [JFrog Artifactory].
 To deliver extracted syntax to the syntax REST service, the team added a new step in
 the HTML build, so that extracted syntax would end up in the HTML artifact after
 each build.
The XSL stylesheets consist of a controller stylesheet called from the
 Java-based build pipeline, executed using Saxon EE. The controller is an XSL 3.0
 stylesheet that passes a flattened XML file using fn:transform() to
 external stylesheets that return a map of result XML documents. The controller then
 iterates through the returned map serializing each to JSON files using
 fn:xml-to-json(). Each SAS language element type has its own
 external stylesheet to handle the minor extraction differences between elements and
 to gather like elements based on structure and attributes. These stylesheets include
 a common stylesheet for shared templates that do not vary based on context. An
 example of the technique for controlling procedure extraction via external
 stylesheet is presented below.
<!-- The root template in ExtractSyntaxController.xsl contains a series of the following variable
 and call-template, each pointing to a different XSL stylesheet to extract different syntax doc
 The source node is a flattened XML file of an entire "docset"-->

<xsl:variable name="stylesheetParams"
 select="
 map {
 QName('', 'output_dir'): $output_dir,
 QName('', 'docsetVersion'): $docsetVersion,
 QName('', 'docsetId'): $docsetId
 }"
/>

<xsl:variable name="procResults"
 select="
 transform(
 map {
 'source-node': .,
 'stylesheet-location': 'extractProcSyntaxJSON.xsl',
 'stylesheet-params': $stylesheetParams
 }
)"
/>

<!-- This template iterates over the returned map of result documents
 and writes each to the file system, either as XML if debugging is enabled
 or as JSON using fn:xml-to-json() -->
<xsl:call-template name="outputResults">
 <xsl:with-param name="results" select="$procResults"/>
</xsl:call-template>

This stylesheet structure yields several benefits. By using a controller
 stylesheet and fn:transform(), Saxon is only invoked once, though the
 XML is processed several times, offering some performance benefit and moves process
 flow from its traditional place in the Java build to more easily maintained XSL.
 Furthermore, the syntax-from-doc project is an iterative one. The service is being
 introduced a syntax element at a time—first procedures, second functions, and so
 forth. Each stylesheet can be developed and tested on its own. Once finalized,
 adding an additional pass in the controller is trivial.

The Syntax Service
Consumers of extracted syntax information consume it via the syntax
 microservice REST API. The service itself is a [Spring
 Boot] app utilizing [httpd] for
 routing and [PostGRES] as a database. It is
 deployed via [Docker] container. Endpoints, HTTP
 requests supported, and JSON object models are documented in [Swagger] OpenUI and accessible via an internal SAS
 Swagger Hub. The service is populated by a Jenkins job that runs nightly after the
 documentation builds. It first queries an internal [eXist] database containing all SAS XML documentation to compile a
 list of every project containing syntax. With a list of syntax projects, the service
 then retrieves the HTML artifacts from Artifactory for each project, extracts the
 JAR files, and collects the JSON objects for each syntax language element. Finally,
 the Jenkins job POSTs each object to the appropriate syntax service endpoint,
 replacing the existing object in the service with the most recently extracted
 content. The result of this pipeline process is a service easily maintained by the
 authors, wherein updates to syntax appear in the service in a fully-automated
 fashion.

The Syntax Viewer
For now, SAS customers will interact with the result of the syntax-from-doc
 project only in the SAS IDEs. On the other hand, internal users, especially SAS
 technical writers and editors, need visibility into the extracted syntax as they
 both confirm accuracy of extraction and revise and adapt their tagging to meet the
 more stringent requirements of this new service. For this purpose, the documentation
 engineering team developed a syntax viewing service. This viewer allows writers to
 see a user-friendly representation of the syntax information rather than expecting
 them to review raw JSON objects.
The syntax viewer is a relatively simple Vue.js front-end app built on
 technology already in use for several other internal documentation web application
 front-ends. Essentially, it provides a UI for the syntax service, so authors can
 explore and view the collections of syntax objects, with search, filtering, and
 sorting by element type and SAS release. Once viewing an individual syntax element,
 the UI is utilitarian, offering a formatted view of the key/value pairs of the JSON
 objects. Where appropriate, it translates escaped HTML and character entities to
 render text as it would appear in the IDE. It is a viewer only. If content changes
 are required, writers must go back to the source XML, make them there. When the
 writers finish updates, their committed changes will trigger a Jenkins build, and
 their updated syntax will appear in the syntax viewer.

