[image: Balisage logo]Balisage: The Markup Conference

TAGML: A markup language of many dimensions
Ronald Haentjens Dekker
Head of Research and Development and Software Architect
Research and Development Team, KNAW Humanities Cluster

<ronald.dekker@di.huc.knaw.nl>

Elli Bleeker
Software Developer, Research and Development
Research and Development Team, KNAW Humanities Cluster

<elli.bleeker@di.huc.knaw.nl>

Bram Buitendijk
Software Developer, Research and Development
Research and Development Team, KNAW Humanities Cluster

<bram.buitendijk@di.huc.knaw.nl>

Astrid Kulsdom
Project Manager, Research and Development
Research and Development Team, KNAW Humanities Cluster

<astrid.kulsdom@di.huc.knaw.nl>

David J. Birnbaum
Professor and Co-Chair
Department of Slavic Languages and Literatures, University of
					Pittsburgh

<djbpitt@gmail.com>

Balisage: The Markup Conference 2018
July 31 - August 3, 2018

Copyright ©2018 by the authors.

How to cite this paper
Haentjens Dekker, Ronald, Elli Bleeker, Bram Buitendijk, Astrid Kulsdom and David J. Birnbaum. "TAGML: A markup language of many dimensions." Presented at: Balisage: The Markup Conference 2018, Washington, DC, July 31 - August 3, 2018. In Proceedings of Balisage: The Markup Conference 2018.
 Balisage Series on Markup Technologies vol. 21 (2018). https://doi.org/10.4242/BalisageVol21.HaentjensDekker01.

Abstract
This report presents new developments in three areas pertaining to Text As Graph
				(TAG), a data model that conceptualizes what text really is as a
				property hypergraph, which we first introduced at Balisage 2017. () In this new report 1) we propose a markup language
				for TAG, which we call TAGML; 2) we discuss a workflow, implemented in our Alexandria reference implementation of TAG, for editing
				TAG documents selectively, so as to retain a legible interface; and 3) we introduce
				some modifications in the TAG data model (principally the use of undirected edges to
				connect Text nodes).

Balisage: The Markup Conference

 TAGML: A markup language of many dimensions

 Table of Contents

 	Title Page

 	Introduction
 	Philosophy, definitions

 	Overview

 	TAGML
 	Preamble

 	Layers

 	Order of textual content

 	Order of metadata

 	Intermediate conclusion

 	Syntax
 	Encoding text

 	Whitespace

 	Adding markup

 	Adding annotations

 	Milestones, placeholders, empty markup elements

 	Comments

 	Namespaces

 	Data typing

 	Encoding non-linearity

 	Rich text annotations

 	Overlapping and self-overlapping markup

 	Discontinuity

 	Linking elements

 	Combining discontinuity and non-linearity

 	Combining overlap and non-linearity

 	Main document, inner documents, and discontinuity

 	Grammar

 	Workflow
 	Interacting with Alexandria

 	Views and layers
 	Layers as research perspective

 	Layers as user identification

 	Layers as solution to local overlap

 	Discussion
 	TAGML files

 	Syntax and schema

 	Users, views, and Alexandria

 	Conclusion

 	Appendix A. The TAG model
 	Nodes
 	Document nodes

 	Text nodes

 	Markup nodes

 	Annotation nodes

 	Node types, properties, and constraints

 	Edges
 	Document-Text undirected edges

 	Text-Text undirected edges

 	Markup-Text undirected hyperedges

 	Annotation-Markup multiple undirected edges

 	Annotation-Annotation multiple undirected edges

 	Annotation-Text undirected edges

 	Edge types, constraints

 	About the Authors

 TAGML: A markup language of many dimensions

Introduction
Philosophy, definitions
From cave wall to clay tablet, and from codex to bits, the way we write and the
				ways in which we model, store, and process textual objects are influenced by the
				medium and technologies at our disposal. Hence, over time, we have had various
				understandings of text, ranging from a sequence of characters designed to support
				oral recital to a hierarchical tree of objects. Our changing understanding and
				implementation of our perspectives on what text really is has had
				consequences for how we interact with textual objects, since the affordances and
				limitations of a prevailing technology may blind us to aspects not supported by that
				technology (Dillen 2015, 69). Encoding a historical text in
				TEI-XML, for instance, might subtly encourage us to ignore textual phenomena that
				are not part of the TEI-XML encoding model (Sahle 2013, 381–82).
				We maintain that it is most natural, idiomatic, and inclusive to consider text as a
				network of often implicit information. Adhering to this conceptual idea of text
				opens the way to an innovative approach to creating, modeling, and processing
				textual objects.
This article describes recent progress in the design and implementation of TAGML,
				a markup language for the Text As Graph (TAG) model of text, from a conceptual and a
				technical perspective. We characterize the relationship between the markup language
				and the data model, and we outline how creating layers of markup and annotation on
				the text allows the user to formally describe complex textual features in a
				straightforward manner. The article builds on two previous articles on the same
				topic (Haentjens Dekker and Birnbaum 2017; Bleeker et al. 2018a), which
				respectively introduced the TAG model and described how to model textual variation
				in TAG.
Over the past decades, a variety of definitions of the term text has been suggested. In order to construct a well-grounded and
				useful model, we need a highly refined definition of the textual object, a
				definition that holds on a conceptual level and one that translates informatically.
				We therefore propose to distinguish between a conceptual description and a technical
				description of text. On the one hand, we define written
					text as a sequence of characters (e.g., letters, digits, spaces, and
				punctuation in most alphabetic writing systems) inscribed in a document. A document, here, is a physical object that contains some
				sort of inscribed information. Both text and document are broadly defined, and may
				also include, for example, the bits on a disk or the symbols carved in a tree. The
				items that make up written text are culturally determined, and although not all
				writing is alphabetic, nonalphabetic writing systems also use written symbols to
				express linguistic textual content.
On the other hand, the TAG model understands text
				to be a multi-layered, non-linear construct containing information that is at times
				ordered, partially ordered, and unordered. A layer
				is, in principle, defined as a hierarchical set of Markup nodes (including
				associated annotations). By multi-layered we mean
				that a text in TAG can have multiple layers of markup. A layer is hierarchically
				structured; layers may overlap. Layers have a key function in TAGML, as is described
				in Layers.
By non-linear we mean that the text nodes
				(textual content) of a TAG document do not necessarily form a single ordered list.
				The TAG model distinguishes three types of information: textual content, textual
				variation, and markup. These three types of information can be expressed without
				workarounds in TAGML, as illustrated in Order of textual content.
Textual content in TAG, from an informational
				perspective, is a sequence of characters (including symbols, but excluding any type
				of formatting). In the following excerpt from a letter by Willa Cather, the phrase
					now Mariel I am "packing" and I know you will excuse this brief
					scrawl makes up the textual content:
Figure 1
[image:]
Excerpt from a letter from Willa Cather to Mariel Gere, source: letter ID
						0005, in the Willa Cather archive, edited
						by Andrew Jewell (20104-2018)

Markup can be used to make implicit information
				explicit. Adding markup to a document can be understood as adding one or more layers
				of additional information (structural, interpretive, etc.) to the information
				expressed by the sequence of textual characters.
In TAGML, markup consists of start-tags and
					end-tags. A start-tag and an end-tag together
				constitute a Markup node. Markup nodes can have
				attributes, which are called annotations. Annotations are comparable to the attributes on XML elements in that
				they represent properties of an object. Annotations in TAGML, unlike XML, are typed
					(Data typing).

				Alexandria is a text repository system that serves
				as the reference implementation of the TAG model, under ongoing development at the
				Research and Development team of the Humanities Cluster of the Dutch Royal Academy
				of Science (Alexandria). Within the framework of Alexandria, a view is a
				version of a TAG document with one or more layers of markup. The concept of view can
				best be understood from a user’s perspective: similarly to the git (Git) workflow, working with text in Alexandria entails checking out
				from the Alexandria repository a version of the TAG
				document with a specified set of layers (the view), editing this view, and checking in the edited view back into the repository. The
				motivation for supporting customizable views of a TAG document is that the TAG
				document in its full, hypergraph glory may contain more information (layers of
				Markup nodes and annotations) than can be visualized in any informative way. In
				situations where users are able to interact meaningfully with a text without seeing
				all Markup layers simultaneously, a view enables them to work on specific aspects of
				a document without distraction by other features. A more detailed description of
				these concepts is given in TAGML, and the theoretical dimensions
				of views are laid out in Workflow.

Overview
It is a truth universally acknowledged—at least within the markup community—that a
				markup technology stack is a complex business. Such a stack typically includes at
				least four ingredients: a model, a syntax, a query language, and a schema. Haentjens Dekker and Birnbaum 2017, presented at Balisage 2017, introduced the model—a
				hypergraph model for text—that understood text as a network of information. Our 2017
				paper identified a number of textual phenomena that the hypergraph model needs to
				express, and it showed how the model represents each of them. That paper also
				introduced the Alexandria prototype implementation
				of TAG (Alexandria), which can import documents marked up in
				either LMNL (Piez 2008) or TexMECS (Huitfeldt and Sperberg-McQueen 2003). At that time TAG did not have its own markup language, and it borrowed from the
				syntax from LMNL and TexMECS to represent features of TAG. Finally, an Appendix to
				our 2017 paper identified five issues that were not yet part of the TAG model,
				although they had been identified as important, and therefore as goals for future
				development: 	simultaneity

	constraints

	a markup language

	textual variation (on an intradocumentary as well as an
							interdocumentary level)

	transposition

A number of these features have now been included into the TAG model
				and are discussed below in the present article: simultaneity, constraints (for now
				only from a technical perspective, and not yet from a user perspective), the TAGML
				markup language, and textual variation (for now only on an intradocumentary, and not
				interdocumentary, level). The other aspects of constraints and textual variation, as
				well as transposition, are still under development, and are not within the scope of
				the present paper.
Our paper begins with an introduction to the syntax of the TAG markup language
				(TAGML, section “Syntax”), including a formal grammar of TAGML (TAGML grammar). The next section describes a workflow that
				facilitates editing a multilayered document (Workflow) and
				sketches at least three implementations of the layer functionality. As an
				illustration of the workflow we focus on editing a historical manuscript, but TAG
				also facilitates modeling and processing other types of text, e.g., born-digital
				texts, or non-literary texts, such as those represented in judicial or pedagogical
				documents. The consequences and implications for the way we model, work with, and
				understand text are discussed in the Discussion and Conclusion.
Two essential ingredients of the markup technology stack are not addressed at all
				in the present article: schema language validation and the query language. We
				introduce the concept of the schema language in this paper, but it remains at an
				early stage of development. The query language was introduced in an exploratory way
				in our Balisage 2017 article, and will be extended in the future. The aspects of the
				project that we regard as ready for presentation at the Balisage 2018 conference are
				the TAGML markup language, our modifications to the TAG hypergraph model, and the
				proposed workflow for managing multiple Markup layers.
Despite work on the (implementations of the) TAG model being under active
				development, we consider our experiences with developing TAGML as beneficial to a
				productive discussion on designing a markup language. The affordances of TAG’s
				hypergraph model allowed us to reconsider ingrained notions of textual features and
				how to model them most effectively. Our article, then, can be read not only as a
				technical report of recent project developments, but also as a conceptual and
				methodological reflection on the potential of markup to express our understandings
				of text.

