[image: Balisage logo]Balisage: The Markup Conference

DITA Grammar Customization
Enabling controlled grammar extension for loosely-coupled interchange and interoperation
Eliot Kimber
Senior Solutions Architect
Contrext, LLC

<ekimber@contrext.com>

Symposium on Markup Vocabulary Customization
July 29, 2019

Copyright ©2019 W. Eliot Kimber

How to cite this paper
Kimber, Eliot. "DITA Grammar Customization." Presented at: Symposium on Markup Vocabulary Customization, Washington, DC, July 29, 2019. In Proceedings of the Symposium on Markup Vocabulary Customization.
 Balisage Series on Markup Technologies vol. 24 (2019). https://doi.org/10.4242/BalisageVol24.Kimber02.

Abstract
The Darwin Information Typing Architecture (DITA) standard defines a layered extension
 mechanism, "specialization", for defining grammars such that the element types and
 attributes in any conforming DITA grammar are explicitly mapped back to one or more "base"
 types, with the lowest base type being the type defined in the core DITA grammar. This means
 that any conforming DITA document can be processed in terms of the base types of the
 document's elements and attributes, irrespective of how specialized the elements and
 attributes themselves are. The architecture itself depends only on the use of a DITA-defined
 attribute (@class), where the value is normally set as a default in the
 grammar. The DITA standard defines conventions for DTD and RELAX NG grammar modules that
 enable re-use of the declarations for base types when defining new types or constraining
 existing types and makes customizing content models about as easy as it can be. The DITA
 standard defines three types of customization: "configuration", "constraint", and
 "specialization". Configuration combines existing grammar modules in the context of a
 top-level "shell" grammar to define a unique DITA document type without directly defining or
 modifying any element type or attribute declarations. Constraints modify existing element
 type or attribute declarations to make them more constrained (such as disallowing specific
 elements) but does not add new element types or attributes. Specialization defines new
 element types or attributes. For DITA DTDs, customization is done through parameter entities
 and references to individual grammar modules. For DITA RNGs, customization is done through
 declaration or overriding of patterns. The DITA Technical Committee maintains tooling for
 generating conforming DITA DTDs from conforming DITA RNGs.

Balisage: The Markup Conference

 DITA Grammar Customization

 Enabling controlled grammar extension for loosely-coupled interchange and interoperation

 Table of Contents

 	Title Page

 	Introduction to the DITA Vocabulary

 	Modularity and Customization
 	Domain Integration

 	RELAX NG Configuration

 	DTD Syntax Customization

 	XSD Syntax Customization

 	Interchange and Interoperability
 	Interchange and Interoperability of Documents

 	Interchange and Interoperability of Grammars

 	Interchange and Interoperability of Processing

 	Interchange and Interoperability of Knowledge

 	DITA Customization How To
 	Remove An Element

 	Add a New Inline or Block Element

 	Constrain an Attribute Value or Element Data Type

 	Constrain the Content Model of a Block Element

 	Define a New Top-Level Document Type

 	About the Author

 DITA Grammar Customization
Enabling controlled grammar extension for loosely-coupled interchange and interoperation

Introduction to the DITA Vocabulary
The DITA standard (Darwin Information Typing Architecture) was originally developed within
 IBM in the late 1990s as an XML application to support the authoring and production of modular
 documentation, especially documentation for IBM software and hardware products intended
 primarily for web delivery. DITA builds on architectural ideas developed for IBM's IBM ID Doc
 document type, which had been developed in the early 1990s as an SGML replacement for IBM's
 GML-based BookMaster product. IBM donated DITA to OASIS Open in 2003 and DITA 1.0 was
 published as an OASIS standard in 2005. The current version of DITA 1.3, published in 2015.
 The DITA Technical Committee is currently working on DITA 2.0.
DITA is used widely in a number of industries, including software, hardware, publishing,
 and government.
DITA's driving requirements are:	Modularity: The ability to author atomic units of content that stand alone and that
 can be reused in different contexts. DITA calls these modules "topics".

	Reuse: The ability to reuse content at either the module (topic) level or at the
 element level. Reuse can be within a single publication or across multiple
 publications.

	Interoperability: The ability for documents with different local document types and
 different element types to be used together within the same publication and to be
 processed with the same set of tools with a minimum of document-type-specific
 code.

	Hyperlinking: The ability to create rich hyperlinks within and across
 modules.

Around 1989 a meeting was held among the major software vendors of the time, including
 IBM, Digital Equipment, HP, Group Bull, and others, hosted by Fred Dalrymple and chaired by
 Eve Maler, with the goal of defining a common markup vocabulary to enable the interchange and
 interoperation of documentation among the various vendors. Eliot Kimber and Wayne Wohler from
 IBM attended. IBM's takeaway from the meeting, based on the initial analysis prepared by Maler
 and Jeanne El Andaloussi, was that there was a core set of elements common to all documents:
 titled divisions, paragraphs, lists, figures, tables, etc., but that every group used
 different names for these elements.
Out of this meeting many of the attendees went on to develop DocBook through the Davenport
 group. Wohler and Kimber formed the core members of the team at IBM that developed IBM ID Doc,
 along with Don Day, the founding Chair of the DITA Technical Committee, and Simcha
 Gralla.
IBM was and continues to be a federation of many different divisions, acquired companies,
 product groups, and so on, all of which have both common requirements and local requirements.
Our experience with BookMaster, which was a centrally defined and managed monolithic
 application intended to be used across all groups within IBM, was that the monolithic approach
 did not work at scale and was unnecessarily restrictive. By the time we started developing IBM
 ID Doc, BookMaster reflected more than 600 element types across a number of distinct
 information and publication types and was still growing. We needed something that would
 satisfy the common requirements and ensure consistency and interoperability of content and
 supporting tooling without limiting the ability of individual groups to quickly satisfy their
 local requirements.
The recognition of a universal base set of semantics coupled with HyTime's architectural
 forms facility gave us the answer: as long as all elements ultimately map back to one of the
 base types and conform to the minimal content model and attribute requirements of the base
 types, interoperability and interchange would be assured, while still allowing different
 groups to optimize the markup they use with minimal constraints. This idea then became the
 basis for IBM ID Doc.
BookMaster also had fairly sophisticated reuse and hyperlinking mechanisms, at least for
 the time, and those requirements were also supported in IBM ID Doc, updated to take advantage
 of SGML technology and HyTime's features for enabling linking, addressing, and re-use in an
 SGML context.
IBM ID Doc used the architectural forms mechanism from the ISO/IEC HyTime standard to
 define a layered architecture by which a core set of base element types could be formally
 extended to define new element types that were processable in terms of their base types. As an
 SGML standard, HyTime required the use of SGML-specific features, such as SGML declarations,
 features that were not retained in XML.
DITA replaced IBM ID Doc's HyTime-based architectural forms with a simpler mechanism that
 uses attributes to declare each element's type and relationship to its base types. This is
 DITA's @class attribute, which simply specifies the ancestry of a given element as an ordered
 sequence of tokens, one for each ancestor and one for the element type itself. The syntax of
 the DITA @class attribute was designed specifically to work with CSS attribute selectors, in
 particular, the "~=" (token) selector.
This formal declaration of ancestry means that every element can be understood and
 processed in terms of any ancestor (or itself) by simple inspection of the @class attribute
 value, avoiding the need for more complex declaration mechanisms as used in HyTime and IBM ID
 Doc, at the cost of requiring every element to carry the @class attribute or for documents to
 be parsed with grammars that can supply default values for attributes.
One interesting side effect of this attribute-based declaration mechanism is that DITA
 documents do not require grammars to be processed, or even necessarily to be validated, as all
 the information needed to understand any conforming DITA document in terms of its DITA-defined
 semantics is explicit in the document itself. Any conforming DITA document can be transformed
 into a document where all the element types are base types defined in the DITA standard, which
 can then be validated against the standard DITA grammars, enabling validation of conformance
 to at least the minimum requirements defined by the DITA standard.
There are several intended audiences for DITA customization:	People configuring their local DITA environment to reflect local requirements by
 doing "configuration", for example, omitting DITA modules that are not needed. This
 audience is not necessarily a dedicated DITA practitioner or document type
 designer.

