[image: Balisage logo]Balisage: The Markup Conference

CETEIcean: TEI in the Browser
Hugh Cayless

Raffaele Viglianti

Balisage: The Markup Conference 2018
July 31 - August 3, 2018

Copyright ©2018 Hugh Cayless and Raffaele Viglianti

How to cite this paper
Cayless, Hugh, and Raffaele Viglianti. "CETEIcean: TEI in the Browser." Presented at: Balisage: The Markup Conference 2018, Washington, DC, July 31 - August 3, 2018. In Proceedings of Balisage: The Markup Conference 2018.
 Balisage Series on Markup Technologies vol. 21 (2018). https://doi.org/10.4242/BalisageVol21.Cayless01.

Abstract
CETEIcean is a Javascript library designed to render TEI XML in a modern web browser. It
 does not rely on XSLT or XQuery transformations of the source and is ideal for a
 distributed, web-based document preparation workflow.

Balisage: The Markup Conference

 CETEIcean: TEI in the Browser

 Table of Contents

 	Title Page

 	Introduction

 	Implementation

 	TEI in the Browser

 	Limitations and Solutions

 	Conclusion

 	About the Authors

 CETEIcean: TEI in the Browser

Introduction
The standard method for displaying a TEI document on the web is to either pre-transform it
 to HTML using XSLT or to dynamically transform it to HTML, again usually with XSLT or possibly
 XQuery. This method, while obviously totally viable, does tend to enshrine a particular
 workflow and division of responsibilities that may not be optimally flexible. We will present
 an alternative approach that permits a lighter-weight development workflow and uses more
 standard web technologies.
The TEI Stylesheets and (though to a lesser extent, usually) more specialized XSLT
 conversions are large, complex software packages in their own right. Their development and
 maintenance requires experienced XSLT developers. Much though we might regret it, this is no
 longer a widespread skill. Even very sophisticated XSLT transforms usually involve discarding
 or substantially reformatting some data in the source. That XSLT is capable of this is
 obviously a strength, but we would argue there is a subtle pressure towards rewriting your
 data model for presentation rather than making use of it. Moreover, since XSLT has become a
 niche specialty, projects are more likely to either just use an existing package for
 transformation or rely on inexperienced developers customizing such a package. More subtly,
 the way XSLT transforms divorce the presentation of texts from the work done to model them
 means there is a disjunction between the (often intensive in TEI) intellectual labor of
 encoding texts and the presentation of those texts online. Browsers today are dynamic and
 powerful rendering engines, so why not apply them more directly to the TEI’s data model?
CETEIcean (sɪˈti:ʃn)[1] was developed to support a lightweight TEI presentation workflow that requires
 neither pre-display document transformation nor any complex server-side architecture. All that
 is needed to use it is a web server. The browser does all of the work. CETEIcean is an
 ECMAScript (JavaScript) library that reads in TEI XML and converts it to HTML Custom Elements.
 The converted source can then be rendered using standard CSS and JavaScript techniques.
 CETEIcean supplies a method, calld "behaviors" to add decorations—or even make widgets out
 of—TEI elements. An obvious advantage to using JavaScript and CSS is that people with these
 skills are much easier to find, making both initial development and ongoing support simpler.
 But beyond these mundane questions, we have found that having the TEI’s data model directly
 available makes some interesting techniques possible.
Because it does not rely on a transformation step, the use of CETEIcean means that a
 distributed development workflow can be used. The Digital Latin Library (DLL)[2] is a new initiative to publish digital critical editions of Latin texts. We have
 been using GitHub Pages and CETEIcean to work on pre-publication texts. A “stub” HTML file is
 placed on our GitHub Pages site that points to the raw XML in a separate GitHub repository.
 When the stub file is loaded in a browser, it fetches the source file and displays it. What
 this means in practice is that editors working on the XML source have only to push to GitHub
 to be able to see how their TEI document will look in a web browser. The editor does not need
 to be able to run their own XSLT transform, nor is there any setup required beyond a very
 simple HTML file being placed in the GitHub Pages repo. This “push to publish” workflow means
 it is very simple to check your own or others’ work. If the encoder and the editor are not the
 same person, reviewing the encoder’s work is trivial. Moreover, because the reviewer is
 looking at a 1::1 representation of the source, errors are more likely be easy to
 troubleshoot, as they haven’t gone through a transformation process that might accidentally
 suppress or obfuscate them.[3]