TAGML
Preamble
TAG is designed to be able to model (and TAGML is designed to be able to encode)
				text and markup, including overlapping markup and ordered, partially ordered, and
				unordered information. This design principle means that TAG processing can support
				any type of query, from Boolean to ranked pattern matches at
					the level of the model, and that the complex mixture of information
				can be parsed and processed in an idiomatic manner and without
					work-arounds. Encoding of unordered data is supported in a JSON-like
				manner (Data typing); as is linking from a TAGML transcription of
				ordered text to unordered information (Linking elements).
				Annotations in TAG, unlike attributes in XML, can contain both text and markup. This
				feature is defined as Rich text (Rich text annotations). Annotations may also have annotations.[1]
TAGML allows the straightforward expression of the multi-layered, non-linear
				features of text described in Philosophy-and-Definitions. The following
				subsections first describe the general features of TAGML: layers, non-linear
				structures, and order. They then go on to discuss TAGML’s syntax in detail. TAGML’s
				general specifications are then illustrated with examples that include the (main)
				constraints of the syntax. Finally, the specifications are summarized in tabular
				format.

Layers
Layers are used to classify a specific set of Markup nodes. The reasons for
				grouping Markup nodes together into a set may vary. For example, a set of Markup
				nodes may express a research perspective on text, as with a layer that consists of
				Markup that describes the physical aspects or the poetic structure of a text.
				Alternatively, in the case of an editorial workflow with two or more users, a layer
				could identify a set of Markup nodes that is added by a particular user.
In TAGML we model containment as well as
					dominance.[2] To understand this feature, it is helpful to examine the distinction
				between total containment, partial containment, and dominance. Partial containment, or partial overlap, occurs when content is
				shared by two or more Markup nodes. Total
					containment occurs when all content in one Markup node is shared with
				another Markup node. In hierarchical terms, A fully contains B means
					A is an ancestor of B, etc.[3] Dominance presupposes total containment, but also requires meaningful semantics:Containment is a happenstance relationship between ranges while dominance
						is one that has a meaningful semantic. A page may happen to contain a stanza, but a poem dominates the stanzas that it contains. (Tennison 2008)

If we apply the preceding explication to the case of Folium 23r, Prometheus unbound, we can say that the manuscript page contains a number of
				lines, but also that the first two lines are dominated by a stanza. Accordingly, TAG
				assumes that dominance reflects a user’s interpretation of a text’s hierarchical
				structure(s), and is therefore applied intentionally.
Two basic ways are available to record dominance within an encoding: in the syntax
				of the document instance or in a schema. In the model of Extended Annotation Graphs
				(eAG), dominance is represented in the syntax, which means that the dominance needs
				to be recorded per individual item or element (e.g., A extends B or
					a > b [Barrellon et al. 2017]).
In TAGML dominance is also represented in the syntax, but in a different way.
				Rather than specifying the parent node of each node, nodes are grouped in a layer.
				This means that markup within a layer represents a dominance relationship, while
				layers that overlap represent containment. This is somewhat similar to the notation
				that XConcur uses to indicate that an element belongs to multiple hierarchies (Hilbert et al. 2005), but with an important distinction: in XConcur,
				complete subtrees are shared, while in TAGML indidivual markup nodes are shared
				between layers. This is more akin to how nodes are shared in Multi-Colored-Trees
				(MCT, Jagadish et al. 2004). Layers do not have to be defined at the
				beginning of the document, a new layer can be started at any point in the document,
				and Markup nodes may be part of multiple layers.

Order of textual content
In general, the text of a TAGML document is to be read in the order in which it is
				transcribed. Continuous textual content is normally fully
					ordered. The value of the data is represented by the character
				sequence, and the order of the characters is therefore an inalienable part of the
				meaning. Because of its fully ordered nature, the information is parsed and
				processed by traversing the characters in a manner determined by the writing system
				(from left to right, proceeding from top to bottom, in the Cather letter).
Textual variation constitutes partially ordered
				information. Consider the following example, also by Willa Cather:
Figure 2
[image:]
Excerpt from a letter from Willa Cather to Mariel Gere, source: letter ID
						0005, in the Willa Cather archive, edited
						by Andrew Jewell (20104-2018)

The word white is crossed out, so that the phrase can read either
					It will be quite a white until school begins or It will be
					quite a while until school begins.[4] There are, metaphorically speaking, two paths through the sequence of
				text characters, which diverge after the word a and reconverge before
				the word until. Cather wrote the word white before she
				wrote the word while, and that order is meaningful with respect to the
				genesis of the text, but synchronically the variation is simultaneous: there is an
				erroneous path through white and a correct path through
					while. The two words that alternate are mutually exclusive in
				terms of whether we choose the original or the corrected reading, and they are at
				the same distance from the beginning of the sentence, a phenomenon we describe,
				using terms from graph theory, by saying that they have the same rank. Items at the same rank are logically unordered,
				which means that although the textual content in general is fully ordered, at the
				points in the text where variation occurs the textual units (which we call Text
				nodes) at the same rank on different paths are unordered. Within each path, however,
				the textual information is again fully ordered.

Order of metadata
Although the combined set of information (i.e., text and markup) is at times
				ordered, unordered, or partially ordered (see also Order of textual content), depending on the kind of information that
				is expressed, existing text models and markup languages in wide use are typically
				well-suited to handle only specific types of information. For example, unordered
				data can be represented naturally in JSON objects, the contents of which are
				necessarily unordered. Meanwhile, the XML data model (and associated markup syntax)
				require that all elements be ordered (and that XML attributes be unordered, about
				which see below).
Unordered information is commonly found in
				metadata contexts. For example, a corpus of Willa Cather’s letters might include,
				perhaps in an ancillary document, biographical information about her correspondents,
				such as their first names, surnames, birth and death dates, addresses, etc. This
				type of information is often encoded in name:value pairs, as in a JSON object, and
				the order of the properties of a JSON object is, by definition, not informational.
					(An object is an unordered set of
					name/value pairs.
				Introducing JSON) In so-called data-centric XML,[5] a schema may specify that sibling elements that encode name/value pairs
				may appear in any order, and in this sense data-centric XML may seem similar to
				name:value pairs in JSON objects in not ascribing meaning to the order of
				properties. There is, however, an important difference. Two JSON objects that happen
				to store their name:value pairs in different orders (on disk or in memory) are
				informationally identical because the order of properties in a JSON object is
				undefined. But two XML documents that have the same properties in a different order
				are never informationally identical, that is, deep-equal(). A schema
				may license alternative orders, and a query may ignore order, but order is an
				inherent and inalienable part of XML element structure. For example, the use of
				TEI-XML elements to represent regularization (orig/reg),
				correction (sic/corr), or abbreviation
					(abbr/expan) is ordered in the sense that two XML
				documents that differ in the order of an orig/reg choice
				are different XML documents, and that difference can be ignored only at the
				application level. (Bleeker et al. 2018a) XML attributes are unordered,
				but the type of values they can represent is limited because attributes cannot
				contain markup, which means that they can represent only flat, atomic content. This
				means that at the level of the model and syntax, XML has no way of representing
				unordered content that is more complex than atomic values.

Intermediate conclusion
Many of the features of TAGML discussed above are adopted or adapted from other
				markup languages, including LMNL, TexMECS, XML, and FtanML. Wherever possible, our
				goal has been to synthesize effective solutions originally developed elsewhere, and
				we regard their relative familiarity to the markup community as a virtue. Combined
				with the affordances of TAG’s hypergraph model, TAGML seeks to realize the full
				potential of markup for text modeling.
The support for ordered, partially ordered, and unordered information results in
				an inclusive textual model that not only broadens our understanding of what text
				really is, but also expands our means of expressing it and improves our means of
				processing it. These features of TAGML offer users the means to express their
				interpretation of a text’s structure, its whitespace, and the various data types
				used in the model. As a result, a TAG file contains a refined and explicit model of
				text.

Syntax
Encoding text
A TAGML document consist of Unicode characters (encoded as UTF-8) and adheres
					to the syntax defined in this description. We assume that encoding a text is
					equivalent to creating a plain text file.
In a TAGML document, the following characters may need to be escaped using the
					escape character \ :
[-> \[
< -> \<
| -> \|
! -> \!
" -> \"
' -> \'
\ -> \\
However, these 7 specific characters do not need to be escaped every time they
					occur. In regular text we only need to escape the two characters that start a
					markupStartTag, markupEndTag or markupMilestone, plus the escape character
					itself.
< -> \<
[-> \[
\ -> \\
For text inside textVariation tags we also have to escape the variation
					divider character |.
< -> \<
[-> \[
\ -> \\
| -> \|
For text inside a comment we only have to escape the character that starts the
					comment ending tag !], plus the escape character itself.
! -> \!
\ -> \\								
Single or double quotation marks may be used interchangeably where a
					quote-delimited value is required, with the stipulation that the starting and
					ending delimiter must be the same (both single or both double). Where the
					delimiter character must also be used within the string, it can be escaped, as
					well:
' -> \'
" -> \"
\ -> \\

Whitespace
In TAGML Whitespace is insignificant unless
					specified otherwise. The advantages of making whitespace insignificant by
					default is similar to the reason why TAG takes dominance to be intentional and
					semantically relevant. When all whitespace is considered significant, it may be
					impossible to distinguish its meaning: is the whitespace merely the result of
					pretty-print formatting settings, or is it in the original document? The
					principle that whitespace is not significant in TAG by default allows users to
					specify the function of whitespace. TAGML thus prevents the accidental
					introduction of unwanted significant whitespace, which means that TAG files can
					be reformatted and pretty-printed without changing the meaning of the document
					and without introducing processing errors.