	People configuring their local DITA environment to add additional constraints on top
 of existing DITA document types, basically a continuation of item (1) ("constraints").
 This requires more grammar facility but can be supported through interactive tools as
 the activity is fundamentally the process of either removing things you don't want,
 changing repeating OR groups to sequences, or making optional elements or attributes
 mandatory.

	Specialists defining new structural types (maps and topics) or new mix-in modules
 (domains), that provide new attributes or element types that are specializations of
 existing types ("specialization"). This requires more traditional document type analysis
 and implementation skills, although some simple types of specialization are quite easy
 and do not require any specialized skills beyond the ability to create simple grammar
 modules.

The use of customization varies widely within the DITA user community: some organizations
 refuse to do any customization, using the grammars as provided by the DITA Technical
 Committee, while others specialize almost every element type they need. Simple configuration
 is fairly common, in part because it is required in practice as it is a prerequisite for doing
 any kind of configuration or customization. Specialization is less common, although many DITA
 users will do simple specializations such as defining new conditional attributes. Modern
 DITA-aware content management systems require some configuration and specialization in order
 to use CMS-specific attributes and elements, such as attributes to capture CMS-specific object
 IDs or identifiers.
The DITA standard defines two base types of document: maps and topics.
Topics are the atomic unit of content authoring and delivery. A topic must have a title
 and may have a body that contains content elements and may have nested topics, creating a
 titled hierarchy within a single topic document. Topics may also have descriptive
 metadata.
Maps are collections of hyperlinks that serve to create some kind of publication
 structure, such as a traditional book structure, a web site, or some other structure for
 whatever purpose. The links within a map may be to DITA topics or to any non-DITA resource.
 Maps can also define links among the resources linked to by the map (external links in XLink
 terminology but using a different syntactic approach).
Topics can be published in isolation but are usually combined with other topics in the
 context of maps.
With DITA version 1.3 RELAX NG is the grammar language used for the master DITA grammars,
 with DTD and XSD versions generated automatically. However, most DITA users use DTD-based
 grammars, both for historical and practical reasons. XSD grammars are less used but are needed
 by tools that only understand XSD, such as some XML editors.
Because DITA relies heavily on attributes with default values, use of RELAX NG for DITA
 requires implementation of the RELAX NG DTD compatibility specification, which until recently
 was not generally available. George Bina has implemented support for DTD compatibility in
 Java, making it generally available to Java-based tools, which is the vast majority of DITA
 processing implementations. Since then, the community has started to increase the direct use
 of RELAX NG for DITA documents, although it is still a tiny fraction of DTD-based
 users.
The DITA Technical Committee implemented an RNG-to-DTD-and-XSD convertion tool for
 generating DTD and XSD versions of all the TC-defined modules and document type shells. This
 tool is available through GitHubRNG2DTD.

Modularity and Customization
DITA defines a modular architecture for grammars, independent of the grammar technology
 used. The RELAX NG schemas defined by the DITA standard are normative, with DTD and XSD
 versions generated from the RELAX NG grammars. All three grammar languages reflect the same
 modular architecture, although XSD 1.0 limitations on extension and override make the XSD
 implementation pattern slightly different from the RNG and DTD patterns, which are as similar
 as it is possible for them to be.
The DITA specification defines the following module types:	Structural modules define top-level types, either maps or topics. Map types
 represent top-level document types because maps cannot be literally nested within a
 single document instance. Topic types represent either top-level document types or
 subelements because topics can be literally nested within a single document
 instance.

	Domain modules define sets of element types that can be "mixed in" to structural
 types to add new element types or attributes. The element and attribute types defined in
 domain modules are always specializations so they serve to extend the base grammar such
 that the domain-provided types are allowed anywhere their base types are allowed.

	Constraint modules define constraints on the structural and domain types included
 within a given DITA document type. Constraint modules can impose any constraint as long
 as the result is no less constrained than the base. For example, a constraint can change
 an OR group into a sequence or disallow optional elements but cannot allow elements
 where they would not otherwise be allowed or make mandatory elements optional.

An essential aspect of the DITA architecture is that DITA grammar modules are invariant
 for a given version in time, meaning that every copy of a given module should be identical.
 That is, one should never directly modify any DITA grammar
 module. All customization is thus done indirectly through the customization facilities defined
 by the DITA specification. The invariance of modules is essential to making DITA interchange
 and interoperation work. It also means that, in theory, documents need only name the modules
 they use—processors could dynamically construct the actual grammars needed to do validation,
 not that any such tools have been developed to date.
The DITA standard also defines a set of grammar coding patterns that, while not normative,
 are reflected in the grammar modules developed by the DITA technical committee and by most
 DITA practitioners. This tends to make the implementation details of DITA grammars remarkably
 consistent across the DITA community. It also enables automated tools that can work with DITA
 grammars reliably.
DITA modules are "integrated" in the context of document type "shells" that serve to
 combine a set of either map or topic modules with zero or more domain modules and zero or more
 constraint modules. Map and topic types may not be combined within the same document type as
 map documents may not literally contain topics.
The DITA standard defines the concept of a "DITA document type", which is simply a unique
 set of modules.
Two documents that use the same set of modules by definition have the same DITA document
 type, irrespective of the actual grammar files, if any, used to validate documents.
DITA document elements use an attribute, @domains, to declare the modules used (or allowed
 or expected to be used) with the document. Thus any two DITA documents can be compared to
 determine if they do or do not reflect the same DITA document type. This makes them completely
 independent of the use of any particular grammar file.[1]
DITA customization involves three basic types of modification to the base declarations:	For any element type or the attributes @base and @props, allowing specializations of
 that type to occur wherever the base type is allowed (domain extension)