The “push to publish” workflow is also useful in the classroom; we have adopted it to
 teach TEI as part of the Introduction to Digital Studies in the Arts and Humanities, a
 graduate course at the Maryland Institute for Technology in the Humanities. Students are able
 to focus on learning how to encode texts with the TEI and are not required to learn XSLT to
 preview or publish their work. By simply adopting an HTML template equipped with CETEIcean,
 they are able to engage with issues related to digital publication with a lower learning
 curve. With the 1::1 representation of the TEI source, students are able to use CSS to style
 their encoding directly. This kind of workflow is of course possible using XSLT 1.0
 with an xml-stylesheet processing instruction in the source XML or using
 (non-standard) JavaScript-based XSLT transforms, but we think CETEIcean permits more
 flexibility than the processing instruction method and that JavaScript is more powerful
 than XSLT 1.0.[4]

Implementation
CETEIcean converts all TEI elements to an “HTML” equivalent with a tei-
 prefix. TEI attributes, which mainly have no namespace, are simply copied over. The
 @xml:lang and @xml:id attributes are converted to their HTML
 equivalents @lang and @id. Data attributes are used to preserve
 namespace information, original element name, and whether the element is empty. For most
 elements, this is sufficient, but for TEI elements which have HTML equivalents, more work is
 necessary. TEI has a couple of constructs roughly equivalent to HTML <a href>
 for example, namely <ref target> and <ptr target/> (the former
 represents linked text with one or more targets and the latter a bare pointer with no text).
 While linking behaviors can be applied to these post-conversion, those links do not have the
 full status of HTML links—browsers do not preview the link URL on hover, for example.
 CETEIcean handles this differently depending on whether the browser in question handles
 registering Custom Elements.[5] Recent builds of Chrome and Safari support the feature. In
 Firefox, the support is experimental.
In browsers with Custom Elements support, the additional behaviors are applied in the
 element’s constructor. So when the element is added to the DOM, it gets additional features.
 TEI <ptr> elements, for example, get an <a href> element
 inserted inside them, with the @href and the content set to the @target of the
 <ptr>. Tables are another case where HTML and CSS can have a hard time with
 non-HTML table elements (the new CSS Grid Layout module may resolve this issue), so TEI tables
 have their content hidden and replaced with HTML table elements.
In browsers which have not yet implemented Custom Elements, the same effects are achieved
 using a fallback method which calls the same behavior function. A baseline set of element
 behaviors is defined for CETEIcean, but these may be redefined or extended by the addition of
 custom behaviors. Behaviors are simply JavaScript objects which list element handlers which
 match the TEI element name. These handlers may either be JavaScript functions or arrays
 containing one or two strings. The latter are automatically converted to functions which
 insert the content of the array into the element, prefixing or wrapping its content. We might
 define a behavior for the TEI <add> element, for example, which would wrap its
 contents in the Leiden Convention markers for text added to a document. Figure 1: Behavior Example

The behavior definition:
 "add": ["`","´"]
The source:
	<add>an addition</add> (in the TEI namespace)
The output:
	<tei-add>`an addition´</tei-add>

 The latter method provides a useful alternative to using CSS content to decorate
 elements, as that produces text which is not selectable in the browser.