Adding markup

					[line>The rain in Spain falls mainly on the plain.<line]

				
A tag (lowercase) is the entity used to indicate markup boundaries. For every
					start-tag [markup> there should be a corresponding end-tag
						<markup], and vice versa. The example below will raise an
					error because of a missing end-tag:
					[line>The rain

Similarly, a missing start-tag produces an error:
					on the plain.<line]

In the example below, the line markup is never ended and the
						paragraph markup is never started:
					[line>The Spanish rain.<paragraph]

In principle, each tag needs to have a name,
					so[>The Spanish rain.<]

results in an error, since start-tags and end-tags without a name are not
					allowed. However, this constraint applies only to tags in the main text, because
						[> and <] are allowed in annotations as
					delimiters of rich text.
Markup can be assigned to one or more layers by adding a layer indicator in
					the start-tag and end-tags after the | symbol. If the layer
					indicator is used for the first time in the file it needs to be preceded by a
						+ symbol in the start tag.

					[line|+A>Cookie Monster likes cookies.<line|A]

				
In this example the markup line is part of a new layer called
						A.

Adding annotations

					[line month_1='November' month_2=11>In the eleventh month...<line]

				
Markup has a name and zero or more annotations on the start-tag. In the example above,
						line is the name, and month_1 and
						month_2 are the names of the annotations. Every annotation name
					on a markup start-tag must be unique, and the following example raises an error
					because the annotation type is repeated:
[animal type="cat" type="feline">Puss in Boots<animal]

Milestones, placeholders, empty markup elements
TAGML supports empty markup elements with a placeholder function like
					milestones:
					[img src='http://example.com/img.png']

Comments
Comments can appear anywhere in a TAG document except within a markup
					tags:
[l>When in the course of human events,<l]
[! The spelling and punctuation reflects the original.!]
[l>it becomes necessary...<l]
Comments cannot be nested in TAGML. Comments can contain markup.

Namespaces
Namespaces can be used to refer to external vocabularies. Similar to XML,
					markup elements are given a unique identifier that refers to the
					namespace.
[!ns p http://tag.com/poetry]
...
[p:poem>Roses are red,<p:poem]

Data typing
In XML, all annotation values are by default (that is, in the absence of a
					schema specification) of type xsd:untypedAtomic, which in practical
					terms means that they behave like strings. If the value of an XML attribute type
						@date is, in fact, a date, this needs to be specified in the
					schema. In line with FtanML (Kay 2013) and JSON, TAGML
					therefore supports simple data typing, so that
					users can make explicit the type of the annotation value (e.g., a List, a
					Number, a character String, and so on). More detailed or complex data types can
					be expressed in the TAG schema, where users can record that a specific
					annotation value contains text, markup, and/or annotations. For example, in the
					TAG schema a stringAnnotationValue may be typed as
						personName, or a numberAnnotationValue may be
					typed as identifier. TAGML thus integrates useful features of JSON,
					FtanML, and XML.
[poem type="limerick"
 author='John'
 year=1818
 rhymes=true
 keywords=["unfinished","censored"]>There once was a vicar from Slough...<poem]
As mentioned in Philosophy-and-Definitions, TAG annotation values can
					include both text characters and markup, (this is called the rich text content
					datatype) and annotations may also have their own annotations (this is called
					the nested annotation data type)
Annotations can be added to the start-tag of any markup, and annotation values
					can be of any of the following data types:[6]
						string:
								"string" or 'string' (bracketed by
									" or ')

	rich text content: |>rich text
									[b>content<b]<| (bracketed by |> and
									<|)

	boolean: true or false (not
								bracketed)

	number: 3.14 (not bracketed)

	(nested) annotation: {x=1 y=2}
								(bracketed by { and })

	list of these data types: ['Huey', 'Dewey',
									'Louie'](bracketed by [and
])

By using an annotation data type as value for an annotation, TAG supports
					nested (hierarchical) annotations:
[origin
	location={
		position={x=1 y=2}
		countrycode='nl'
	}>Amsterdam<origin]
In the example above, whitespace is used to make the code snippet more
					readable, but because in TAGML whitespace is insignificant, this has no
					implications for processing.
When an annotation is of the data type list, all values within
					the List have to be of the same type: a list of Strings, a list of Numbers, etc.
					Mixed typing is not allowed. The following markup is therefore incorrect:
					[letter date=["March", 12, "Twothousandeightteen"]>Dear Maurice, ...<letter]

					Instead, the list should be replaced with a nested annotation:

					[letter date={month="March", year=2018, day=12}>Dear Maurice, ...<letter]

				

Encoding non-linearity
In some manuscripts there may be different paths through the text, for example
					when a deletion/addition has been encoded as a pair:
					[q>To be, or [del>to be not<del][add>not to be<add].<q]
To
					indicate that the del and add markup pair is where the
					text diverges, with the del part constituting one path, and the
						add part constituting the other, these markup elements can be
					grouped by enclosing them in textvariation tags <|
					and |>, with | to separate the diverging markups:
					[q>To be, or <|[del>to be not<del]|[add>not to be<add]|>!<q]
In
					case of a solitary del without a corresponding add,
					mark the markup as optional to indicate there are two
					paths: one with the text marked up by del, and
					one without (grouping is not necessary in this
					case):[q>To be, or [?del>perchance<?del] not to be?<q]

To enable addressability of the different branches when querying it is
					required to tag each branch with markup. In cases of non-linearity like open
					variants textual content is located at the same position, so it is not possible
					to speak of the third word. The following example is thus
					incorrect. The branches "to be not" and "not to be" in the text do not have tags
					surrounding them.

					[q>To be, or <|to be not|not to be|>.<q]

				

Rich text annotations
As mentioned previously, Rich text content in annotations constitutes a new
					inner document. Therefore, the contents of Rich text annotations are not part of
					the main text. This is particularly useful for the encoding of images, glosses,
					or marginalia:
[text>Hello, my name is [gloss addition=[>that’s [qualifier>Mrs.<qualifier] to you<]>Doubtfire. How do you do?<gloss]<text]
In
					contrast to XML, TAG applications will not render Rich text annotations (e.g.,
					glosses or notes) in the main text by default. If users prefer to see the text
					of glosses as part of the main text, they can specify this in stylesheets or
					transformation files.

Overlapping and self-overlapping markup
Unlike in XML, markup can overlap in TAGML:[7]
[line>[a|+A>Cookie Monster [b|+B>likes<a|A] cookies.<b|B]<line]
Markup a overlaps with markup b. Although the
						b markup starts before the a markup ends, it is
					not required to end before a.
Markup of the same name can overlap by adding different layer suffixes to the markup name (for both the starting
					and the ending tags):
[line>[a|+A1>Cookie Monster [a|+A2>likes<a|A1] cookies.<a|A2]<line]
In the case of self-overlap we can distinguish between partial overlap and
					full overlap. By default, an end-tag belongs to the last start-tag with the same
					name, so that the following sentence is a simple case of full
					containment:
[phrase>[phrase>Oscar the Grouch is<phrase] a trash can-dwelling creature.<phrase]
Partial overlap is expressed by placing layer suffixes on the corresponding
					start- and end-tags:
[phrase|+P1>[phrase|+P2>Rosita is<phrase|P1] a bilingual monster.<phrase|P2]
Suffixes on markup should be used only when strictly necessary, as in the
					following example of partial overlap:
[text>[phrase|+P1>[phrase|+P2>Music is<phrase|P1] part of<phrase|P2] being human.<text]

Discontinuity
A well-known example of discontinuity is the tagging of citations or quotes in
					a text:
[q>and what is the use of a book,<-q] thought Alice[+q>without pictures or conversation?<q]
In this text, the fact that the two sets of q tags define one
					interrupted quote is indicated by suspend/resume indicators before the markup
					name: a - in the first end-tag, and a + in the
					following start-tag, respectively.
There are several constraints that apply to the use of pause and resume tags.
					For one, there must be text between a pause and a resume tag, so the following
					example is not
					allowed:[markup>Cookie <-markup][+markup> Monster<markup]

The second constraint is that between pause and resume tags of markup in a
					layer no opening or closing tags within that same layer are allowed. In the following example the
						q markup belongs to layer A and is paused after
					one word. In between the q pause and resume tag there are
						w tags that also belong to layer A.

					[q|+A> Cookie <-q|A] Monster [w|A>likes<w|A] chocolate [+q|A>cookies<q|A]

				
This is not allowed, because it would break the hierarchy within the layer
						A. The correct way to encode a situation like this is to put
					the w markup in its own
					layer.[q|+A> Cookie <-q|A] Monster [w|+B>likes<w|B] chocolate [+q|A>cookies<q|A]

The last constraint is that if a markup node occurs in multiple layers, a
					pause and resume tag must be applied to all the layers at the same time. In the
					following incorrect example the markup q is part of two layers
						A and B. It is paused in both layers, but resumed
					one layer at a time.

					[q|+A, +B> Cookie <-q|A, B] Monster [+q|A> likes [+q|B> cookies <q|A,B]

				

Linking elements
In XML, the @xml:id attribute is commonly used to identify an
					element uniquely within its document. The @xml:id value can then be
					used as the value of pointer attributes on other elements as a way of linking to
					the first element. For example:
<xml>
 <meta>
 <persons>
 <person xml:id="huyg0001">
 <name>Constantijn Huygens</name>

 </person>
 </persons>
 </meta>
 <text>
 <title>De Zee-Straet</title> door <author pers="#huyg0001">Constantijn Huygens</author>
 </text>
</xml>
In TAGML, there is a special annotation :id to uniquely identify
					an element (markup or annotation), and a special annotation data type whose
					value is the :id of another element. In TAGML, the example can be
					expressed as
					follows:[text meta={ persons=[{:id=huyg0001 name='Constantijn Huygens'}] }>[title>De Zee-Straet<title] door [author pers->huyg0001>Constantijn Huygens<author] <text]

The TAGML parser will give a warning when an :id is never
					referred to, or when an annotation refers to a non-existing :id.[8]

Combining discontinuity and non-linearity
The rule that every pause tag should have a resume tag, and that every resume
					tag should have a pause tag can be problematic when discontinuity is combined
					with non-linearity:
[q>and what is the use of a <|[del>book,<-q]<del]| [add>thought
Alice<add]|> [+q>without pictures or conversation?<q]
In this example of incorrect use of the pause/resume tags, the pause tag
						<-q] only occurs in one path (the [del> path),
					so that the resume tag [+q> does not have a corresponding tag when
					the [add> path is traversed. We can solve this problem by adding
					either a more flexible constraint or a less flexible constraint. A more flexible
					constraint would require that, at the point of convergence, all paths must be in
					the same suspend-and-resume state. A less flexible constraint
					would be that, at the point of convergence, all paths need to be in the same
					state as before the divergence. TAGML implements the less flexible
					constraint.