Challenges and Lessons Learned
Author Communication and Tagging Quality
At the heart of the syntax-from-doc project lies the new tagging introduced to
 facilitate extraction. The document architecture team invested considerable effort
 into the resulting tagging architecture. Despite this effort, its roll out was not
 seamless, and the new tagging still presents recurring questions and requires
 regular modification as requirements continue to be refined. While management held
 information sessions to explore the new tagging, conversion, and expectations,
 confusion still surrounds tagging best practices. Prior to this new service, writers
 needed only to tag to produce visually appealing HTML/PDF deliverables. Now,
 semantic information is far more important. Thus, writers must adopt more rigorous
 tagging conventions. With each language element added to the extraction, large
 swathes of tagging inconsistencies and workarounds are surfaced that produce
 passable deliverables but inaccurate syntax service objects. The cleanup effort is
 ongoing and monumental.
Confusion also still surrounds how the tagging effects the resulting extracted
 documentation, and work is underway to develop tagging best practices. Provided with
 the syntax viewer, writers can easily see an approximation of the extracted JSON
 from their documentation. However, the connection between what's displayed in the
 viewer and what will be displayed in the applications consuming the syntax is still
 befuddling writers. There is still room for improvement in conveying what particular
 key/value pairs in the syntax objects will control in the IDE and what those values
 are meant to indicate. Compounding the confusion is a side effect of a guiding
 principle to seek to reduce tagging burden on writers. Some information provided in
 the syntax is inferred from the contents of the syntax documentation, rather than
 keying off specific tags. For instance, data type of statement arguments is
 determined in the XSL transformation by a combination of identifying certain tagging
 structures and regex pattern matching. Lessons learned and practices adopted to
 address these issues:
	Communicate tagging guidelines early and often.

	Involve writing staff as early as possible to socialize change.

	Develop tagging best practices and sample content.

	Leverage XQuery and XML databases to surface common problems and make
 content authors aware.

	Address tagging complacency and develop Schematron rules to check for
 tagging guidelines unenforceable with DTD or schema.

Evolving Requirements
Several DTD changes have arisen after the initial DTD was released. On the XML
 authoring side, there are instances where tagging for one deliverable produces
 suboptimal artifacts for another. For example, some language elements are documented
 in multiple projects with differing content. The syntax service needs a single
 object for each element, so soon after developing a beta version of the service, a
 new @excludeFromSyntaxExtraction attribute was introduced to control
 which content is extracted. Conversely, there is concern that there are times when
 the tagging required to produce accurately extracted content may not be appropriate
 for documentation, such that an @excludeFromDoc will be warranted, if,
 for instance, it would make the documentation particularly verbose or redundant. As
 of yet, we have refrained from introducing this attribute, since it would then be
 another example of a failure in single-sourcing, requiring the content owners to
 maintain two sets of documentation of the same syntax. Finally, the team has also
 added several elements to provide more contextual information to the syntax
 consumers. @followsDelimiter indicates whether an argument group
 follows a specified delimiter, and @functionContext specifies in which
 software packages the descendant function documentation is applicable.

Formatting Syntax and Help Content
The challenge of formatting syntax help is one with which we are still grappling.
 The legacy XML made copious use of <![CDATA]]> wrapped text to
 allow for manual formatting of syntax and help content. In the new service, we have
 resorted to escaped HTML, new-line characters, and spaces to produce syntax examples
 and readable descriptions. With escaped HTML, the possibility is there for producing
 fairly well-structured syntax help, but it is far from the ideal solution. Already
 the service must produce italic text for syntax examples. Further, there are
 instances where the XSL is now extracting and producing escaped unordered lists in
 the help field. There are almost assuredly other edge cases yet uncovered by the
 proofing and revision process that may necessitate other formatting acrobatics. Here
 lies an underlying shortcoming with JSON as the de facto API standard for
 information exchange.

