
Multitasking Algorithms in XForms
Coordination, Progress, Priority

Presented July 31, 2019 at

Balisage: The Markup Conference 2019
By John M. Boyer, Ph.D.

1

Overview
 Introduction

 Background on XForms Markup

 Data representation and referencing

 Declarative data and user interface dependencies

 Imperative scripting for data processing use cases

 Building Data Processing Algorithms in XForms

 Invoking data processing scripts

 A selected algorithm to show the Turing-complete features

 Multitasking Techniques for XForms Actions

 Coordination

 Progress

 Priority

 Conclusion

2

Introduction
 What is XForms?

 A multiparadigm language for orchestrating user interaction with

XML data in a document

 Offers declarative, imperative, and even-driven language

features that work together

 Fits within XHTML, ODF, SVG, and other XML document formats

 Who made XForms?

 A W3C working group and the world wide web community

 The latest “standard” (full W3C Recommendation) is XForms 1.1

 This year is the 10 Year Anniversary of XForms 1.1!

 The working group created further specifications and extension

features as an XForms community

 The code in this paper is intended for XForms 1.1 or higher

3

Introduction: Processor Architecture
Current Web Browser

Web Virtual Machine

XHTML

Processor

JavaScript

Processor

…
XML Processor

XSLT Forms

XSL

Transform

JavaScript

XForms + XPath

XSLT Processor

XHTML + XForms Document

4

Introduction: Document Architecture

XHTML Head Element

XHTML Body Element

XForms Model

XML Data

Instances

Action

Scripts

Declarative

Bindings

Submission

Specifications

XForms User Interface Controls

Action Scripts

Namespace Declarations

Processing Instructions

5

Background on XForms Markup
 Processing Instruction for XSLTForms

 The first line of the XHTML

<?xml-stylesheet href="xsltforms/xsltforms.xsl" type="text/xsl"?>

 The XForms Model (in the XHTML head element)

 In the XHTML head element

 The ‘id’ and ‘xmlns’ attributes

 Container for data instances, action scripts, etc.

<model xmlns="http://www.w3.org/2002/xforms" id="M">

…

</model>

6

Background: Data Representation
 XForms data instances

 In the <model> element, each is represented by a parsed XML tree

 Loaded from external source, or internal inline declaration

<instance id="ORIGDATA" src="./Sort_Data_10.xml"/>

<instance id="DATA">

<data xmlns="">

<items>

<item>

<num>5</num>

<name>Alice</name>

<phone>333-1111</phone>

</item>

…

</items>
</data>

</instance>

7

Background: Data Referencing
 XPath Expressions

 Instance data nodes are referenced with XPath

 Separate instances referenced using ‘id’ attribute value in the

instance() function that XForms adds to its XPath engine

instance(‘DATA’)/items/item/name

 An XPath can bind to multiple nodes that match an expression

 The empty namespace (xmlns="") was used on the data within

instances to simplify XPath references in the code

8

Background: Declarative Embellishment
 Data Dependencies

 Content values of data nodes can be calculated by XPath

expressions

 Each XPath is an automatic declarative embellishment of other

language operations, such as the behaviors of script commands

<bind nodeset="instance('VARS')/window/end"

calculate="../start + ../size - 1"/>

 User Interface Dependencies

 Input and output user interface control elements can bind to

data nodes to show or allow editing of their values

 UI bindings are declarative embellishments on any other

language operations that change the bound data nodes

<output ref="instance('VARS')/window/end"/>

Imagine you have an XForms instance that contains variables for managing a sliding
window view onto a large list of item elements. It may have variables for the window
start, size and end. To move to the next or previous window, you’d add or subtract the
size to or from the start. This would be an imperative command triggered by pressing
a next or previous button (as on slide 12). The <bind> element embellishes that
imperative command by also automatically updating the window end. And the UI
binding in the output further embellishes the imperative command by also
automatically showing the window end value (e.g. you are viewing items S to E). Via
declarative embellishment, the meaning of imperative commands are magnified. A
setvalue action that changes the start *means* change the start and change the end
and show the end.