TEI in the Browser
CETEIcean is not the first solution to permit TEI in the browser. TEI Boilerplate (http://dcl.ils.indiana.edu/teibp/)
 uses an XSLT script to wrap the TEI document in HTML and convert those TEI elements that have
 specific HTML equivalents, such as <ref> and <ptr> discussed
 above. The transformation is triggered by an “xsl-transform” instruction which has to be added
 to the source file, and because browser-based XSLT capabilities stalled at XSLT 1.0, it is
 limited to that version of the language. The now-deprecated Saxon-CE implementation[6] supported XSLT 2.0, and its replacement, Saxon-JS[7], supports XSLT 3.0 and provides significant performance improvements. Saxon-JS
 requires a commercial version of Saxon to compile the stylesheets into JavaScript, however,
 which means it is not really viable in an open source environment. As a matter of policy, the
 TEI Consortium won’t distribute software that requires users to purchase a software license in
 order to use it.
Moreover, since web technologies like CSS and Javascript are now capable of delivering a
 browser-based TEI and since they have become a de facto requirement, even in an environment where XSLT or XQuery are
 transforming the TEI source to HTML before delivery, perhaps it is fair to argue that we should simply
 use them and skip the XSLT step. XML technologies (XSLT and XQuery) are arguably the most
 effective at manipulating XML and CETEIcean is not meant to replace them for every operation.
 Rather, it offers a lightweight, yet fully-featured, solution for publishing text encoded with
 XML. Occasionally, however, transformation and DOM manipulation can be essential to
 publication. While performing transformations on the server may be the most effective solution
 in those cases, JavaScript is still capable of performing complex DOM operations. For example,
 the Shelley-Godwin Archive (S-GA)[8] displays TEI documents that encode the mise-en-page of manuscript material, that
 is, the XML identifies zones of writing (main, marginal, etc) and authorial revisions
 (deletions, additions, and their location on the page). In the TEI, additions in the margin
 are encoded separately from the main zone of writing, but in display they need to be
 positioned near the line where they logically belong. If we were using XSLT to transform TEI
 to HTML, we may position the marginal text in a way that makes it easier to render; in this
 case, we use JavaScript to determine the position based on the TEI encoding and adjust the CSS
 dynamically (see the result in Fig 2)[9]. Figure 2: A rendering of S-GA TEI using CETEIcean. The position of the marginal
 additions on the left is determined by processing the TEI with JavaScript at rendering
 time.
[image:]

The DLL’s edition viewer does some DOM manipulation to generate a traditional apparatus
 criticus from the TEI <app> elements in a text. A source text with inline
 elements (see Figure 3) is displayed as text (Figure 4) plus apparatus (Figure 5). This kind
 of transformation is fairly standard, and it would not be unusual to see it done with XSLT
 instead. What is unique about the DLL viewer is its use of the TEI’s model of textual
 variation to produce a dynamic apparatus. Besides the traditional appearance of the app.
 crit., the viewer also generates widgets which manipulate the edition’s DOM (which
 isomorphically presents the TEI’s model), and thereby allow a reader to make decisions about
 what should appear in the reading text. The TEI models textual variation by placing the
 variants in parallel inside an <app> element. The variant to appear in the
 main text is placed in a <lem> and any additional variants go in
 <rdg> elements. The DLL viewer’s widgets allow readers to change any
 <rdg> into a <lem> (and the <lem> into a
 <rdg>), promoting that reading to the main text. The page’s CSS takes care
 of the rendering, as <lem>s are displayed and <rdg>s are not.
 In this way, the edition’s readers can try out different versions of the text and see how the
 affect its flow and meaning. This makes for a much more powerful and intuitive critical
 edition than is possible in print (or static HTML). Obviously, something similar could be done
 with an HTML version converted from TEI with XSLT, but having the affordances of the TEI model
 directly available in the browser makes it easier for a developer to see how that model can be
 leveraged. Figure 3: The first lines of Calpurnius Siculus’ first eclogue
[image:]

 Figure 4: Lines 1-5 (from
 https://digitallatin.github.io/viewer/calpurnius.html#poem1
[image:]

 Figure 5: Apparatus criticus for line 1-3 (from
 https://digitallatin.github.io/viewer/calpurnius.html#poem1
[image:]