Combining overlap and non-linearity
Consider the following, incorrect transcription:
[text>It is a truth universally acknowledged that every <|[add>young [b>woman<add]|[del>rich<del]|> man <b] is in need of a maid.<text]
The [b> markup is started in one path through the text (the
						[add> path), but not in the other path (the [del>
					path). Consequently, the end-tag <b] in the main text does not
					have a corresponding end-tag in the [del> path through the text.
					Again, there are two ways to solve this issue by adding a constraint, one more
					flexible and one less so. The more flexible constraint is that at the point of
					convergence all paths through the text should have the same set of tags
					started.
[text>It is a truth universally acknowledged that every <|[add>young [b>woman<add]<b]|[b>[del>rich<del]|> man <b] is in need of a maid.<text]
The less flexible version is that before convergence all paths should be in
					the same state as the moment of divergence:
[text>It is a truth universally acknowledged that every <|[add>young [b>woman<add]<b]|[b>[del>rich<del]<b]|> [b>man<b] is in need of a maid.<text]
In the first of the two preceding examples, the set of start-tags at the point
					of convergence is: [text> and [b>. The more flexible
					constraint works for both transcriptions. The second example illustrates the
					stricter constraint. TAGML implements the less flexible contraints. This means
					that all markup opened before divergence needs to remain open and cannot be
					closed in a branch. All markup started within one branch needs to be closed
					before the convergence.

Main document, inner documents, and discontinuity
Annotation values are not related to the rest of document, which means that,
					as mentioned above, Rich text annotations are not part of the content of the
					main document, and function as documents themselves. To distinguish them from
					the main document we call them inner documents.
					Discontinuity (pause-and-resume tags) is not permitted to cross document
					boundaries:
[text> [q>Hello my name is [gloss addition=[>that’s<-q] [qualifier>mrs.<qualifier] to you<]>
Doubtfire, [+q>how do you do?<q]<gloss]<text]
The transcription above produces an error, because the pause tag
						<-q] is located inside the Rich text of the annotation,
					which means that the resume tag [+q> located in the main text does
					not have a corresponding pause tag.
:id values defined on markup tags are global, and are therefore
					in scope even across inner document boundaries.

Grammar
The syntax of TAGML is specified by the formal grammar listed below:

				document ::= documentHeader? richText*

	documentHeader ::= namespaceDefinition*

	namespaceDefinition ::= '[!ns ' namespaceIdentifier ' ' namespaceURI
							']'

	namespaceIdentifier ::= nameCharacter+

	richText ::= (textEnrichment | text)*

	textEnrichment ::= (markupStartTag | markupEndTag | markupMilestone
							| textVariation | comment)*

	text ::= textCharacter*

	textCharacter ::= [^[<\] | '\[' | '\<' | '\\'

	markupStartTag ::= '[' (optional | resume)? tagIdentifier (' '
							annotation)* '>'

	markupEndTag ::= '<' (optional | suspend)? tagIdentifier
							']'

	markupMilestone ::= '[' tagIdentifier (' ' annotation)*
						']'

	textVariation ::= '<|' richTextInTextVariation ('|'
							richTextInTextVariation)+ '|>'

	richTextInTextVariation ::= (textEnrichment | textInTextVariation
)*

	textInTextVariation ::= textInTextVariationCharacter*

	textInTextVariationCharacter ::= [^[<|\] | '\[' | '\<' | '\|'
							| '\\'

	comment ::= '[!' commentCharacter* '!]'

	commentCharacter ::= [^!\] | '\!' | '\\'

	optional ::= '?'

	resume ::= '+'

	suspend ::= '-'

	tagIdentifier ::= qualifiedMarkupName layerSuffix?

	qualifiedMarkupName ::= (namespaceIdentifier ':')?
							localMarkupName

	localMarkupName ::= nameCharacter+

	layerSuffix ::= '|' layerInfo (',' layerInfo)*

	layerInfo ::= (parentLayerId? '+')? layerId

	parentLayerId ::= layerId

	layerId ::= nameCharacter+

	annotation ::= annotationName '=' annotationValue

	annotationName ::= nameCharacter+

	annotationValue ::= stringValue | numberValue | booleanValue |
							richTextValue | listValue | objectValue

	stringValue ::= '"' doubleQuotedStringValueCharacter* '"' | "'"
							singleQuotedStringValueCharacter* "'"

	singleQuotedStringValueCharacter ::= [^'\] | "\'" |
						'\\'

	doubleQuotedStringValueCharacter ::= [^"\] | '\"' |
						'\\'

	numberValue ::= '-'? digits ('.' digits)? ([eE] [+-]?
							digits)?

	booleanValue ::= 'true' | 'false'

	richTextValue ::= '[>' richText '<]'

	listValue ::= '[' annotationValue (',' ' '? annotationValue)*
							']'

	objectValue ::= '{' annotation+ '}'

	digits ::= [0-9]+

	nameCharacter ::= [a-zA-Z] | digits | '_'

		
Each grammar rule is expressed as a line that reads lefthand ::=
				righthand, where the lefthand consists of a template name,
			starting with document. The righthand of a grammar rule
			consists of characters or references to other templates. The righthand
			incorporates the same repetition indicators as regular
			expression syntax and Relax NG compact syntax. Specifically, ? means that
			the preceding pattern is optional (occurs zero or one time), * means that
			the preceding pattern is optional and repeatable (occurs zero or more times), and
				+ means that the preceding pattern is required and repeatable (occurs
			one or more times). The absence of a repetition indicator means that the pattern is
			required and not repeatable (occurs exactly once). For example:
	Rule 1 specifies that a TAGML document consists of an optional
						documentHeader followed by zero or more instances of
						richText. The fact that the documentHeader is
					optional is specified by the ? after the template name. The fact
					that richText appears zero or more times after the document header
					is specified by the *.

	In the same way, Rule 2 states that the documentHeader consists
					of zero or more namespace definitions (that is, zero or more instances of
					whatever is represented by the namespaceDefinition
					template).

	Rule 3 introduces the ' character to the grammar. Everything
					between paired quotes (a pair of single quotes ' or a pair of
					double quotes ") should appear in literal form in a file that
					conforms to the grammar. Rule 3 states that a namespace definition consists of
					the four-character string [!ns (the fourth character is a space
					character), followed by an identifier for the namespace, followed by a space
					character, followed by a namespace URI, followed by the one-character string
].

	In Rule 4 the + symbol, mentioned above, appears for the first
					time in this grammar, signifying that the preceding pattern is required and
					repeatable (occurs one or more times). This means that a
						namespaceIdentifier consists of one or more
						nameCharacters (defined in Rule 29).

	Rules 5 and 6 introduce the reserved symbols (,),
					and |. (and) define a group. The
						| symbol means or; for example, a |
						b means a or b. Hence, Rule
					6 states that textEnrichtment consists of a choice among whatever
					is represented by the templates markupStartTag,
						markupEndTag, markupMilestone,
						textVariation, and comment, and the choice (the
					same choice or a different choice) may be made zero or more times.

	In Rules 8, 39, 40 the special symbols [,], and
						- are introduced. [and] are used to
					delimit character classes, similarly to their
					use in regular expression syntax. In Rule 8 the [and
] symbols are used without the - symbol, but with
					the new ^ symbol. ^ at the beginning of a character
					class, as in regular expression syntax, means negation. Here the
						textCharacter character class in TAGML is defined as every
					character except [, <, and \. Rule 39
					states that a digit in TAGML consists of a Unicode character in the range of
						0 through 9 and that digits is
					defined as one or more digit characters. The same pattern is used in Rule 40 to
					specify that a name character is either a lowercase letter between
						a and z or an uppercase letter between
						A and Z.

	Rule 9 makes use of grouping functionally to specify that a
						markupStartTag consists of a literal square bracket followed by
					an optional optional or resume character followed by a
					required tagIdentifier followed by zero or more
						annotations. Every annotation is prefixed by a
					space character.

	Rule 10 states that a markupEndTag starts with a left angle
					bracket, followed by an optional optional or suspend,
					followed by a tagIdentifier, and then a square bracket.

Workflow
This section describes the workflow of dealing with a network of information in a
			step-by-step manner. As noted, documents with TAG markup (that is, with multiple
			overlapping markup layers) are, at least potentially, too complex to see and edit in
			their entirety. In order for the (end) user to work effectively with TAG documents in
			Alexandria, we therefore propose a workflow comparable to the Git source code management
			and repository system.
The basic concept is as follows: the complete TAG model for each document (which we
			refer to as the TAGML master file) is stored in a
			directory that is hidden from the end user. Just as in Git, users can check out a version of the TAGML file containing a selected
			set of markup layers. They can subsequently edit this version, and then commit the file to the repository, where it is merged with
			the master.
Throughout this section we will predominantly use examples from the text of the
			manuscripts of Prometheus unbound by Percy Bysshe Shelley. To be
			sure, literary manuscripts and comparable historical documents provide a grateful,
			inexhaustible source of complex textual phenomena that continue to challenge the fields
			of digital text modeling and computational philology. However, as noted above, TAG
			offers a model of text whose potential uses surpass these, admittedly niche, fields and
			can be extended to practically any type of text.
Folium 23r, Prometheus unbound
[image:]
Digital facsimile of f.23r from Prometheus
						unbound (source:
						http://shelleygodwinarchive.org/sc/oxford/prometheus_unbound/act/i/#/p9)
				

Interacting with Alexandria
Working with multiple views in a Git-like manner requires a number of tools,
				including: 	A tool to init the workspace.

	A tool to register a document with a
							master file.

	A tool to define a view on a
							document, determining which tags should be visible in the document and
							which are to be filtered out. This may be positive or negative
							filtering.

	A tool to check out a view of a
							document. The first time an identifier (name) and a view definition are
							specified, a file instantiating that view is created in the user’s
							workspace.

	A tool to check in an edited view of
							a document. After editing a view, the user needs to check in the view to
							commit the changes.

	A tool to diff markup files, that is,
							to check the edits the user made and show a comparison between the
							original and the edited view.

In practice, the workflow for interacting with a TAG document using the Alexandria TAG repository may look as follows:[9]
	
						$ alexandria init

					

	
						$ alexandria register-document --name <name document> --file <filename tagml master file>

					

	
						$ alexandria define-view --name <name view> --file <view definition as json file>

					

	
						$ alexandria checkout --document <name document> --view <name view>

					

	The user edits the view on <name document> in an editor of their
						choice.

	$ alexandria diff <filename view>

						(optionally, the user diffs the edited view with the master file)

	$ alexandria commit <filename view>

						(The user commits the view on <name document> to the repository, an
						action that merges the edit view with the TAG master <name
						document>.)

	The edits are now committed to TAG master.