	For any element type, allowing constraint of its content model

	For any element type, allowing constraint of its attribute list

Within content models, every element type is represented by an extensible or over-ridable
 component: named pattern (RNG), parameter entity (DTD), name group (XSD). Individual
 attributes are not extensible so there is no need to represent them using extensible
 components.
Content models and attribute lists are defined using over-ridable components, making it
 easy to override them in order to impose constraints (or as easy as it can be for XSD 1.0,
 which is not always very easy due to limitations in the XSD redefine feature).
In addition to general content model configuration, each topic type provides an
 over-ridable component for defining the set of topic types that may be literally nested within
 the topic, if any. Each topic type module defines a default value for this component
 (typically just allowing the topic type to nest itself, if nesting is allowed at all) and then
 document type shells may override this configuration as needed.
Domain Integration
A key aspect of DITA customization is "integrating" domains.
Domain modules provide new element types that are specializations of base types (and
 that are not themselves map or topic or any specialization of map or topic).
Domain elements are "mixed in" such that anywhere a given domain-provided element's base
 is allowed the domain-provided element is allowed. This makes integration easy but means
 that domain elements can occur anywhere that the base is allowed, which may not always be
 what is desired. In this case it is possible to use constraints to limit where
 domain-provided elements can occur.
For example, consider a domain "dbParaDomain" that defines a specialization <para> of
 the base element type <p> (paragraph). When the domain is integrated into a DITA document
 type shell, the element type <para> will be available wherever <p> is allowed.
In DTD syntax this is done by overriding the declaration of the parameter for the <p>
 element to also include <para> in the document type
 shell:<!-- Document type shell -->
...
<!-- Inclusion of base element type parameter entity declarations -->
<!ENTITY ... SYSTEM ...>
%...;
<!-- Inclusion of dbParaDomain parameter entity declarations -->
<!ENTITY ... SYSTEM ...>
%...;
...
<!ENTITY % p "p | %dbPara-d-p; >
...
<!-- Inclusion of base element type element type declarations -->
<!ENTITY ... SYSTEM ...>
%...;
<!-- Inclusion of dbParaDomain element type declarations -->
<!ENTITY ... SYSTEM ...>
%...;
<!-- End of document type shell -->

Where the parameter entity %dbPara-d-p is declared
 as:<!ENTITY % dbPara-d-p
 "para"
>

(The name "dbPara-d-p" is read as "specializations of <p> provided by the dbPara
 domain".)
Within a content model, any reference to "%p;" now expands to "p |
 para":<!ENTITY % body.content
"(%p; |
 %fig; |
 %table; |
 %section;)*
"
>

If the desire on the part of the document type shell author is to allow <para> but
 not <p>, that can be done in the shell by simply omitting "p |" from the declaration of
 the %p parameter
 entity:<!-- Only allow <para>: -->
<!ENTITY % p "%dbPara-d-p; >

Now references to %p will expand to "para", not "p | para".
This omission of <p> in the shell is technically a constraint but the DITA standard
 does not require a separate module file for it.

RELAX NG Configuration
RELAX NG makes combining DITA grammar modules about as easy as it can be. Unfortunately,
 because DITA also uses DTDs and it must be possible to generate those DTDs from the RELAX NG
 grammars, DITA RNG grammars defined by the DITA Technical Committee cannot use RNG features
 that are not available in DTDs, such as <notAllowed> patterns or context-specific
 patterns.
However, DITA RNG grammars can take advantage of an important RELAX NG feature, the
 ability for one pattern to unilaterally extend another pattern. This allows DITA domain
 modules to be "self integrating". It is this feature of RELAX NG that motivated the
 Technical Committee to make RNG the master grammar language for DITA from which DTD and XSD
 versions are generated. Self-integrating domains make setting up new DITA document type
 shells about as easy as it can be for an otherwise unaided human.
Each element type has a corresponding pattern name for the element that includes the
 element type
 itself:<define name="p">
 <ref name="p.element"/>
</define>

Domain modules define patterns that include all the element types in the domain that are
 specializations of a given base
 element:<define name="dbPara-d-p">
 <choice>
 <ref name="p"/>
 </choice>
</define>

The domain can then extend the element type pattern using the domain-defined element
 choice
 pattern:<define name="p" combine="choice">
 <ref name="dbPara-d-p"/>
</define>

Which has the effect of making the effective value of the "p"
 pattern:<define name="p">
 <choice>
 <ref name="p"/>
 <ref name="para"/>
 </choice>
</define>

If the desire is to omit the base element but allow specializations, then the base
 type's pattern must be redefined in the document type
 shell:<grammar ...>
 ...
 <div>
 <include href="topicMod.rng">
 <define name="topic-info-types">
 <ref name="topic.element"/>
 </define>
 <define name="p">
 <!– No p allowed, only specializations -->
 </define>
 </include>
 ...
 </div>
 ...
</grammar>

RELAX NG document type shells are just sets of references to modules plus any
 constraints that can or should be defined in the shell, rather than in separate modules. RNG
 shells must also provide special declarations for attributes of type ID due to a quirk in
 the RELAX NG design.
Because domain modules are self integrating, there is no need for separate domain
 integration patterns as there is for DTDs.
In addition, RELAX NG only requires a single file for each module, while DTDs require
 two files for each structural and element domain module, one for parameter entities and one
 for the element type and attribute declarations. Attribute domains only require a single
 file in DTD syntax and in RNG.
Map type grammars only involve the inclusion of domain modules and constraints because
 maps cannot nest the way topics can.
Topic modules also allow configuration of the allowed topic nesting for each topic type
 integrated into the document type
 shell:<grammar ...>
 ...
 <div>
 <include href="topicMod.rng">
 <define name="topic-info-types">
 <ref name="topic.element"/>
 </define>
 <define name="p">
 <!– No p allowed, only specializations -->
 </define>
 </include>
 ...
 </div>
 ...
</grammar>

Here the shell simply allows the topic type "topic" to nest itself. If the shell
 included other topic types it could allow those to be nested as well.
Each topic type provides its own topic-type-specific topic nesting pattern, allowing
 different topic types within the same shell to have different nesting rules.
This is the one place in DITA where a document type shell can make the document type
 less constrained rather than more constrained. However, it makes sense because maps, via
 hyperlinks, can create arbitrary hierarchies of topics of any type, so allowing topics to
 literally nest within a single XML document is really more of a convenience for authoring or
 storage and any constraint on topic nesting imposed by a shell is not (directly) enforceable
 for topics combined using maps.
Constraints that are not done directly in the document type shell are done by replacing
 a reference to a module with a reference to the constraint module that then redefines
 patterns in the original module in its reference to the original
 module:<grammar ...>
 <!– Shell for the constrained task topic type -->
 ...
 <div>
 <a:documentation>CONTENT CONSTRAINT INTEGRATION</a:documentation>
 <include href="strictTaskbodyConstraintMod.rng">
 <define name="task-info-types">
 <ref name="task.element"/>
 </define>
 </include>
 </div>
 ...
</grammar>

Where strictTaskbodyConstraintMod.rng
 is:<grammar ...>
<div>
 <a:documentation>CONTENT MODEL OVERRIDES</a:documentation>
 <include href="taskMod.rng">
 <define name="taskbody.content">
 <optional>
 <ref name="prereq"/>
 </optional>
 <optional>
 <ref name="context"/>
 </optional>
 <!– section omitted -->
 <optional>
 <choice>
 <ref name="steps"/>
 <ref name="steps-unordered"/>
 <!– steps-informal omitted -->
 </choice>
 </optional>
 <optional>
 <ref name="result"/>
 </optional>
 <optional>
 <ref name="tasktroubleshooting"/>
 </optional>
 <optional>
 <ref name="example"/>
 </optional>
 <optional>
 <ref name="postreq"/>
 </optional>
 </define>
 </include>
 </div>
</grammar>

The constraint module includes the base module being constrained, in this case the
 TC-defined taskMod.rng, and redefines any patterns defined within the referenced module (or
 any modules it references). This is an example of constraining an element's content model by
 overriding the element's content model pattern.
The base declaration for taskbody.content
 is:<define name="taskbody.content">
 <zeroOrMore>
 <choice>
 <ref name="prereq"/>
 <ref name="context"/>
 <ref name="section"/>
 </choice>
 </zeroOrMore>
 <optional>
 <choice>
 <ref name="steps"/>
 <ref name="steps-unordered"/>
 <ref name="steps-informal"/>
 </choice>
 </optional>
 <optional>
 <ref name="result"/>
 </optional>
 <optional dita:since="1.3">
 <ref name="tasktroubleshooting"/>
 </optional>
 <zeroOrMore>
 <ref name="example"/>
 </zeroOrMore>
 <zeroOrMore>
 <ref name="postreq"/>
 </zeroOrMore>
</define>

Comparing the two versions of the taskbody.content pattern, you can see that the
 constrained version omits <section> and <steps-informal> and replaces the initial
 repeating OR group with a sequence.