LaTeX Doc
Not all documentation at SAS is XML. A significant portion of the content
 documenting statistical procedures and tooling is authored, not by technical writers
 and editors, but by the developers themselves in LaTeX. This content follows its own
 production pipeline to be delivered along side XML-authored content in the
 customer-facing documentation. This LaTeX doc contains syntax information necessary
 to code completion, but, unfortunately, is not conducive to extraction and delivery
 in the syntax service. Its markup simply does not have the granularity or semantic
 information to produce content for the syntax service.
With no good options, the syntax team decided to use the legacy R&D-authored
 code completion syntax XML, convert it to the document.dtd, and store it in a
 project that will serve as the source for syntax extraction. By doing so, the
 documentation group takes ownership of the the content in the syntax service
 representing LaTeX-authored documentation, and its writers and editors can use SAS
 XML tooling to do maintain it. This solution is far from ideal and does not meet all
 the goals set out for the project. This XML is presently only used as the source for
 syntax extraction; thus, it represents duplicated content, as the LaTeX
 documentation continues to be the source for all other customer-facing
 documentation. Thus, this documentation requires dual maintenance, and breaks the
 direct connection between documentation revision and software or language behavior
 development. As of today, there is no regular revision schedule, nor any designated
 owner for the content. It may only be updated when defects are identified.
Further, since the XML that generates the syntax help for LaTeX documented
 language elements is not the source of the end-user documentation, establishing a
 connection between the syntax help and the user documentation was a project unto
 itself. The team eventually resorted to parsing other XML documentation that
 contains maintained links to the LaTeX doc and extracting those links to deliver in
 the service.

Current State and Next Steps
The syntax-from-doc project is still in active development. Thus far, only SAS
 procedures, functions, and non-procedure statements are in the service. The plan is to
 introduce more language element models in an iterative fashion until the entire language
 is represented. SAS Studio, the primary internal customer for the syntax service, has a
 beta version of the IDE that leverages the service; however, no tools do so in
 production yet. A production release is slated for sometime in 2020. As mentioned
 previously, there is also discussion regarding possibly productionizing and making
 public the syntax service for developers outside of SAS. In addition, more extensive
 internal use could be on the horizon. Finally, improvements to the extraction and
 service itself are possible. One possibility is to move extraction from at project build
 time to incorporating the XSL as part of an extension to the eXist database, such that
 the syntax service or a new service could call the eXist database for language objects
 and POST them to the service, rather than retrieving physical files from Artifactory. As
 the process and service matures and use cases materialize, assuredly more improvements
 will arise. And from these trials and tribulations and lessons learned, one might be
 left to ponder—if given a fresh start and a new code base, could there be a better way
 to document a language? A topic for another time...

Appendix A. PROC HTTP Sample Syntax
What follows is abridged sample legacy syntax XML, the analogous documentation XML,
 and finally the corresponding JSON object for the SAS language PROC HTTP procedure
 statement. See the [HTTP Procedure] in the SAS
 Documentation for the HTML deliverable produced by the XML documented below.
Legacy XML
<Procedure>
 <Name>HTTP</Name>
 <ProductGroup>BASE</ProductGroup>
 <ProcedureHelp><![CDATA[Syntax: PROC HTTP URL="URL-to-target" METHOD="http-method" <option(s)>;

PROC HTTP issues HTTP requests. PROC HTTP reads as input the entire body from a fileref
and writes output to a fileref. PROC HTTP can also read custom request headers from a
fileref and write response headers to a fileref.]]>
 </ProcedureHelp>

 <ProcedureOptions>
 <!--Required Arguments-->
 <ProcedureOption>
 <ProcedureOptionName>URL=</ProcedureOptionName>
 <ProcedureOptionHelp><![CDATA[Specifies the endpoint for the HTTP request.]]></ProcedureOptionHelp>
 <ProcedureOptionType>RV</ProcedureOptionType>
 </ProcedureOption>
 <!--Optional Arguments-->
 . . .
 <ProcedureOption>
 <ProcedureOptionName>IN=</ProcedureOptionName>
 <ProcedureOptionHelp><![CDATA[Syntax: IN="string" | fileref

Specifies the input data.

Beginning in the third maintenance release of SAS 9.4, you can specify input data in a quoted string
or in a fileref. Previous SAS releases require that you specify a fileref.

Requirement: This option is required when the POST and PUT methods are used.]]></ProcedureOptionHelp>
 <ProcedureOptionType>V</ProcedureOptionType>
 </ProcedureOption>
 . . .
 </ProcedureOptions>
 <ProcedureStatement>
	<StatementName>HEADERS</StatementName>
 <StatementHelp><![CDATA[Syntax: HEADERS "HeaderName"="HeaderValue" <"HeaderName-n"="HeaderValue-n">
Specifies request headers for the HTTP request.