This workflow is similar to the one described for concurrent XML in Iacob and Dekhtyar 2003 and Dekhtyar and Iacob 2005; see also their Iacob and Dekhtyar 2005. Concurrent XML, however, refers to multiple markup
				layers over a common text layer, while the TAG workflow permits editing the textual
				content of a view, and not only the markup.
In principle, the user never interacts directly with the master file TAG. In the
				process of checking out a version of the master file, the user specifies which
				layers of markup to expose and which to conceal. The TAG document with the markup
				layers that they check out is referred to as a
				view. A view thus represents one or more layers of markup. It is a part
				of the entire TAG hypergraph in the repository, rendered in a human-readable
				format.

Views and layers
Because the concepts of view and layer are central to this workflow, it is helpful to
				revisit the difference between a layer and a view.
As described in Layers, a layer is a grouped set of markup and
				annotations. A view is a selection from among all available layers. Turning off
				(that is, not checking out) certain markup does not mean that the text to which the
				markup points is ignored, but it is then possible to choose only certain paths
				(e.g., in case of text with and without deletions and additions or with diverging
				paths for original and regularized versions of the same textual moments).
The reasons for grouping a set of markup and annotations may vary. In the
				paragraphs below we identify three scenarios: first, a layer as representation of a
				research perspective on text; second, a layer identifying user edits; third, a layer
				as a resolution to local overlap. The textual fragment from Prometheus
					Unbound is used as illustration.
For reasons of clarity our example sentences are short and simple, but in practice
				the master TAG document can be as large as needed, and may thus become highly
				complex. Here, we focus on the speech of the second voice from the Springs, which
				runs over two folium pages, as Figure 4 and Figure 5 show.
Figure 4
[image:]
Selection of MS-e1-21v (source: Shelley-Godwin Archive, http://shelleygodwinarchive.org/sc/oxford/prometheus_unbound/act/i/#/p7).

Figure 5
[image:]
Selection of MS-e1-22v (source: Shelley-Godwin Archive, http://shelleygodwinarchive.org/sc/oxford/prometheus_unbound/act/i/#/p8).

Layers as research perspective
Let us assume that User A (Albert) wants to focus on the poetic
					structure of this text, while User B (Bertina) is interested in
					the text as it interacts with the materiality of the manuscript. In other words,
					Albert and Bertina have different textual perspectives, informed by their
					research interests.
Albert creates a first TAGML transcription:
[poem>
[sp>
[speaker>2d. Voice from the Mountains<speaker]
[stanza rhyme="abac">
[lg type="quatrain">
[l>Thunderbolts had parched our [w rhyme="a">water<w]<l]
[l>We had been stained with bitter [w rhyme="b">blood<w]<l]
[l>And had ran mute ’mid shrieks of [w rhyme="a">slaugter<w]<l]
[l>Thro’ a city & a [w rhyme="c">solitude<w]<l]
<lg]
<sp]
<stanza]
<poem]
Albert subsequently prepares the Alexandria repository
					and uploads his transcription, which he saves under
						MS-e1-21v-22v.tagml:
					1. albert$ alexandria init
2. albert$ alexandria register-document --file MS-e1-21v-22v.tagml --name MS-e1-21v-22v

MS-e1-21v-22v.tagml is the TAG master file. Bertina now wants to
					work on the same fragment, but as the poetic features of the text are not
					relevant for her research, she defines a view that contains only a selection of
					the markup in the master file: the elements [l><l] and
						[speaker><speaker].[10] Bertina subsequently checks out the view.
					3. bertina$ alexandria define-view --name material-view --file material-view.json
4. bertina$ alexandria checkout --view material-view --document MS-e1-21v-22v

This will export the view of document MS-e1-21v-22v using view
					definition material-view to a new TAG document
						MS-e1-21v-22v-material-view.tagml, which contains one layer of
					markup:
[l>2d. Voice from the Springs<l]
[l>Thunderbolts had parched our water<l]
[l>We had been stained with bitter blood<l]
[l>And had ran mute 'mid shrieks of slaugter<l]
[l>Thro’ a city & a solitude<l]
Bertina edits this view, using the structure indicated by Albert, but she
					changes the [l><l] and [speaker><speaker]
					elements to [line><line] elements, and adds further information
					about the physical features of the manuscript. She creates the following TAGML
					transcription:
[page n="21v">
[p>
[line rend="indent2">2d. Voice from the Springs<line]
[line>Thunderbolts had parched our water<line]
[line rend="indent2">We had been stained with bitter blood<line]
<page]
[page n="22v">
[line>And had ran mute <|[del>thro<del]|[add>'mid<add]|> shrieks of <|[sic>slaugter<sic]|[corr>slaughter<corr]|> laughter<line]
[line rend="indent2">Thro' a city & a solitude!<line]
<p]
<page]
After editing MS-e1-21v-22v-material-view.tagml, Bertina commits
					her view and it is merged with the master TAG document, which now contains
					several markup layers representing a poetic and a material view on the text. We
					can use layers to identify which Markup elements belong to which perspective.
					The first sentence of the TAGML master file would then look as follows:
[line rend="indent2"|material>[speaker|poetic>2d. Voice from the Springs<speaker|poetic]<line|material]

Layers as user identification
In addition to indicating perspectives, layers can also be used to identify
					(sets of) user edits. It is worthwhile to take a closer look at how a view is
					merged with the master file. Technically speaking, the process of merging the
					edited view with the entire TAG document model is supported through an extended
					diff algorithm that recognizes markup as well as text. Hence the input of the
					diff is two streams, of the original view and of the edited view, each
					containing markup tokens and text tokens.
Besides detecting edit operations on textual content, the diff algorithm of
						Alexandria is able to detect joins and
					splits for markup elements. This feature ensures that TAG/Alexandria can process both textual and structural edits. We
					define five edit operations on text and markup: deletion, addition, replacement, split,
					and join.
Let us reconsider the editorial workflow of Albert and Bertina outlined above.
					In this scenario, there are two possibilities: either Bertina’s changes
					regarding to the [line><line] element are considered as
					replacing Albert’s [l><l] and [speaker><speaker]
					elements, or they are considered as additional markup.
The split operation is illustrated by the
					following example (a simplified transcript of the text above), in which user C
						(Claire) has transcribed the text as one sentence and user D
						(Dirk) as two sentences:
Figure 6
[s>We had been stained with bitter blood And had ran mute 'mid shrieks of slaughter<s]
Claire’s transcription

Figure 7
[s>We had been stained with bitter blood<s] [s>And had ran mute 'mid shrieks of slaughter<s]
Dirk’s transcription

Both sentences start with start-tag [s> and end with end-tag
						<s], so a simple diff algorithm would consider them a match
					and the two tags <s] and [s> in the middle of the
					sentence as an addition. However, a more accurate representation of the
					situation from a markup perspective would be for the algorithm to detect that
					the one [s><s] element in Claire’s transcription is split into
					two in Dirk’s transcription. In fact, because the markup start-tags know with
					which markup end-tags they are paired, the diff in Alexandria is able to recognize this situation as a split, and
					to label the markup edits accordingly.
Using layers to distinguish between Claire’s markup and Dirk’s markup edits,
					we would arrive at the following TAGML master file:
[s|claire>
 [s|dirk>We had been stained with bitter blood<s|dirk]
 [s|dirk>And had ran mute 'mid shrieks of slaughter<s|dirk]
<s|claire]

Layers as solution to local overlap
Last but certainly not least, layers can be used to address overlap issues.
					Section Layers addresses the technical and conceptual aspects
					of this functionality. In short, markup within a layer represents a dominance
					relationship, while layers that overlap represent containment. A new layer can
					be started at any point in the document. Markup nodes can be part of multiple
					layers.
Let us take a look at a simple case of overlap between a logical structure and
					a document structure of Claire’s and Bertina’s respective transcriptions:
Figure 8
[s>We had been stained with bitter blood And had ran mute 'mid shrieks of slaughter<s]
Claire’s linguistic transcription

Figure 9
[page>
	[line>We had been stained with bitter blood<line]
<page]
[page>
	[line>And had ran mute 'mid shrieks of <|[sic>slaugter<sic]|[corr>slaughter<corr]|><line]
<page]
Bertina’s material transcription
Merging these document would cause a conflict due to the overlapping
							structures. To solve these, a material and a
								linguistic layer are created.

Figure 10
[page|material>
	[s|linguistic>[line|material>We had been stained with bitter blood<line|material]
<page|material]
[page|material>
	[line|material>And had ran mute 'mid shrieks of <|[sic|material>slaugter<sic|material]|[corr|material>slaughter<corr|material]|><line|material]<s|linguistic]
<page|material]
TAGML master file of Claire’s and Bertina’s transcriptions

Within each layer the markup elements have a relationship of dominance, but
					between the layers is a relationship of containment. For instance, the
						[page> element contains the [s> element, but does
					not dominate it. Although in this simple example the layers start at the
					beginning of the transcription, a new layer can be started at any point in the
					document and markup nodes can be part of multiple layers.

Discussion
Taken together, the features of TAG and TAGML offer users a powerful model for
			expressing their interpretation of the structural properties of text and document,
			resulting in a TAG document that reflects a rich, nuanced, and explicit model of text.
			In order to fully grasp the implications of TAGML, it is important to consider that all
			forms of text modeling involve at least three components:
	A source text, e.g., a facsimile of a historical manuscript, a document from
					the publishing industry, a newspaper article, a judicial text, etc.

	A transcription of the source text

	A model of the source text (in TAG, the hypergraph document)

These components (source, transcription, and model) are shared by many methods of text
			modeling, and the significance and value of TAG lies in the interaction of and the
			relationships among these components. The TAGML markup language gives users the
			opportunity to record and model in a transcription a wide variety of textual aspects
			from and information about the source text; the hypergraph model as implemented
				in Alexandria processes and stores the TAG
			documents; and, furthermore, the Alexandria
			implementation of TAG allows the user community to interact intuitively with the texts
			by using views. The following paragraphs summarize three main features of TAGML as
			described in this article: the nature of TAGML files and how they affect text modeling
			approaches; the separation of responsibilities between syntax and schema; and, finally,
			implications for the workflow of modeling and editing textual objects.
TAGML files
TAGML documents are inherently multi-layered and non-linear, and can best be
				represented by combining ordered and unordered information. This conceptual
				understanding of text is reflected in the syntax of TAGML: textual features such as
				non-linearity and discontinuity can easily be expressed; annotations can be nested
				within other annotations; annotation values can contain both text and markup (cf.
					Rich text annotations). Together with the data typing feature of TAGML,
				the recursivity of Rich text allows for explicit modeling of many textual features.
				Layers remove boundaries by allowing for overlap and the modeling of dominance and
				containment without the need for a schema, all of which facilitates the mapping of
				semantic information to the Text nodes in the hypergraph model.
Complete semantic mapping and querying would also require TAG to map semantic
				information to the properties of nested annotations. JSON-LD, for instance, provides
				a notation for linking the properties of JSON objects to ontologies. A similar
				feature will be part of the future development of TAG and TAGML.