DTD Syntax Customization
DTD customization is similar to RNG customization structurally but has to account for
 the limitation in DTDs that parameter entities must be declared before they can be
 referenced and the first declaration of a given parameter entity name wins.
This means that, except for attribute domains, all modules require two files, one for
 parameter entities and one for element type and attribute list declarations.
In addition, domain element integration must be done in document type shells, as shown
 above.
Constraint modules have the additional challenge that they must declare every parameter
 entity referenced by the parameter entities the constraint module overrides, which can make
 for a lot of cutting and pasting (the RNG-to-DTD conversion tool automates this cutting and
 pasting for a number of constraint patterns).
Otherwise, the customization pattern is conceptually the same as for RNG:	Document type shells include the structural and domain modules that make up the
 document type, as well as any constraint modules.

	Every element type has a corresponding parameter entity used for domain
 integration.

	Every element type has corresponding %*.content and %*.attlist parameter entities
 that can be overridden to constrain the content model or attribute list of that
 element type.

XSD Syntax Customization
XSD customization is complicated by the need to use the XSD 1.0 redefine facility, which
 allows redefinition of groups in a way that is conceptually similar to RNG pattern
 redefinition.
However, the XSD 1.0 redefine feature presents a couple of challenges:	The feature is defined ambiguously such that different processors can implement it
 in incompatible ways, only one of which works for DITA, which happens to be the way
 that the Apache Xerces parser implements it.

	The requirement for "particle preservation" in redefined models.

The particle preservation requirement is defined as follows: The definitions within the
 <redefine> element itself are restricted to be redefinitions of components from the
 redefined schema document, in terms of themselves. That is, 	Type definitions must use themselves as their base type definition;

	Attribute group definitions and model group definitions must be supersets or
 subsets of their original definitions, either by including exactly one reference to
 themselves or by containing only (possibly restricted) components which appear in a
 corresponding way in their redefined selves.[2]

This means that any redefinition of a model must reflect each of the
 particles in the original model. For choice groups this is not a problem: any choice group
 is a valid restriction, including an empty group. But for sequence groups it is a serious
 problem, in that you cannot simply omit items from the sequence as part of the
 redefinition.
This requires a workaround where you refactor the original sequence into a sequence of
 named groups that then allow redefinition.
XSD 1.1 includes a new feature, override, that allows for direct specification of the
 kinds of constraints DITA needs. Unfortunately, the XSD 1.1 specification is not widely
 implemented so the DITA standard cannot use it for TC-defined XSD grammars.
For DITA 2.0 the TC has decided to not provide modular XSD versions of the TC-defined
 modules, although it may provide non-modular versions as a convenience. Non-modular XSDs are
 XSD schemas that do not use redefine, including any constraints in place of the original
 base declarations, avoiding the need for redefines or overrides. It should be relatively
 straightforward to generate a single-file XSD version of any RNG document type shell.
See Kimber1 for details.

Interchange and Interoperability
For DITA, interchange and interoperability apply to the following areas:	Interchange and interoperability of documents

	Interchange and interoperability of working grammars

	Interchange and interoperability of processing

	Interchange and interoperation of knowledge

Interchange and Interoperability of Documents
DITA maximizes interchange and interoperability of documents by ensuring that any
 conforming DITA document can be processed in at least a minimal but correct way by any
 general-purpose DITA processor. DITA's hyperlink-based approach for combining individual
 topics into complete publications allows any DITA document to be used with any other DITA
 documents.
DITA provides two primary forms of re-use:	Use of topics by reference from maps

	Use of individual elements within topics or maps by reference.

Reuse of topics from maps is not inherently constrained, meaning any DITA topic can be
 used from any map. Maps can be designed to impose constraints on the kinds of topics allowed
 by a particular kind of reference and, through specialization of the hyperlinking elements
 in a map, specific structural rules can be imposed, but the vocabulary details of topics do
 not impose any constraints on how topics may be used from maps.
Reuse of individual elements is constrained such that a given element can only re-use an
 element of the same type or a more specialized type. This rule ensures that the effective
 document resulting from the reuse is still valid with respect to the document type of the
 using document. Compare with XInclude, which allows any element of any type to be used in
 any context where the grammar allows xi:include to occur.
The DITA standard as originally defined imposed more strict constraints on element-level
 reuse, requiring that the DITA document types of the two documents involved be "compatible"
 such that the document type of the element being reused was not less constrained than the
 document type of the document making the reuse reference. The intent was to ensure that
 constraints imposed on the using document were not circumventable by the reuse.
In practice, this constraint has been rarely enforced by tools or desired by user
 communities. It leads to annoying limitations, for example, being unable to reuse elements
 in more-general topic types from more-specialized types where the reuse would otherwise be
 fine in the context of the local content rules.
In DITA 1.3 the constraint requirement was relaxed so that unconstrained reuse is now
 the default behavior.

Interchange and Interoperability of Grammars
DITA's modular approach to grammar organization allows grammar modules to be
 interchanged reliably because the defining modules are never modified (every copy of a given
 version in time of a module should be identical). The coding patterns and extension
 mechanisms used in the DITA grammar files allow DITA modules to be used together with a
 minimum of effort.
In the context of a DITA-aware tool like OxygenXML, using new DITA grammars is as simple
 as deploying the grammar-providing plugins to the DITA Open Toolkit used by Oxygen. Those
 document types can then immediately be used to create new documents, edit documents that use
 those document types with full DITA functionality automatically available (because Oxygen's
 configuration is specialization aware and thus can be applied to any DITA document without
 further configuration effort), and apply DITA processing to those documents.

Interchange and Interoperability of Processing
Because specialization-aware processors can handle any DITA document in at least a
 minimal way, processing is inherently interchangeable at that level. The DITA standard also
 defines requirements for invariant processing where processing must be consistent to ensure
 interoperability and consistency of results, for example address resolution and
 use-by-reference resolution. It also provides processing suggestions for elements that most
 users would expect to be processed or rendered a certain way.
Beyond that, the modular nature of DITA grammars maps naturally to modular software
 approaches, such as plugin-based frameworks. Where such software exists, such as DITA Open
 Toolkit and OxygenXML, processing for new specializations can usually be added by providing
 software modules that simply extend the base processing to handle the specializations as
 needed.
In addition, because all DITA elements can be processed in terms of their base,
 specializations that do not require any special processing do not require configuration or
 processing support simply to account for a new element type or attribute.
For example, having defined a new specialization module and packaged it as an Open
 Toolkit plugin, simply by deploying the grammar-providing plugin to the Open Toolkit used by
 OxygenXML, OxygenXML immediately enables visual editing of the new specialization simply by
 providing fallback processing to all the specializations. If the new specialization requires
 some special configuration, such as unique styling, that can be added by defining a new
 OxygenXML document type framework that is an extension of the built-in DITA framework,
 re-using all the existing style sheets and only requiring new styles for the new
 specializations where the base styling is not what you want.