9

Background: Imperative Data Manipulators
 Setting the Text Content Value of a Data Node

<setvalue ref="instance('VARS')/window/start"

value="choose(. > 1, . - ../size, .)"/>

 Deleting Nodes

<delete nodeset="instance('DATA')/items/item"/>

 Inserting Nodes into a Parent Node

<insert context="instance('DATA')/items"

origin="instance('ORIGDATA')/items/item"/>

10

Background: Scripts as Event Handlers
 Using a container action that handles an XML event:

<html xmlns="http://www.w3.org/1999/xhtml"
xmlns:ev="http://www.w3.org/2001/xml-events">

<head>
…
<model xmlns="http://www.w3.org/2002/xforms" id="M">

<instance id="ORIGDATA" src="./Sort_Data_10.xml"/>
…
<action ev:event="xforms-model-construct-done">

<delete nodeset="instance('DATA')/items/item"/>
<insert context="instance('DATA')/items"

origin="instance('ORIGDATA')/items/item"/>
</action>

</model>
</head>
…

</html>

11

Background: User Interface Controls
 Making a button control that performs a script

<trigger>
<label>Previous</label>
<action ev:event="DOMActivate">

<setvalue ref="instance('VARS')/window/start"
value="choose(. > 1, . - ../size, .)"/>

</action>
</trigger>

 Making the windowing table that takes user input:

<repeat nodeset="instance('DATA')/items/item[
position() >= instance('VARS')/window/start and
position() <= instance('VARS')/window/end]">

<input ref="num"><label/></input>

<input ref="name"><label/></input>

<input ref="phone"><label/></input>

</repeat>

The one setvalue action in the trigger is declaratively embellished to mean change
the window start value, plus change the window end, plus show the values of start
and end in output UI bindings, plus show the correct item elements in the repeat,
plus enable input editing of the child elements of the item elements within the
window start and end position range.

12

Data Processing Algorithm in XForms: Demo

13

Data Processing Algorithms: Invocation
 Invoking a model script from the user interface with <dispatch>:

<html … >
<head>

<model xmlns="http://www.w3.org/2002/xforms" id="M">
…
<action ev:event="sel-sort-num">

…
</action>

</model>
</head>
<body>

…
<trigger>

<label>Selection Sort by Number</label>
<dispatch ev:event="DOMActivate"

name="sel-sort-num" targetid="M"/>

</trigger>
…

</body>
</html>

14

Data Processing Algorithms: Sort, I
 Make an instance for algorithm control variables

 ‘items’ is used to take a copy of the item elements to sort

 ‘sorted’ is used to grow the list of item elements in sorted order

 ‘least’ is used to help find the element with the least key in ‘items’

<instance id="SVARS">

<sort xmlns="">

<items/>

<sorted/>

<least/>

</sort>

</instance>

15

Data Processing Algorithms: Sort, II
 The outer logical level of the selection sort

 Make a copy of the items to sort

 Loop through to find the minimum and move it to the sorted list

 Move the sorted list to the original location in instance data

<action ev:event="sel-sort-num">

<insert context="instance('SVARS')/items"

origin="instance('DATA')/items/item"/>

<action while="instance('SVARS')/items/item">

…

</action>

… <!-- Actions to move the sorted list to original location -->

</action>

16

Data Processing Algorithms: Sort, III
 The inner logical level of the selection sort

 Initialize the ‘least’ to the first item’s key

 Iterate to find the least

 Use declarative infusion for numeric keys or an XForms loop for strings

 Use declarative infusion to solve for multiple nodes having equal keys

 Move the minimum item from the unsorted list to the sorted list

<action while="instance('SVARS')/items/item">

<setvalue ref="instance('SVARS')/least" value="../items/item[1]/num"/>

<setvalue ref="instance('SVARS')/least" value="min(../items/item/num)"/>

<insert context="instance('SVARS')/sorted"
nodeset="item" at="last()" position="after"
origin="../items/item[num=instance('SVARS')/least]"/>

<delete nodeset="instance('SVARS')/items/item[
num=instance('SVARS')/least]"/>

</action>

Declarative infusion means that declarative XPath expression features like functions
and predicates can add power to imperative commands by enabling authors to say
what they want more so than exactly how. This is like adding power to purely
imperative programs by leveraging large libraries of preexisting functionality so one
can invoke the functions that do what they want without having to implement them
(i.e. say how they work).

17

Multitasking Coordination: Non-Blocking Loops

 Loops and ‘if’ conditionals help with advanced use cases, but…

 Algorithms can block for too long as data sets grow, so…

 XForms has an alternative non-blocking loop pattern:

 Use ‘if’ instead of ‘while’ to run one iteration of the loop body

 Use delayed event dispatching to reinvoke after yielding

<action ev:event="sel-sort-num">
… <!– Initialize, e.g. make copy of data -->
<dispatch name="sel-sort-num-background-task" targetid="M"/>

</action>

<action ev:event="sel-sort-num-background-task">
<action if="instance('SVARS')/items/item">

… <!-- One iteration of outer loop body -->
<dispatch name="sel-sort-num-background-task" delay="4"

targetid="M“/>
</action>
…

</action>

This paper and presentation came from a desire to express the full potential of the
delay attribute (and corresponding child element).