Syntax and schema
Designing a new markup language means deciding which functionality to put into the
				syntax which responsibilities to put into the schema. Initially we tried to include
				only non-linear aspects of the text, such as containment, into the syntax, while
				making information about dominance explicit in the schema. When the syntax allows
				for arbitrary overlap, however, it is no longer possible for a parser to
				consistently extract a hierarchical structure from the data, which means that many
				use cases would require a schema. In the end we decided on the use of the layer
				mechanism in the syntax to allow the user to explicitly model containment and
				dominance relations without the need for a schema, while allowing for overlap. The
				syntax contains basic data types, such as String, Lists and nested annotations. The
				schema is used to make explicit any information about complex data types, such as
				persons, dates, and significant whitespace.
TAGML agrees in certain respects with other markup languages, much as the TAG
				model corresponds to some extent to other text models. Many textual aspects
				discussed in this paper can be modeled in, for instance, an XML-transcription with
				an associated schema and application-level rules. TAGML, however, moves much of that
				responsibility to the syntax by having explict encoding mechanisms for containment,
				dominance, discontinuity, non-linearity, and overlap, with the goal of removing
				ambiguity from the application level. Accordingly, TAGML brings together and expands
				on qualities of existing formats, and creates an inclusive and definite framework
				for modeling textual and structural information.

Users, views, and Alexandria
The TAG and TAGML division of labor requires the active engagement of the user,
				who needs to think in great detail about the informational structures and elements
				in the text, and about how these are best represented so that the modeling of a
				textual object conforms to the developer’s conceptual understanding of it. In
				principle, we regard this increased textual consciousness as a positive feature. In
				a similar way, the TAG repository Alexandria
				compels its users to make explicit their views on text.
Alexandria is designed to accommodate complex and
				information-rich TAG documents, while at the same time exposing an intuitive and
				straightforward method of interacting with that information. While understanding
				text as a graph may not be straightforward, especially for those who are accustomed
				to modeling text as a mono-hierarchical ordered tree (that is, in XML), the idea of
				adding layers of information to a text appears to be intuitive. Alexandria, then, accommodates a theoretically unlimited
				number of informational layers on a text, using views to allow users to query this
				information and to add and edit new layers.
The editorial workflow of Alexandria has a number of
				implications, in particular with regard to the diff and the merge functionalities
				and the command line tool. The first of these involves Alexandria’s diff and merge functionalities. In the Workflow we clarify our decision to keep both layers of markup,
				instead of considering the edit operations in the markup layer (e.g., from
					l to line) as replacements (a deletion of the
					l layer and an addition of the line layer). We reason
				that it is undesirable to have Bertina’s changes overwrite Albert’s markup, and
				propose to store both layers of markup in different layers that identify the two users.[11]
An open question, however, is whether changes in the textual content should be
				treated in the same way. For example, if Bertina were to alter some text characters,
				should the master file adopt her changes as replacements for Albert’s, or as
				alternatives? The first option implies that the text from Albert’s view will be
				lost, while the second option implies that the Albert’s text and Bertina’s text will
				be stored in the TAG master file as textual variation. Since both options are
				supported by Alexandria, the question is
				philosophical, rather than technical.
As for our decision to have users work on the command line instead of providing a
				Graphical User Interface to interact with Alexandria: we
				recognize the wide variety of editor software that exists within text editing
				communities, as well as the fact that many users work with a preferred editor whose
				interface they are familiar with and appreciate. For that reason, our goal for
				interacting editorially with TAG documents has been not to develop a custom TAG
				editor, but to ensure that TAG works with any editor. This allows users to engage
				with the results of individual decisions about layers and views in the generic
				programming editor of their choice.

Conclusion
When starting with the development of a new markup language, it may feel most natural
			to be open-minded and maximalist: everything should be possible, and the more freedom,
			the better. As the consequences of that freedom become clearer, one may become more
			conservative, adding constraints. Texts with markup need to be processed and queried,
			and the more freedom the markup permits, the more difficult the processing and querying
			becomes. A reasonable goal is to strike a balance between supporting expression, which
			may tend toward openness, and facilitating processing, which may tend toward
			constraint.
This report has introduced three new aspects of the Text As Graph project, involving
			markup, model, and workflow. With respect to markup, the TAGML markup language is
			designed to represent syntactically the TAG data model. With respect to the model, the
			revised TAG data model replaces the directed Text-to-Text edges of Haentjens Dekker and Birnbaum 2017 with undirected Text-Text edges, instead using
			hierarchical rank (distance in path steps from the Document node) to model order. With
			respect to workflow, the TAG workflow, implemented in Alexandria, borrows concepts from earlier proposals for editing
			concurrent XML, while also permitting concurrent variation in text, and not only in
			markup, With respect to future work, TAG does not yet have a fully functional schema
			language or a fully functional query language, although both are under early development.[12]

Appendix A. The TAG model
The TAG data model in this report combines the multi-layered data model presented at
			Balisage 2017 with the nonlinear data model presented at XML Prague 2018. It is a cyclic
			non-uniform property hypergraph model for text. The hypergraph model consists of a set
			of vertices (or nodes) and a set of hyperedges that connect two or more nodes with one
			another. The following key concepts merit specific attention:
	Cyclic. The TAG hypergraph is cyclic. As we
					describe under Edges, all edges in the hypergraph are
					undirected, which, together with the Convergence Nodes (explained in Text nodes), produces a cyclic graph. Traditionally, cyclic
					graphs have been considered problematic for traversal, but the hypergraph for
					text is a rooted graph. This means that
					traversing from and to the root is not difficult, and can be effectuated without
					falling into cycles as long as each traversal proceeds consistently in one
					direction (toward or away from the root).

	Non-uniform. The edges of the kind of graphs
					we are most familiar with (e.g., tree, acyclic graph, RDF) connect two nodes
					with each other, and we therefore say the edges have a cardinality of 2. A
					hyperedge, in contrast, connects an arbitrary set of nodes. As the hyperedges in
					the TAG data model do not have a fixed number of nodes, we say the graph is
					non-uniform.

	Property. We refer to the TAG hypergraph as a
					property graph because properties are stored on the nodes and edges.

	Typed. Nodes are typed, which means that they
					have a type property.

Text in a TAG document is fully connected, rooted, and undirected. By fully connected we mean that there is a path to all Text
			nodes from the Document node (see the discussion of node types, below).[13] By rooted we mean that the text has an
			obligatory single start point, represented by the Document node. By undirected we mean that the consecutive Text nodes are
			connected to each other by undirected edges, that is, edges that do not distinguish a
			head and tail (source and target). The relative logical order of Text nodes is
			represented by rank, that is, by the number of path steps between the Document node and
			a Text node. By defining the relative position of Text nodes in terms of ancestors (Text
			nodes of lower rank, closer to the Document node) and descendants (text nodes of higher
			rank, farther from the Document node), we use hierarchical rank to represent the order
			of Text nodes without employing directed edges.[14]
Consider the following illustration of the physical layout of a poetic text on a page:[15]
[page n="21v" dimensions={width=12 height=30}>
[line rend="indent2">1[hi rend="sup">st<hi]. Voice from the Mountains<line]
[line>Thrice three hundred thousand years<line]
<page]
Figure 11
[image:]
Sample visualisation of the hypergraph model of the fragment from Prometheus unbound given above.

Nodes
There are four types of node, each with different requirements and constraints.
				These are discussed schematically below.
Document nodes
	Description. Every Document node
							represents a single document in the hypergraph and serves as a root
							node. There can be multiple documents in a hypergraph, in which case
							each document constitutes a connected subhypergraph, where connected means that there is a path from
							every node to every other node of the subhypergraph. Nodes from one
							subgraph cannot be connected to nodes from another subgraph.

	Properties. Every Document node has a
							unique name. Every document stores information about its creation and
							modification(s).

	Constraints. Every Document node must
							be connected to (have a path to) at least one Text node. The Text node
							may be empty.

Text nodes
	Description. A Text node represents
							(a part of) the textual content of the document. Whitespace, if present,
							is included in the textual content. Text nodes must be as long as
							possible. Text nodes may be empty, i.e., have no textual content. We
							identify two cases of empty Text nodes:

								Empty Text nodes are used to store milestone Markup nodes,
										e.g., in case of images or marginalia in the source text.
										These milestones must have a Markup-Text hyperedge (cf.
											Markup-text undirected hyperedge).

	In case of (intradocumentary) textual variation we have
										two extra nodes to encode the variation. (cf. Text convergence node and Text divergence node).

						

	Properties. A Text node has a
								content property of type String, which stores the
							textual content of a segment.

	Constraints. Each Text node is part
							of exactly one document. In HyperCollate a Text
							node can be part of multiple documents (cf. Bleeker et al. 2018a, Bleeker et al. 2018b). All the
							Text nodes have to be connected. Text nodes can have multiple hyperedges
							with markup on them.

Two subtypes of Text nodes are Text divergence and Text convergence
					nodes:
Text divergence nodes
	Description. Text divergence
								nodes are a subtype of Text node, without content. Text divergence
								nodes are one of two exceptions to the constraint that a Text node
								has two edges.

	Properties. none

	Constraints. All text divergence
								nodes have 1 edge connecting an ancestor, which is either a Document
								node or a Text node, and multiple (n>1) edges to Text nodes as
								descendants.

Text convergence nodes
	Description. Text convergence
								nodes are a subtype of Text node, without content. Text convergence
								nodes are the other exception to the constraint that a Text node has
								two edges.

	Properties: none

	Constraints: All text convergence
								nodes have multiple (n>1) edges connecting Text nodes as ancestors,
								and 1 edge connecting a Text node as descendant (or 0, if the Text
								convergence node is the last node in the text).

Markup nodes
	Description. A Markup node stores the
							name of the markup.

	Properties. Markup nodes have the
							following three properties: 	A required tag property of type String, which
										stores the name of the tag.

	An optional namespace property of type String
										with the name of the namespace within which the tag is
										defined.

	An optional identifier property of type
										String, which uniquely identifies this instance of markup
										with this tag. This is a special type of annotation, used
										for linking.

	Constraints. All Markup nodes have to
							be connected to one or more Text nodes. Markup nodes can only have one
							Markup-to-Text hyperedge. Markup nodes can have zero or more Annotation
							nodes on them.

Annotation nodes
	Description. An Annotation node
							stores a property as a key:value pair.
Properties: Annotation nodes have two properties:	The propertyname property, of type String,
										stores the name of the property and acts as the key of the
										key:value pair.