Interchange and Interoperability of Knowledge
The coding patterns for DITA grammar modules and document type shells defined in the
 DITA standard mean that the knowledge of how to use, configure, and
 customize DITA grammars is reusable and interoperable. That is, any person who understands
 the DITA coding patterns should be able to immediately understand and use the document type
 shells, specialization modules, and constraint modules developed by any other DITA-aware
 person. These coding patterns also enable automatic and interactive tools that make it
 easier to work with or generate DITA grammars. For example, Jang Graat has implemented an
 interactive tool for defining new constraint modules that then generates the RNG for the
 constraint from which DTD or (with limits) the XSD version can be generated.
Finally, the organizational patterns for DITA grammars end up providing a general
 pattern for how DITA grammars are packaged with entity resolution catalogs for use with
 tools, as implemented by the open-source DITA Open Toolkit. DITA document type shells and
 grammars can be packaged into Open Toolkit plugins which Open Toolkit can then automatically
 combine with other document-type-providing plugins in the context of a single master entity
 resolution catalog. Because Open Toolkit is both cross-platform and open-source, anyone or
 any tool can use it, effectively providing a de-facto standard for packaging and use of DITA
 grammars.

DITA Customization How To
This section demonstrate how to: 	Remove an element

	Add a new inline element

	Add a new block element

	Constrain an attribute value or the data type of an element

	Constrain the content model of a block element

	Define a new top-level document type

Remove An Element
Removing an element in DITA means disallowing the element from being used in any
 context. In DITA terms this is a constraint. The details of how the constraint is
 implemented depend on whether or not the disallowed element is a base element and if it is,
 has associated domain-provided specializations. For specialized elements the details of the
 constraint depend on whether or not the element is defined in a domain or in a topic or map
 type.
For domain-provided specializations, disallowing the element means omitting it from the
 domain-defined domain integration pattern or parameter entity.
For example, the DITA "highlight" domain provides the and <i> elements. You
 want to disallow these two elements (but allow other elements from the domain, such as
 <u> and <line-through>).
For RELAX NG you override the domain-defined pattern that adds the domain-provided
 elements to the element-type-name pattern for the base type (<ph> in this
 case):<grammar xmlns="http://relaxng.org/ns/structure/1.0">
 <div>
 <a:documentation>INCLUDE MODULES</a:documentation>
 <include href="urn:oasis:names:tc:dita:rng:topicMod.rng">
 <define name="topic-info-types">
 <ref name="topic.element"/>
 </define>
 </include>
 ...
 <include href="urn:oasis:names:tc:dita:rng:highlightDomain.rng">
 <define name="hi-d-ph">
 <choice>
 <!-- Omit b and I:
 <ref name="b.element"/>
 <ref name="i.element"/>
 -->
 <ref name="line-through.element" dita:since="1.3"/>
 <ref name="overline.element" dita:since="1.3"/>
 <ref name="sup.element"/>
 <ref name="sub.element"/>
 <ref name="tt.element"/>
 <ref name="u.element"/>
 </choice>
 </define>
 </include>
 ...
 </div>
</grammar>

Within the highlightDomain module this declaration adds the domain-contributed
 specializations of <ph> to the base <ph> element-type-name
 pattern:<define name="ph" combine="choice">
 <ref name="hi-d-ph"/>
</define>

The redefinition of the "hi-d-ph" pattern has the effect of removing and <i>
 from all content models that would have otherwise reflected them because they refer to the
 "ph" pattern.
For DTDs, the same constraint is implemented by simply replacing the reference to
 %hi-d-ph; in the domain-integration parameter entity with the list of element types from the
 highlight domain to be
 included:<!-- === -->
<!-- DOMAIN EXTENSIONS -->
<!-- === -->
<!-- Omit b and i: -->
<!ENTITY % ph "ph |
 line-through |
 sup |
 sub |
 tt |
 u
 ">

To disallow a base element type for which there are domain-provided specializations,
 then it's simply a matter of removing the element type from the element-type-name pattern
 (RNG) or domain integration parameter entity (DTD).
For RNG you can override the element-type-name pattern to use <notAllowed>:
<grammar xmlns="http://relaxng.org/ns/structure/1.0">
 ...
 <div>
 <a:documentation>INCLUDE MODULES</a:documentation>
 <include href="../../base/rng/topicMod.rng">
 <define name="p">
 <notAllowed/>
 </define>
 <define name="topic-info-types">
 <ref name="topic.element"/>
 </define>
 </include>
 <include href="dbParaDomainMod.rng"/>
 ...
 </div>
</grammar>
For DTD you simply omit the element type from the domain integration parameter
 entity:<!-- === -->
<!-- DOMAIN EXTENSIONS -->
<!-- === -->
<!-- Omit p: -->
<!ENTITY % p "%dbPara-d-p;"
>

If the base element to be disallowed does not have any domain-provided specializations
 then for DTDs you cannot simply set the domain integration parameter entity to "" because
 that will result in invalid content models anywhere the parameter entity is
 referenced.
Thus, for DTDs you must override the declaration of any parameter entity that references
 the element's domain integration parameter entity to omit the reference to it and the
 connectors associated with it. Fortunately, this can be done automatically when generating
 the DTD modules from the RELAX NG modules.
To disallow elements defined in map or topic modules, you simply override the content
 model patterns or parameter entities that include the element to be disallowed.
For example, to disallow the base element <section> from generic topics, you would
 define a constraint module like
 so:<grammar xmlns="http://relaxng.org/ns/structure/1.0">
 <a:documentation>Constraint on generic topic to disallow use of sections within body</a:documentation>
 <include href="urn:oasis:names:tc:dita:rng:topicMod.rng">
 <define name="body.content">
 <zeroOrMore>
 <choice>
 <ref name="body.cnt"/>
 <ref name="bodydiv"/>
 <ref name="example"/>
 <!–- Disallow section
 <ref name="section"/>
 -->
 </choice>
 </zeroOrMore>
 </define>
 </include>

</grammar>

In a document type shell the constraint module is referenced in place of the reference
 to the constrained
 module:<grammar xmlns="http://relaxng.org/ns/structure/1.0" ...>
 <div>
 <a:documentation>INCLUDE MODULES</a:documentation>
 <include href="topicBodyNoSectionConstraintMod.rng">
 <define name="topic-info-types">
 <ref name="topic.element"/>
 </define>
 </include>
 ...
 </div>
 ...
</grammar>

The DTD equivalent uses a contraint module that overrides the declaration of
 %body.content; to omit
 section:<!-- Constraint to disallow section within body -->
<!ENTITY % body.content
 "(%body.cnt; |
 %bodydiv; |
 %example;)*"
>

This constraint module is then included in the document type shell before the reference
 to the base topic.mod
 file:...
<!-- === -->
<!-- CONTENT CONSTRAINT INTEGRATION -->
<!-- === -->
<!ENTITY % topicBodyNoSection SYSTEM "topicBodyNoSectionConstraint.mod"
>%topicBodyNoSection;

<!-- === -->
<!-- TOPIC ELEMENT INTEGRATION -->
<!-- === -->

<!ENTITY % topic-type
 PUBLIC "-//OASIS//ELEMENTS DITA 1.3 Topic//EN"
 "../../base/dtd/topic.mod"
>%topic-type;
...