18

Multitasking Coordination: Control Variables
 Attributes can be used to add control variables for multitasking

 @key – distinguishes which sort algorithm the variables control

 @state – controls algorithm execution (play, pause, and stop)

 @priority – controls the amount of delay between iterations

<instance id="SVARS">

<sort xmlns="" key="num | name" state="play | pause | stop" priority=“nnn">

<items/>

<sorted/>

<least/>

</sort>

</instance>

Using attributes when possible can keep the coordination and priority variables on an
orthogonal axis from the variables that run the core algorithm in a blocking way. This
was not as easy for progress monitoring because 5 variables are used to do it.

19

Multitasking Coordination: Task List
 To start, insert the algorithm control variables into a task list

 Change the key attribute to indicate the exact sort algorithm

 Adjust XPaths to refer to the copy of the control variables

<instance id="TASKS">
<list xmlns=""/>

</instance>

<action ev:event="sel-sort-num">

<action if="not(instance('TASKS')/sort[@key='num'])">

<insert context="instance('TASKS')" origin="instance('SVARS’)"/>
<setvalue ref="instance('TASKS')/sort[@key='']/@key">num</setvalue>

<insert context="instance('TASKS')/sort[@key='num']/items"
origin="instance('DATA')/items/item"/>

</action>
…

</action>

20

Demo of Multitasking and Progress

21

Multitasking Progress, 1
 Add control variables for progress monitoring

<instance id="SVARS">

<sort xmlns="" key="num | name" state="play | pause | stop" priority= "nnn">

…

<progress unsortedCount="" unsortedGauss="" totalCount="" totalGauss=""/>

</sort>

</instance>

 Use declarative embellishment to monitor progress… of any and all

sort algorithms

<bind nodeset="instance('TASKS')/sort/progress/@unsortedCount"

calculate="count(../../items/item)"/>

<bind nodeset="instance('TASKS')/sort/progress/@totalCount"

calculate="../@unsortedCount + count(../../sorted/item)"/>

…

Note that the bind nodeset expressions do not use predicates on the sort element, so
the calculate attributes automatically attach to however many sorts are running.

22

Multitasking Progress, 2
 Progress is relative to a Gaussian summation of work steps

<bind nodeset="instance('TASKS')/sort/progress/@unsortedGauss"

calculate="(../@unsortedCount div 2) * (../@unsortedCount + 1)"/>

<bind nodeset="instance('TASKS')/sort/progress/@totalGauss"

calculate="(../@totalCount div 2) * (../@totalCount + 1)"/>

<bind nodeset="instance('TASKS')/sort/progress“

calculate="concat(round(100 * (1 - @unsortedGauss div @totalGauss)), '%')"/>

 Declarative embellishment to pull the progress into the UI

<output ref="instance('TASKS')/sort[@key='num']/progress">

<label> Progress: </label>

</output>

The sort elements are not filtered in the bind nodesets, so the progress calculations
automatically bind to the control variables of all running sort algorithms. But for
output, we need to show specific progress results, so we filter by key attribute value
in the output UI binding.

23

Multitasking Priority: Data-Driven Delay
 Delay by declarative infusion in the dispatch action

<action ev:event="sel-sort-num-background-task">

<action if="instance('TASKS')/sort[@key='num']/items/item">

… <!-- One iteration of outer loop body -->

<dispatch name="sel-sort-num-background-task" targetid="M">

<delay value="instance('TASKS')/sort[@key='num']/@priority"/>

</dispatch>

</action>

…

</action>

 A longer delay per iteration == lower priority (and vice versa)
<trigger>

<label>Decrease priority</label>

<setvalue ev:event="DOMActivate"

ref="instance('TASKS')/sort[@key='num']/@priority"

value=". * 2"/>

</trigger>

24

Demo of Variable Priorities for Tasks

25

Conclusion
 Summary

 Demonstration of features that make XForms Turing complete
and enable handling of advanced data processing use cases

 Making more powerful imperative script commands with
declarative infusion and declarative embellishment

 A non-blocking loop pattern and task list method that enable
multiple tasks to cooperate with each other and the UI thread

 Methods for task control, progress reporting, and prioritization

 Future Work

 Upcoming ACM DocEng presentation of recursion and more
powerful declarative infusion in a partially declarative quicksort

 Articulate more XForms use cases for Turing completeness,
hybrid imperative/declarative computing, and multitasking

 Smooth out processing with more sophisticated methods of
allocating work to execution time slices

26