	The propertyvalue property stores the value
										of the key-value pair. The value can be one of the following
										types: String, Number (default Float, unless specified
										otherwise in the schema), Array, Rich text, or Nested
										annotation. A value of type Array must contain values of the
										same type, and an array of Rich text is not allowed, which
										means that valid array types are String, Number, Array or
										Nested annotation.

Constraints: An Annotation must be
							connected to a Markup node or an Annotation node. An Annotation node may
							be connected to more than one Annotation node in case of nested
							annotations (Data typing) represented by a {
								} in TAGML. The name of the property needs to be unique among
							its siblings, i.e., two properties with the same name are not permitted
							on the same level in the annotation hierachy of a Markup node.

Node types, properties, and constraints
Table I
Nodes

		Description	Properties	Constraints
	Document node	
								Represents one single document in the Hypergraph

	Is a root node

							
								name: document
										name

	type: String

	meaning: identifies a
										document in the hypergraph

							
								Must point to only the first Text node of the
										document

						
	
								name: creation
										date

	type: Date

	meaning: info about
										creation date

						
	
								name: modification
										date

	type: Date

	meaning: info about last
										modification date

						
	Text node	
								Can have multiple hyperedges with markup

	May be empty

	Includes whitespace

							
								name: content

	type: String

	meaning: stores the
										content of a (part of) a document

							
								Part of exactly one Document node

	All Text nodes are connected through undirected edges, one
										from the ancestor and one to the descendant

						
	Text divergence node	
								Represents diverging paths in the case of intradocumentary
										variation

							
								No properties

							
								Multiple edges connecting two or more Text nodes as
										descendants (which could also be a Text divergence or a Text
										convergence node)

						
	Text convergence node	
								Represents converging paths in the case of
										intradocumentary variation

							
								No properties

							
								Multiple edges connecting two or more Text nodes as
										ancestors (this could also be a Text divergence node or a
										Text convergence node)

						
	Markup node	
								Connected to one or more Text nodes

	Has zero or more Annotation nodes

							
								name: tag

	type: String

	meaning: stores name of
										the tag

							
								There must be exactly one Markup-Text hyperedge for each
										Markup node

						
	
								name: namespace

	type: String

	meaning: stores name of
										the namespace that contains the tag

						
	
								name: identifier

	type: String

	meaning: identifies
										markup instance with the corresponding tag

						
	Annotation node	
								Connected to a Markup node or an Annotation node

	May be connected to one or more Annotation nodes (in case
										of nested annotations)

							
								name:
										propertyname

	type: String

	meaning: stores name of
										property

							
								A property value cannot have an array of Rich text
										annotations.

	A property value cannot have an array of items of mixed
										type

						
	
								name:
										propertyvalue

	type: String; Number
										(Int and Float); Array; Rich text (pointing to first Text
										node of new Annotation node); Nested annotaton.

	meaning: value of
										annotation property

						

Edges
We identify six types of edges:
Document-Text undirected edges
A Document-Text edge associates a Document node with its first Text node in a
					one-to-one relationship. Every Document node can only have one first Text node.
					In Alexandria a Text node can belong to only
					one Document.

Text-Text undirected edges
Text-Text edges encode the flow of the text. The start of the hierarchy is
					indicated by the Document-Text edge, which connects the Document node to the
					first Text Node. In case of intradocumentary textual variation, the Text
					divergence and Text convergence nodes can have multiple ancestor or descendant
					Text-Text edges (see Text divergence node and Text convergence node. Text-Text edges form a hierarchy of Text nodes
					that is partially ordered, and may connect a Text node only to its immediate
					ancestor or descendant in order.

Markup-Text undirected hyperedges
Markup-Text hyperedges associate markup with its textual content.

Annotation-Markup multiple undirected edges
There can be multiple Annotations on a Markup node, but each Annotation node
					can be associated with only one Markup node. This relationship can be understood
					as a tree: the Markup node is the root of the tree and the Annotation nodes are
					its children.

Annotation-Annotation multiple undirected edges
Annotation-Annotation edges are used for nested annotations in TAGML (Data typing). The Markup node and the annotations form a rooted
					tree with the Markup node as root.

Annotation-Text undirected edges
Annotation values can be of Rich text format (cf. Rich text annotations). If the annotation is of type Rich text, the value is a new inner document.
					Because Rich text content can itself contain markup with annotations on it, this
					is a recursive feature.

Edge types, constraints
Table II
Edges

		Description	Relationship	Constraints
	Document-Text edge	
							Associates Document node with its first Text node

							
							Undirected edge

							
							
								Alexandria: a Text node can be
								part of exactly one Document

							
								HyperCollate: a Text node can be
								part of multiple Documents

						
	Text-Text edge	
							Encodes the flow of the text by forming a partially ordered
								hierarchy of Text nodes

							
							Undirected edge

							
							If a Text node has two Text-Text edges, one must be connected to a
								Text node of higher rank (a descendant) and the other to a Text node
								of lower rank (an ancestor).

						
	Markup-Text edge	
							Associates markup with textual content

							
							Undirected hyperedge

							
							Markup-Text hyperedges must have exactly one Markup Node

						
	Markup-Annotation edge	
							Associates a Markup node with an Annotation node and vice
								versa

							
							Undirected edge

							
							One Markup node may have multiple Annotation nodes, but an
								Annotation node cannot connect to more than one Markup node

						
	Annotation-Annotation edge	
							Represents a nested annotation

							
							Undirected edge

							Each Annotation node is connected to exactly one ancestor, either a
							Markup node or an Annotation node in case of nested annotations. An
							Annotation node can be connected to multiple Annotation nodes as
							descendants.
	Annotation-Text edge	
							Associates an annotation with the textual content of an annotation
								(= Rich text)

							
							Undirected edge

							
							Rich text is not allowed in a List

						

Works cited
[Alexandria] Alexandria.
			https://github.com/HuygensING/alexandria-markup; Information about
			installing and using the Alexandria command line app is
			available at links on the TAG portal at https://github.com/HuygensING/TAG.
[Barrellon et al. 2017] Barrellon, Vincent,
			Pierre-Edouard Portier, Sylvie Calabretto, and Olivier Ferret. “Linear extended
			annotation graphs.” In Proceedings of ACM Document Engineering,
				Malta, September 2017 (DocEng2017), 10 pages. doi:https://doi.org/10.1145/3103010.3103011
. 			http://liris.cnrs.fr/pierre-edouard.portier/publications/2017_BARRELLON_PORTIER_DocEng_linear_extended_annotation_graphs.pdf
[Birnbaum 2007] Sometimes a table is
				only a table: And sometimes a row is a column.
			Proceedings of Extreme Markup Languages 2007.
			http://conferences.idealliance.org/extreme/html/2007/Birnbaum01/EML2007Birnbaum01.html
[Bleeker et al. 2018a] Bleeker, Elli, Bram
			Buitendijk, Ronald Haentjens Dekker, and Astrid Kulsdom. Including XML markup in
				the automated collation of literary texts. Presented at XML Prague 2018,
			Prague, Czech Republic, February 8–10, 2018. In XML Prague 2018 -
				Conference Proceedings, pp. 77–95.
				http://archive.xmlprague.cz/2018/files/xmlprague-2018-proceedings.pdf
[Bleeker et al. 2018b] Bleeker, Elli, Bram
			Buitendijk, Gijsjan Brouwer, and Ronald Haentjens Dekker. From graveyard to
				graph. Reappraising textual collation in a digital paradigm. Accepted for
			publication in Digital Scholar, 2018.
[Dekhtyar and Iacob 2005] Dekhtyar, Alex and
			Ionut Emil Iacob. A framework For management of concurrent XML Markup.
			Data and knowledge engineering, Vol. 52, No. 2, pp.
			185–215. doi:https://doi.org/10.1016/j.datak.2004.05.005.
			http://users.csc.calpoly.edu/~dekhtyar/publications/dke04.ps
[Dillen 2015] Dillen, Wout. Digital
				scholarly editing for the genetic orientation: the making of a genetic edition of
				Samuel Beckett’s works. Ph.D. thesis, University of Antwerp.
			2015.
[Git] Git distributed version control system.
				https://git-scm.com/
[Haentjens Dekker and Birnbaum 2017] Haentjens Dekker, Ronald and David J. Birnbaum. It’s more than just overlap:
				Text As Graph. Presented at Balisage: The Markup Conference 2017,
			Washington, DC, August 1–4, 2017. In Proceedings of Balisage: The
				Markup Conference 2017. Balisage Series on Markup Technologies, vol. 19
			(2017). doi:https://doi.org/10.4242/BalisageVol19.Dekker01.
				https://www.balisage.net/Proceedings/vol19/html/Dekker01/BalisageVol19-Dekker01.html
[Hilbert et al. 2005] Hilbert, Mirco, Oliver
			Schonefeld, and Andreas Witt. Making CONCUR work. Presented at Extreme
			Markup Languages 2005 (Montréal, Québec).
				http://conferences.idealliance.org/extreme/html/2005/Witt01/EML2005Witt01.xml
		
[Huitfeldt and Sperberg-McQueen 2003] Huitfeldt, Claus and C. Michael Sperberg-McQueen. TexMECS. An experimental
				markup meta-language for complex documents. Revision of 5 October 2003.
				http://mlcd.blackmesatech.com/mlcd/2003/Papers/texmecs.html
[Iacob and Dekhtyar 2003] Iacob, Ionut E. and
			Alex Dekhtyar. A framework for management of concurrent XML markup.
			XML Schema and Data Management ’03.
			http://users.csc.calpoly.edu/%7Edekhtyar/publications/xsdm03.concurrent.pdf
		