Add a New Inline or Block Element
In DITA adding a new element that is not itself a new topic or map type and is not
 specific to a new topic or map type means defining a new domain module that provides the
 element type. The domain is then integrated into document type shells to make the element
 available wherever its base element is allowed. Constraints can be used to allow the element
 only in specific contexts or to disallow it from specific contexts.
Using the "DocBook paragraph" domain as an example, the RELAX NG domain module would
 be:<?xml version="1.0" encoding="UTF-8"?>
<grammar xmlns:a="http://relaxng.org/ns/compatibility/annotations/1.0"
 xmlns:dita="http://dita.oasis-open.org/architecture/2005/"
 xmlns="http://relaxng.org/ns/structure/1.0">
 <moduleDesc xmlns="http://dita.oasis-open.org/architecture/2005/">
 <moduleTitle>DocBook para Domain</moduleTitle>
 <headerComment>
 Provides a specialization of <p>, <para>, mirroring
 the DocBook element type for paragraphs.
 </headerComment>
 <moduleMetadata>
 <moduleType>elementdomain</moduleType>
 <moduleShortName>dbPara-d</moduleShortName>
 <modulePublicIds>
 <dtdMod>urn:pubid:dtd:elements:dbParaDomain</dtdMod>
 <dtdEnt>urn:pubid:dtd:entities:dbParaDomain</dtdEnt>
 <xsdMod>urn:pubid:xsd:dbParaDomain</xsdMod>
 <rncMod>urn:pubid:rnc:dbParaDomain</rncMod>
 <rngMod>urn:pubid:rng:dbParaDomain</rngMod>
 </modulePublicIds>
 <domainsContribution>(topic dbPara-d)</domainsContribution>
 </moduleMetadata>
 </moduleDesc>
 <div>
 <a:documentation>DOMAIN EXTENSION PATTERNS</a:documentation>
 <define name="dbPara-d-p">
 <choice>
 <ref name="para.element"/>
 </choice>
 </define>
 <define name="p" combine="choice">
 <ref name="dbPara-d-p"/>
 </define>
 </div>
 <div>
 <a:documentation>ELEMENT TYPE NAME PATTERNS</a:documentation>
 <define name="para">
 <ref name="para.element"/>
 </define>
 </div>
 <div>
 <a:documentation>ELEMENT TYPE DECLARATIONS</a:documentation>
 <div>
 <a:documentation>LONG NAME: Para</a:documentation>
 <define name="para.content">
 <zeroOrMore>
 <ref name="para.cnt"/>
 </zeroOrMore>
 </define>
 <define name="para.attributes">
 <ref name="univ-atts"/>
 <optional>
 <attribute name="outputclass"/>
 </optional>
 </define>
 <define name="para.element">
 <element name="para" dita:longName="Paragraph">
 <a:documentation>DocBook-style paragraph</a:documentation>
 <ref name="para.attlist"/>
 <ref name="para.content"/>
 </element>
 </define>
 <define name="para.attlist" combine="interleave">
 <ref name="para.attributes"/>
 </define>
 </div>
 </div>
 <div>
 <a:documentation>SPECIALIZATION ATTRIBUTE DECLARATIONS</a:documentation>
 <define name="para.attlist" combine="interleave">
 <ref name="global-atts"/>
 <optional>
 <attribute name="class" a:defaultValue="+ topic/p dbPara-d/para "/>
 </optional>
 </define>
 </div>
</grammar>

The domain module is then simply included into any document type shell that wants to
 allow
 it:<grammar xmlns="http://relaxng.org/ns/structure/1.0"
 xmlns:dita="http://dita.oasis-open.org/architecture/2005/"
 xmlns:a="http://relaxng.org/ns/compatibility/annotations/1.0"
 xmlns:svg="http://www.w3.org/2000/svg">
 ...
 <div>
 <a:documentation>INCLUDE MODULES</a:documentation>
 <include href="urn:oasis:names:tc:dita:rng:topicMod.rng">
 <define name="topic-info-types">
 <ref name="topic.element"/>
 </define>
 </include>
 <include href="dbParaDomainMod.rng"/>
 ...
 </div>
</grammar>

Constrain an Attribute Value or Element Data Type
Because DITA is limited to DTD features in the TC-defined grammars, the DITA standard
 does not define any element data types. If you are using RNG or XSD as your working grammar
 syntax you could of course add element data type constraints by adding a constraint module
 that uses RNG lexical patterns or XSD data type constraints.
For attributes, constraining a value is a matter of overriding the declaration of the
 attribute in a constraint module.
The DITA grammar coding conventions do not provide general parameterization of
 individual attribute declarations, so constraining an individual attribute requires
 overriding the pattern or parameter entity that provides the attribute declaration.
If the attribute is a common attribute used by multiple element types with the same base
 definition it will normally be in a pattern with related attributes, for example, the
 "display-atts"
 pattern:<div>
 <a:documentation>COMMON ATTRIBUTE SETS</a:documentation>
 <define name="display-atts">
 <optional>
 <attribute name="scale">
 <choice>
 <value>50</value>
 <value>60</value>
 <value>70</value>
 <value>80</value>
 <value>90</value>
 <value>100</value>
 <value>110</value>
 <value>120</value>
 <value>140</value>
 <value>160</value>
 <value>180</value>
 <value>200</value>
 <value>-dita-use-conref-target</value>
 </choice>
 </attribute>
 </optional>
 <optional>
 <attribute name="frame">
 <choice>
 <value>all</value>
 <value>bottom</value>
 <value>none</value>
 <value>sides</value>
 <value>top</value>
 <value>topbot</value>
 <value>-dita-use-conref-target</value>
 </choice>
 </attribute>
 </optional>
 <optional>
 <attribute name="expanse">
 <choice>
 <value>column</value>
 <value>page</value>
 <value>spread</value>
 <value>textline</value>
 <value>-dita-use-conref-target</value>
 </choice>
 </attribute>
 </optional>
 </define>

To constrain the @expanse attribute to just the values "column" and "page" you would
 define a constraint module that has a copy of the display-atts pattern with the modified
 definition of
 @expanse:<grammar xmlns:a="http://relaxng.org/ns/compatibility/annotations/1.0"
 xmlns:dita="http://dita.oasis-open.org/architecture/2005/"
 xmlns="http://relaxng.org/ns/structure/1.0">
 <a:documentation>
 Limits @expanse attribute to page and column
 </a:documentation>

 <include href="urn:oasis:names:tc:dita:rng:topicMod.rng">
 <define name="display-atts">
 <optional>
 <attribute name="scale">
 <choice>
 <value>50</value>
 <value>60</value>
 <value>70</value>
 <value>80</value>
 <value>90</value>
 <value>100</value>
 <value>110</value>
 <value>120</value>
 <value>140</value>
 <value>160</value>
 <value>180</value>
 <value>200</value>
 <value>-dita-use-conref-target</value>
 </choice>
 </attribute>
 </optional>
 <optional>
 <attribute name="frame">
 <choice>
 <value>all</value>
 <value>bottom</value>
 <value>none</value>
 <value>sides</value>
 <value>top</value>
 <value>topbot</value>
 <value>-dita-use-conref-target</value>
 </choice>
 </attribute>
 </optional>
 <optional>
 <attribute name="expanse">
 <choice>
 <value>column</value>
 <value>page</value>
 <!-- Omit spread and textline -->
 <value>-dita-use-conref-target</value>
 </choice>
 </attribute>
 </optional>
 </define>
 </include>
</grammar>