Required Argument
"HeaderName"="HeaderValue"
 is a name and value pair that represents a header name and its value. The HeaderName can be a standard
 header name or a custom header name. For information about header field definitions, see the HTTP/1.1
 specification at www.w3.org.

Note: Do not specify a colon (:) in the header name. The name=value pairs are automatically translated
into the following form:

 HeaderName : HeaderValue]]></StatementHelp>
	<StatementOptions />
 </ProcedureStatement>
</Procedure>

Documentation XML
<refProc excludeFromSyntaxExtraction="no">
 <name>HTTP</name>
 <product productName="base"/>
 <product productName="viya"/>
 <refBlock type="statementProcedure" excludeFromSyntaxExtraction="no">
 <name>PROC HTTP</name>
 <shortDescription>Invokes a web service that issues requests.</shortDescription>
 <syntax formLabels="no">
 <syntaxSimple>
 <syntaxLevel><keyword>PROC HTTP</keyword><argument>URL="<userSuppliedValue>URL-to-target</userSuppliedValue><optional>/redirect/<userSuppliedValue>n</userSuppliedValue></optional>"</argument>
 <syntaxLevel><optional><argument>METHOD=<optional>"</optional><userSuppliedValue>http-method</userSuppliedValue><optional>"</optional></argument></optional></syntaxLevel>
 . . .
 </syntaxSimple>
 <syntaxDescription>
 <requiredArgGroup excludeFromDoc="no" excludeFromSyntaxExtraction="no">
 <argDescriptionPair>
 <argument>URL="<userSuppliedValue>URL-to-target</userSuppliedValue>"</argument>
 <argumentDescription includeShortDescription="no">
 <shortDescription>specifies the endpoint for the HTTP request.</shortDescription>
 . . .
 </argumentDescription>
 </argDescriptionPair>
 </requiredArgGroup>
 <optionalArgGroup>
 <argDescriptionPair>
 <argument>IN=<choice><userSuppliedValue>fileref</userSuppliedValue></choice>
 <choice>FORM (<userSuppliedValue>arguments</userSuppliedValue>)</choice>
 <choice>MULTI <optional><userSuppliedValue>options</userSuppliedValue></optional></choice>
 <choice>"<userSuppliedValue>string</userSuppliedValue>"</choice>
 </argument>
 <argumentDescription includeShortDescription="no">
 <shortDescription>specifies the input data.</shortDescription>
 <argDescriptionPair>
 <argument>fileref</argument>
 <argumentDescription>
 <paragraph eid="p1cnv96d5jyw4an18vgwgl2az0u9">specifies a fileref. The
 fileref is a pointer to data that exists in another
 location. A fileref is assigned with the FILENAME
 statement.</paragraph>
 </argumentDescription>
 </argDescriptionPair>
 . . .
 </argumentDescription>
 </argDescriptionPair>
 </optionalArgGroup>
 </syntaxDescription>
 </syntax>
 </refBlock>
</refProc>

JSON Object
{
 "name": "HTTP",
 "version": 1,
 "supportSiteInformation": {
 "docsetId": "proc",
 "docsetVersion": "v_001",
 "docsetTargetFile": "n0bdg5vmrpyi7jn1pbgbje2atoov.htm"
 },
 "productGroups": [
 {"name": "base"},
 {"name": "viya"}
]
 "statements": [
 {
 "name": "PROC HTTP",
 "description": "Invokes a web service that issues requests.",
 "help": "PROC HTTP URL=\"<i>URL-to-target<\/i>\" <<i>options<\/i>>;\n\tDEBUG <i>options<\/i>;\n\tHEADERS \"<i>HeaderName<\/i>\"=\"<i>HeaderValue<\/i>\" \n\t\t<\"<i>HeaderName-n<\/i>\"=\"<i>HeaderValue-n<\/i>\">;\n\tSSLPARMS <i>host-specific-SSL-options<\/i>;",
 "arguments": [
 {
 "name": "URL=",
 "help": "URL=\"<i>URL-to-target<\/i>\"",
 "description": "specifies the endpoint for the HTTP request.",
 "type": "value",
 "supportSiteTargetFragment": "n1vkwm3g1bln7vn1mbt2da6jtul5"
 },
 {
 "name": "IN=",
 "help": "IN=<i>fileref<\/i> | FORM (<i>arguments<\/i>) | MULTI <<i>options<\/i>> | \"<i>string<\/i>\"",
 "description": "specifies the input data.",
 "arguments": [
 {
 "name": "fileref",
 "description": "specifies a fileref. The fileref is a pointer to data that exists in another location. A fileref is assigned with the FILENAME statement.",
 "type": "standalone",
 "supportSiteTargetFragment": "p0z462ggw4a5z2n17taq7gufkg6x"
 },
 . . .
],
 "optional": true,
 "type": "choice",
 "supportSiteTargetFragment": "p12fhuxpr8l8aen0z6foe88r2dfl"
 },
 }
]
}