[Iacob and Dekhtyar 2005] Iacob, Ionut E. and
			Alex Dekhtyar. Towards a query language for multihierarchical XML: revisiting
				XPath. Eighth International Workshop on the Web and Databases (WebDB 2005),
			June 16–17, 2005, Baltimore, Maryland, USA.
				http://users.csc.calpoly.edu/%7Edekhtyar/publications/webdb05.pdf
[Jagadish et al. 2004] Jagadish, H. V., L. V.
			S. Lakshmanan, M. Scannapieco, D. Srivastava, and N. Wiwatwattana. Colorful XML:
				one hierarchy isn’t enough. SIGMOD 2004 June 13–18, 2004, Paris, France.
			251-62. doi:https://doi.org/10.1145/1007568.1007598.
				https://www.researchgate.net/publication/200034469_Colorful_XML_One_Hierarchy_isn%27t_enough
[Kay 2013] Kay, Michael. The FtanML markup
				language. Presented at Balisage: The Markup Conference 2013, Montréal,
			Canada, August 6–9, 2013. In Proceedings of Balisage: The Markup
				Conference 2013. Balisage Series on Markup Technologies, vol. 10 (2013).
			doi:https://doi.org/10.4242/BalisageVol10.Kay01.
				https://www.balisage.net/Proceedings/vol10/html/Kay01/BalisageVol10-Kay01.html
[Introducing JSON] Introducing
				JSON.
			http://www.json.org/
[Peroni et al. 2014] Peroni, Silvio, Francesco
			Poggi and Fabio Vitali. Overlapproaches in documents: a definitive classification
				(in OWL, 2!). Presented at Balisage: The Markup Conference 2014, Washington,
			DC, August 5–8, 2014. In Proceedings of Balisage: The Markup
				Conference 2014. Balisage Series on Markup Technologies, 13 (2014).
			doi:https://doi.org/10.4242/BalisageVol13.Peroni01.
				https://www.balisage.net/Proceedings/vol13/html/Peroni01/BalisageVol13-Peroni01.html
[Piez 2008] Piez, Wendell. LMNL in
				miniature. An introduction. Amsterdam Goddag Workshop, 1–5 December 2008.
				http://piez.org/wendell/LMNL/Amsterdam2008/presentation-slides.html
[Sahle 2013] Sahle, Patrick. Catalog of digital scholarly editions. Version 3.0, snapshot
			2008ff. Last updated March 22, 2017.
			http://www.digitale-edition.de
[Sperberg-McQueen 2007] Sperberg-McQueen, C. M.
				Representation of overlapping structures. Presented at Extreme Markup
			Languages 2007 (Montréal, Québec).
				http://conferences.idealliance.org/extreme/html/2007/SperbergMcQueen01/EML2007SperbergMcQueen01.html
[Tennison 2008] Tennison, Jeni.
				Overlap, containment and dominance.
			Jeni’s musings, 2008-12-06.
				http://www.jenitennison.com/2008/12/06/overlap-containment-and-dominance.html
[War on attributes] Wittern, Christian, Arianna
			Ciula, and Conal Tuohy. The making of TEI P5.
			Literary and linguistic computing, vol. 24, no. 3
			(2009), pp. 281–96. doi:https://doi.org/10.1093/llc/fqp017
				http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.851.6408&rep=rep1&type=pdf

[1] Historians of the TEI will recognize this issue as the origin of the
							war on attributes. (War on attributes,
						283)
[2] We discuss these concepts in the Hierarchy, containment and
							dominance section of Haentjens Dekker and Birnbaum 2017. See also
							Tennison 2008.
[3] See Peroni et al. 2014.
[4] That while is a replacement for white is an
						interpretation. At least in principle, a writer might complete a sentence
						and then cross out a word that feels unnecessary, a situation where the word
						following the excision may function as stable text in any reading, and not
						as a replacement or alternative for the deletion.
[5] The terminology [data-centric vs document-centric] is unfortunate,
							since running narrative prose and mixed content models are no less data
							than records and fields and a data-centric document is, as the name
							implies, also a document. A more useful distinction might be between
							narrative prose and databases or between mixed content and element
							content (or between otherwise different types of content models), rather
							than between documents and data. (Birnbaum 2007)
[6] Data types are expressed lexically (e.g., values like
								true or false are of type Boolean) or
							distinguished by markup punctuation (e.g., bare digits are of type
							Number, items [including digits] inside quotation marks are of type
							String, etc.).
[7] Our discussion of overlap is indebted to Sperberg-McQueen 2007
[8] Currently Alexandria understands
							pointers only to a single :id value and only within the
							same TAG document (similar to xsd:IDREF). It is intended
							that pointing to multiple :id values (similarly to
								xsd:IDREFS) and to :id values in different
							documents will also be supported.
[9] Information about installing and using the Alexandria command line app is available at links on the TAG
						portal at https://github.com/HuygensING/TAG.
[10] A view definition is created in a JSON file which identifies a
							selection of markup elements. Clear instructions about how to do this
							are available at https://github.com/HuygensING/alexandria-markup-server.
[11] This means that, in the TAG master file, the markup elements l and line
						are stored in the same locations, but overlap is unproblematic for the TAG
						hypergraph model.
[12] We are grateful to the anonymous referee who reminded us that:There are considerable down sides to inventing a new syntax. These
							include training/learning, paucity of extant tools, unfamiliarity, but
							they also include a need to reinvent. For example, there’s no obvious
							equivalent to xml:lang, xml:base,
								xml:include, ITS, XSLT, XSD, XSL-FO, CSS,
							XQuery.

 We could extend that list, and whether it is worth the effort to
					try to overcome the challenges depends, among other things, on whether TAG can
					eventually be shown to offer benefits that justify the cost. Our focus at this
					point is on development, exploration, and evaluation, and not on evangelizing,
					but we can offer now two thoughts about the cost of uptake:	Ancillary technologies emerge over time, and XML (and SGML) were
								understood as useful before the development of many of the features
								listed above. New technologies may be adopted when the benefit
								exceeds the cost, and we are eager to continue to explore that
								balance in the context of TAG.

	Our frame of reference is not individual XML technologies, but the
								outcome goals and functionality those technologies provide. For that
								reason, we are not prioritizing bespoke TAG counterparts to specific
								aspects of the XML ecosystem. For example, XQuery and XSLT are ways
								of interacting with XML, but developers may also interact with XML
								using general-purpose languages like Java or Python. A TAG
								implementation (like Alexandria) might expose an API that offloads
								transformation or styling or other subsequent processing onto a
								general programming language. For that reason, although there is,
								for example, an obvious need to be able to query a TAG document and
								to transform it into other formats, it is less obvious that the
								solution will resemble an architecture like the XPath / XQuery /
								XSLT / XSL-FO stack.

[13] Rich text annotation values function as separate subdocuments, and in their
					case the Annotation node takes the place of the Document node in the main
					text.
[14] In Haentjens Dekker and Birnbaum 2017 we described Text nodes in TAG as
					connected by directed edges; our revision of that earlier model to use
					undirected edges is motivated by a formal limitation on directed edges that
					permits them to describe a relationship only in one direction. A directed edge
					is an asymmetric relation between two adjacent vertices in a graph, represented
					as an arrow. In mathematical terms, an asymmetric relation is a binary relation
					on a set X where: For all a and b in
						X, if a is related to b, then
						b is not related to a. This means that when
					traversing a directed graph, if there is a directed edge from a to
						b, it can only be traversed from a to
						b, and not from b to a. See: https://en.wikipedia.org/wiki/Glossary_of_graph_theory_terms#Direction and https://en.wikipedia.org/wiki/Asymmetric_relation
[15] line markup here refers to physical lines on the page, rather
					than poetic lines.

Balisage: The Markup Conference

TAGML: A markup language of many dimensions
Ronald Haentjens Dekker
Head of Research and Development and Software Architect
Research and Development Team, KNAW Humanities Cluster

<ronald.dekker@di.huc.knaw.nl>
Ronald Haentjens Dekker is a software architect and lead engineer of the
					Research and Development Team at the Humanities Cluster, part of the Royal
					Netherlands Academy of Arts and Sciences. As a software architect, he is
					responsible for translating research questions into technology or algorithms and
					explaining to researchers and management how specific technologies will
					influence their research. He has worked on transcription and annotation
					software, collation software, and repository software, and he is the lead
					developer of the CollateX collation tool. He also conducts workshops to teach
					researchers how to use scripting languages in combination with digital editions
					to enhance their research.

Elli Bleeker
Software Developer, Research and Development
Research and Development Team, KNAW Humanities Cluster

<elli.bleeker@di.huc.knaw.nl>
Elli Bleeker is a postdoctoral researcher in the Research and Development Team
					at the Humanities Cluster, part of the Royal Netherlands Academy of Arts and
					Sciences. She specializes in digital scholarly editing and computational
					philology, with a focus on modern manuscripts and genetic criticism. Elli
					completed her PhD at the Centre for Manuscript Genetics (2017) on the role of
					the scholarly editor in the digital environment. As a Research Fellow in the
					Marie Sklodowska-Curie funded network DiXiT (2013–2017), she received advanced
					training in manuscript studies, text modeling, and XML technologies.

Bram Buitendijk
Software Developer, Research and Development
Research and Development Team, KNAW Humanities Cluster

<bram.buitendijk@di.huc.knaw.nl>
Bram Buitendijk is a software developer in the Research and Development team
					at the Humanities Cluster, part of the Royal Netherlands Academy of Arts and
					Sciences. He has worked on transcription and annotation software, collation
					software, and repository software.

Astrid Kulsdom
Project Manager, Research and Development
Research and Development Team, KNAW Humanities Cluster

<astrid.kulsdom@di.huc.knaw.nl>
Astrid Kulsdom is a project manager and researcher in the Research and
					Development team at the Humanities Cluster, part of the Royal Netherlands
					Academy of Arts and Sciences. After completing her research Master’s in Literary
					Studies at Radboud University in 2012, she has worked as a project manager for
					several government institutions. As project manager of the Research and
					Development team, she combines her philological knowledge with her project
					management skills in order to effectively manage all strands of research within
					the team.

David Birnbaum
Professor and Co-Chair
Department of Slavic Languages and Literatures, University of
					Pittsburgh

<djbpitt@gmail.com>
David J. Birnbaum is Professor and Co-Chair of the Department of Slavic
					Languages and Literatures at the University of Pittsburgh. He has been involved
					in the study of electronic text technology since the mid-1980s, has delivered
					presentations at a variety of electronic text technology conferences, and has
					served on the board of the Association for Computers and the Humanities, the
					editorial board of Markup languages: theory and
						practice, and the Text Encoding Initiative Council. Much of his
					electronic text work intersects with his research in medieval Slavic manuscript
					studies, but he also often writes about issues in the philosophy of
					markup.

Balisage: The Markup Conference

content/images/HaentjensDekker01-006.png
Thrice three hundred thousand years

content/images/HaentjensDekker01-001.png
(‘j\rcrvd)Q,\u) [FOGN i
wau Wg
v SUGH Qr\% y
g8 P
oo
o 2

content/images/HaentjensDekker01-005.png
! fet pon M %Z /izzzfﬁ//a% /é//?
Vo sty ¥ ¢//M /,,

content/images/HaentjensDekker01-004.png
////7‘(‘ //}ﬂ /4{ "/(%7/
o //?W’//W 7 /Mwﬁ s tpte,
P e Fen T 4 Vi)

it

content/images/HaentjensDekker01-003.png
4, / /
A fto) figutd, A koo i she.

content/images/HaentjensDekker01-002.png

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