If an attribute only occurs on a single element type or has a unique declaration for a
 given element type, then you would override the element type's *.attributes pattern.
For example, the @outputclass attribute is available on almost every element and is
 declared as CDATA on all elements. To specify specific values for @outputclass on say the
 <keyword> element, you would redeclare the "keyword.attributes" pattern in a constraint
 module:<grammar xmlns:a="http://relaxng.org/ns/compatibility/annotations/1.0"
 xmlns:dita="http://dita.oasis-open.org/architecture/2005/"
 xmlns="http://relaxng.org/ns/structure/1.0">
 <a:documentation>
 Define specific values for @outputclass on keyword.
 </a:documentation>

 <include href="urn:oasis:names:tc:dita:rng:topicMod.rng">
 <define name="keyword.attributes">
 <optional>
 <attribute name="keyref"/>
 </optional>
 <ref name="univ-atts"/>
 <optional>
 <attribute name="outputclass">
 <choice>
 <value>class1</value>
 <value>class2</value>
 <value>class3</value>
 </choice>
 </attribute>
 </optional>
 </define>
 </include>
</grammar>

Constrain the Content Model of a Block Element
Every element type has a *.content pattern that defines the content model for that
 element type. Thus constraining the content model for any element is a matter of redefining
 the *.content pattern in a constraint module. The coding pattern is the same for all element
 types.
For example, the base definition of the <fig> content model
 is:<define name="fig.content">
 <optional>
 <ref name="title"/>
 </optional>
 <optional>
 <ref name="desc"/>
 </optional>
 <zeroOrMore>
 <choice>
 <ref name="figgroup"/>
 <ref name="fig.cnt"/>
 </choice>
 </zeroOrMore>
</define>

A constraint module that makes <title> and <desc> required
 is:<?xml version="1.0" encoding="UTF-8"?>
<grammar xmlns:a="http://relaxng.org/ns/compatibility/annotations/1.0"
 xmlns:dita="http://dita.oasis-open.org/architecture/2005/"
 xmlns="http://relaxng.org/ns/structure/1.0">
 <a:documentation>
 Require title and desc for figure
 </a:documentation>

 <include href="urn:oasis:names:tc:dita:rng:topicMod.rng">
 <define name="fig.content">
 <!-- Require title and desc -->
 <ref name="title"/>
 <ref name="desc"/>
 <zeroOrMore>
 <choice>
 <ref name="figgroup"/>
 <ref name="fig.cnt"/>
 </choice>
 </zeroOrMore>
 </define>

 </include>
</grammar>

Define a New Top-Level Document Type
In DITA a new top-level document type can mean either a new DITA document type, meaning
 a new combination of existing modules, or a new specialized map or topic type intended to be
 used as a root element.
Defining a new document type shell is a matter of creating references to the appropriate
 modules and including any shell-defined constraints.
For a new map or topic type specialization, the minimum is a copy of the appropriate
 base map or topic type's declaration module (RNG) or modules (DTD) with the base map or
 topic element type name changed to the specialized name. For example, to define a new topic
 type "chapter" that is otherwise identical to the base <topic> topic type, you would
 simply copy the topicMod.rng file to a new file, e.g., chapterMod.rng, update all
 declarations that refer to the element type "topic" to refer instead to the topic type
 "chapter", and remove the declarations of all other element
 types:<?xml version="1.0" encoding="UTF-8"?>
<?xml-model href="urn:oasis:names:tc:dita:rng:vocabularyModuleDesc.rng"
 schematypens="http://relaxng.org/ns/structure/1.0"?>
<grammar xmlns:dita="http://dita.oasis-open.org/architecture/2005/"
 xmlns:a="http://relaxng.org/ns/compatibility/annotations/1.0"
 xmlns="http://relaxng.org/ns/structure/1.0"
 datatypeLibrary="http://www.w3.org/2001/XMLSchema-datatypes">
 <moduleDesc xmlns="http://dita.oasis-open.org/architecture/2005/">
 <moduleTitle>Chapter Topic Type</moduleTitle>
 <headerComment>Represents a chapter within a publication</headerComment>
 <moduleMetadata>
 <moduleType>topic</moduleType>
 <moduleShortName>topic</moduleShortName>
 <modulePublicIds>
 <dtdEnt></dtdEnt>
 <dtdMod></dtdMod>
 <xsdMod></xsdMod>
 <xsdGrp></xsdGrp>
 <rncMod></rncMod>
 <rngMod></rngMod>
 </modulePublicIds>
 </moduleMetadata>
 </moduleDesc>
 <div>
 <a:documentation>ARCHITECTURE ATTRIBUTES</a:documentation>
 <define name="arch-atts">
 <optional>
 <attribute name="dita:DITAArchVersion" a:defaultValue="1.3"/>
 </optional>
 </define>
 </div>
 <div>
 <a:documentation>INFO TYPES PATTERNS</a:documentation>
 <define name="chapter-info-types">
 <ref name="info-types"/>
 </define>
 <define name="info-types">
 <ref name="topic.element"/>
 </define>
 </div>
 <div>
 <a:documentation>ELEMENT TYPE NAME PATTERNS</a:documentation>
 </div>
 <div>
 <a:documentation>ELEMENT TYPE DECLARATIONS</a:documentation>

 <div>
 <a:documentation>LONG NAME: Chapter</a:documentation>
 <define name="chapter.content">
 <ref name="title"/>
 <optional>
 <ref name="titlealts"/>
 </optional>
 <optional>
 <choice>
 <ref name="shortdesc"/>
 <ref name="abstract"/>
 </choice>
 </optional>
 <optional>
 <ref name="prolog"/>
 </optional>
 <optional>
 <ref name="body"/>
 </optional>
 <optional>
 <ref name="related-links"/>
 </optional>
 <zeroOrMore>
 <ref name="topic-info-types"/>
 </zeroOrMore>
 </define>
 <define name="chapter.attributes">
 <attribute name="id">
 <data type="ID"/>
 </attribute>
 <ref name="conref-atts"/>
 <ref name="select-atts"/>
 <ref name="localization-atts"/>
 <optional>
 <attribute name="outputclass"/>
 </optional>
 </define>
 <define name="chapter.element">
 <element name="chapter" dita:longName="Chapter">
 <a:documentation>The <chapter> element represents a chapter within a publication</a:documentation>
 <ref name="chapter.attlist"/>
 <ref name="chapter.content"/>
 </element>
 </define>
 <define name="chapter.attlist" combine="interleave">
 <ref name="chapter.attributes"/>
 <ref name="arch-atts"/>
 <ref name="domains-att"/>
 </define>
 <define name="idElements" combine="choice">
 <ref name="chapter.element"/>
 </define>
 </div>
 </div>
 <div>
 <a:documentation>SPECIALIZATION ATTRIBUTES</a:documentation>
 <define name="chapter.attlist" combine="interleave">
 <ref name="global-atts"/>
 <optional>
 <attribute name="class" a:defaultValue="+ topic/topic chapter/chapter "/>
 </optional>
 </define>
 </div>
</grammar>