References
[httpd] Apache. (2020). httpd. https://httpd.apache.org/docs/2.4/programs/httpd.html
[docker] Docker. (2020). https://www.docker.com/
[existdb] Exist Solutions. (2020). exist-db. http://exist-db.org/exist/apps/homepage/index.html
[jenkins] Jenkins. (2020). https://jenkins.io/
[artifactory] JFrog. (2020). Artifactory. https://jfrog.com/artifactory/
[postgres] PostGRES. (2020). https://www.postgresql.org/
[prism] Prism.JS. (2020). http://www.prismjs.com
[httpproccite] SAS (2020). HTTP Procedure. Base SAS Procedures Guide. https://go.documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.5&docsetId=proc&docsetTarget=n0bdg5vmrpyi7jn1pbgbje2atoov.htm&locale=en
[springboot] Spring. (2020). Spring Boot. https://spring.io/projects/spring-boot
[swagger] SmartBear. (2020). Swagger. https://swagger.io/

[1] The SAS language is comprised of several elements, e.g., procedures,
 functions, global statements, and formats. The long-term goal of the syntax
 service project is to provide information about all elements, but for the
 purposes of this case study and the initial phase of the project, we focus on
 procedures.

Balisage: The Markup Conference

Syntax-From-Doc
A Case Study of Powering IDE Code Completion from XML Documentation
C. Porter
C. Edward Porter is an XSL Software Developer in the Documentation Engineering
 Group at SAS in Cary, NC. His background is in publishing, technical
 communication, and information management. When not knee deep in code, he rides
 bikes—a lot.

Balisage: The Markup Conference

content/images/Porter01-005.png
Extraction
XsL

Package

requests

Syntax JSON
HTTP Posts

Syntax
project st

content/images/Porter01-004.png
1 |pROC HTTP

PROCEDURE OPTIONS Keyword: URL=
& PROXY AUTH NEGOTATE Context: [PROC HTTP] URL= option - <honpessplion-
<S<¥rr‘;a)t|[i)ree:fri7mif:‘:al & PROXY AUTH T Specifies the endpoint for the HTTP request
uwlherl\r P [Search: Product Documentation Samples and SAS Notes Papers
<argDescriptionPalr>. T
<argument>
L & WEBAUTHDOMAIN=
& WEBPASSWORD=
& WEBUSERNAME=
<argument>

(to the left of equals sign)

content/images/Porter01-001.png
#Run

Code

|] </ @ @ | B CopytoMySnippets

filename resp TEMP;

proc http

PROCEDURES

% HTTP

Log

Keyword: HTTP
Context: [PROCEDURE DEFINITION] PROC HTTP

Syntax: PROC HTTP URL="URL-to-target” METHOD="htzp-method" <opion(s)>;
PROC HTTP issues HTTP requests. PROC HTTP reads as input the entire body from a fileref
and writes output to & fileref. PROC HTTP can also read custom request headers from &

fleref and write response headers to & fleref.

Search: Product Documentstion Semples snd SAS Notes ~ Papers

content/images/Porter01-003.png
Authoring.dtdElements Document.dtd Elements
argRequired

argOptional argument

argOption optional

argument

procStatement -

* procSummary

* procStatementSyntax refBlock

* procExamples * summary
-+ syntax

refDictEntry * exampleSection

* summary

* syntax

* exampleBlock

userSuppIiedSyntaxVaIue} ~—— userSuppliedValue

userSuppliedValue

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

content/images/Porter01-002.png
Procedure Arguments
statement

T proc means data=proclib.payroll mean max;
class jobcode;
var salary;
Procedure Statements format jobcode $codefmt.;
title 'Summary Statistics for Job Codes’;

title2 "(Using a Format that Groups the Job Codes)’;
run;