When defining a new top-level topic type you would normally also define at least one
 document type shell for
 it:<?xml version="1.0" encoding="UTF-8"?>
<?xml-model href="urn:oasis:names:tc:dita:rng:checkShell.sch" schematypens="http://purl.oclc.org/dsdl/schematron"?>
<?xml-model href="urn:oasis:names:tc:dita:rng:vocabularyModuleDesc.rng"
 schematypens="http://relaxng.org/ns/structure/1.0"?>
<grammar xmlns="http://relaxng.org/ns/structure/1.0" xmlns:dita="http://dita.oasis-open.org/architecture/2005/" xmlns:a="http://relaxng.org/ns/compatibility/annotations/1.0">
 <moduleDesc xmlns="http://dita.oasis-open.org/architecture/2005/">
 <moduleTitle>Chapter Topic Type Shell</moduleTitle>
 <headerComment xml:space="preserve">
Shell for chapter topics
 </headerComment>
 <moduleMetadata>
 <moduleType>topicshell</moduleType>
 <moduleShortName>chapter</moduleShortName>
 <shellPublicIds>
 <dtdShell>urn:pubid:example.org:dita:dtd<var presep=":" name="ditaver"/>:chapter.dtd</dtdShell>
 <rncShell>urn:pubid:example.org:dita:rnc:chapter.rnc<var presep=":" name="ditaver"/></rncShell>
 <rngShell>urn:pubid:example.org:dita:rng:chapter.rng<var presep=":" name="ditaver"/></rngShell>
 <xsdShell>urn:pubid:example.org:dita:xsd:chapter.xsd<var presep=":" name="ditaver"/></xsdShell>
 </shellPublicIds>
 </moduleMetadata>
 </moduleDesc>

 <div>
 <a:documentation>ROOT ELEMENT DECLARATION</a:documentation>
 <start>
 <ref name="chapter.element"/>
 </start>
 </div>
 <div>
 <a:documentation>DOMAINS ATTRIBUTE</a:documentation>
 <define name="domains-att" combine="interleave">
 <optional>
 <attribute name="domains"
 a:defaultValue="(topic abbrev-d)
 (topic chapter)
 (topic equation-d)
 (topic hazard-d)
 (topic hi-d)
 (topic indexing-d)
 (topic markup-d xml-d)
 (topic markup-d)
 (topic mathml-d)
 (topic pr-d)
 (topic relmgmt-d)
 (topic svg-d)
 (topic sw-d)
 (topic ui-d)
 (topic ut-d)
 a(props deliveryTarget)"
 />
 </optional>
 </define>
 </div>
 <div>
 <a:documentation>MODULE INCLUSIONS</a:documentation>
 <include href="urn:oasis:names:tc:dita:rng:topicMod.rng"/>
 <include href="chapterMod.rng"/>
 <include href="urn:oasis:names:tc:dita:rng:abbreviateDomain.rng"/>
 <include href="urn:oasis:names:tc:dita:rng:deliveryTargetAttDomain.rng"/>
 <include href="urn:oasis:names:tc:dita:rng:equationDomain.rng"/>
 <include href="urn:oasis:names:tc:dita:rng:hazardDomain.rng"/>
 <include href="urn:oasis:names:tc:dita:rng:highlightDomain.rng"/>
 <include href="urn:oasis:names:tc:dita:rng:indexingDomain.rng"/>
 <include href="urn:oasis:names:tc:dita:rng:markupDomain.rng"/>
 <include href="urn:oasis:names:tc:dita:rng:mathmlDomain.rng"/>
 <include href="urn:oasis:names:tc:dita:rng:programmingDomain.rng"/>
 <include href="urn:oasis:names:tc:dita:rng:releaseManagementDomain.rng"/>
 <include href="urn:oasis:names:tc:dita:rng:svgDomain.rng"/>
 <include href="urn:oasis:names:tc:dita:rng:uiDomain.rng"/>
 <include href="urn:oasis:names:tc:dita:rng:utilitiesDomain.rng"/>
 <include href="urn:oasis:names:tc:dita:rng:xmlDomain.rng"/>
 <include href="urn:oasis:names:tc:dita:rng:xnalDomain.rng"/>
 </div>
 <div>
 <a:documentation>ID-DEFINING-ELEMENT OVERRIDES</a:documentation>
 <define name="any">
 <zeroOrMore>
 <choice>
 <ref name="idElements"/>
 <element>
 <anyName>
 <except>
 <name>chapter</name>
 <name>topic</name>
 <nsName ns="http://www.w3.org/2000/svg"/>
 <nsName ns="http://www.w3.org/1998/Math/MathML"/>
 </except>
 </anyName>
 <zeroOrMore>
 <attribute>
 <anyName/>
 </attribute>
 </zeroOrMore>
 <ref name="any"/>
 </element>
 <text/>
 </choice>
 </zeroOrMore>
 </define>
 </div>
</grammar>

Creating this shell is largely an exercise in cut and paste.

Bibliography
[DITA 1.3] Darwin Information
 Typing Architecture (DITA) Version 1.3 Part 3: All-Inclusive Edition Plus Errata
 02, OASIS Open, 2018.
 http://docs.oasis-open.org/dita/dita/v1.3/dita-v1.3-part3-all-inclusive.html.
[Kimber1] Kimber, Eliot and George Bina, RELAX
 NG and DITA: An Almost Perfect Match, presented at Balisage: The Markup Conference 2014, Washington, DC, August 5 - 8, 2014. In Proceedings of Balisage: The Markup Conference 2014. Balisage Series on Markup Technologies, vol. 13 (2014). doi:https://doi.org/10.4242/BalisageVol13.Kimber01. https://www.balisage.net/Proceedings/vol13/html/Kimber01/BalisageVol13-Kimber01.html.
[RNG2DTD] Kimber, Eliot, DITA RELAX NG to DTD and XSD
 converter, https://github.com/oasis-open/dita-rng-converter.

[1] While this ability to know the DITA document type for documents without the use of
 grammar files is interesting and unique to DITA, as far as we know, no tools actually make
 use of it as the practical need for grammars means that most DITA documents have
 associated grammars, at least for authoring and management purposes. In addition, one of
 the intended use cases for declaring modules in this way, imposition of re-use
 constraints, turns out to not be that useful in practice. For this reason, the DITA
 Technical Committee has decided to make the @domains attribute optional in DITA
 2.0.
[2] XML Schema Part 1: Structures Second Edition, clause 4.2.2 Including modified
 component definitions

Balisage: The Markup Conference

DITA Grammar Customization
Enabling controlled grammar extension for loosely-coupled interchange and interoperation
Eliot Kimber
Senior Solutions Architect
Contrext, LLC

<ekimber@contrext.com>
Eliot Kimber is an XML practitioner currently working with a U.S. government agency on
 a new report authoring, management, and delivery system. He has been involved with SGML
 and XML for more than 30 years. Eliot has contributed to a number of standards, including
 SGML, HyTime, XML, XSLT, DSSSL, and DITA. While Eliot's focus has been managing large
 scale hyperdocuments for authoring and delivery, most of his day-to-day work involves
 producing online and paged (or pageable) media from XML documents. Eliot maintains a
 number of open-source projects including DITA for Publishers, The Wordinator, and the DITA
 Community collection of DITA-related tools and other aids. Eliot is author of
 DITA for Practitioners, Vol 1: Architecture and Technology, from
 XML Press. When not trying to retire the technical debt in his various open-source
 projects, Eliot lives with his family in Austin, Texas, where he practices Aikido and
 bakes bread.

Balisage: The Markup Conference

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