Limitations and Solutions
There are, of course, cases where one might want some radical transformation of one’s
 source encoding. The natural inclination (and CETEIcean’s default) in rendering a TEI document
 in a browser is to make the header invisible, for example. After all, it’s the text that’s
 meant to be read. But a number of projects put important information in the
 <teiHeader>, and they might reasonably want to display that in the rendered
 document. Things like critical apparatuses are an example where a natural display form must be
 created by extracting information from the text and reformatting it. CETEIcean by itself does
 not help particularly with these cases, although it is quite possible to accomplish the goal
 with Javascript, as the S-GA and DLL do.
A more important concern is what to do about search engines. Google, for example, used to
 make some attempt to index pages rendered using AJAX calls, where the page content isn’t
 actually present in the page source, but is fetched at load time, but deprecated this practice
 in 2015. The DLL’s pre-publication editions would never have been indexed anyway, as their
 source is fetched from the raw.githubusercontent.com domain, which excludes all
 web crawlers. For purposes of the DLL workflow, Google-invisibility is actually an advantage,
 as it means pre-publication materials can be open, but at the same time not very discoverable,
 and will not be in competition with the eventual publication. But when those editions are
 published, we definitely want them to be searchable. The DLL’s solution at publication time is
 to deliver a partially-converted file—i.e. A TEI file already converted to HTML Custom
 Elements. The rendering is still done using CETEIcean, CSS, and additional JavaScript, but the
 source is indexable by search engines. An XSLT or XQuery conversion to a Custom Elements
 format is trivial to write—the core of the DLL implementation is 30 lines of XQuery, for
 example. An alternative method would be to embed the TEI XML source in the HTML page and let
 CETEIcean load that, though it is hard to know what a search engine might make of such a
 Chimera. It is worth noting that (anecdotally) TEI Boilerplate does not fare well with search
 engines either.

Conclusion
CETEIcean does not provide a complete replacement for XSLT and XQuery as a means for
 publishing TEI on the web, but we do think it is a viable alternative for some projects, and
 is particularly useful in situations where a quick view of work in progress is needed. It
 especially shines in situations where the TEI’s model of the text can be usefully leveraged to
 allow interesting dynamic functionality in the browser. The isomorphism of CETEIcean documents
 to their TEI sources also means it will support things like robust annotation (since
 annotation targets should be able to be trivially mapped to the source documents) and
 in-browser editing (because we can easily turn the HTML back into TEI). In sum, it seems like
 this approach has a great deal of potential and starts to get us out of the cul-de-sac our
 XSLT dependency had put us in.

[1] https://github.com/TEIC/CETEIcean. CETEIcean is released under a BSD 2-clause
 license (see https://opensource.org/licenses/BSD-2-Clause).
[2] http://digitallatin.org/.
[3] Examples are available at https://digitallatin.github.io/viewer/calpurnius.html and https://digitallatin.github.io/viewer/balex.html. Both examples pull their
 source text from a separate repository on GitHub.
[4] See below for a discussion of proprietary XSLT 2.0 and 3.0 browser-based implementations.
[5] See https://caniuse.com/#feat=custom-elementsv1 for a chart of current browser
 support for Custom Elements v1.
[6] Saxon CE, http://www.saxonica.com/ce/index.xml.
[7] Saxon-JS, http://www.saxonica.com/saxon-js/index.xml.
[8] http://shelleygodwinarchive.org/.
[9] S-GA has been using a project-specific JavaScript solution for publishing this
 material and is in the process of switching to CETEIcean.

Balisage: The Markup Conference

CETEIcean: TEI in the Browser
Hugh Cayless
Hugh is a Senior Digital Humanities Developer at the Duke Collaboratory for Classics
 Computing (DC3).

Raffaele Viglianti
Raff is a Research Associate at the Maryland Institute for Technology in the
 Humanities (MITH).

Balisage: The Markup Conference

content/images/Cayless01-001.png
< C ® umd-mith.github.io,

homelrviglianiProjects/sgaldatalteiloxiox-ms_abinger_c56.xml

12

g
By,
¥

o=

X yet
there was an
harmony in
that very diss
imilitude—

X We were strangers
to any species

X of disunion

or dispute

X
1 delighted in
investigating

* 9 & @O

<>
41
4
servants had any request to make
er
it always through the intercession of
Elizabeth We agreed

perfectly although there were many
For, although

was a great dissimilitude in our

characters. X I was more calm and phi

losphical than my companion

Yet I was not 7 so mild or yielding.

My application was of longer endurance

but it was not so severe
endured
whil e st it kasted my amusements

were studying old books of chemistry

and natural magic those of Elizabeth were
x
dra wing & music.

My brothers were consi
derably younger than myself but I had

a friend in one of my school

deficency.

fellows who compensated for this. Henry
Clerval

‘was the sons of a merchant
of Geneva an an intimate friend
of my father’s — he was a boy of singu
lar talent & £asey fancy I remember
when he was only nine years old he

wrote a fairy tale which was the
delight and amazement of all his

companions. his
consisted in
favourite study was books of chi

when very young, I can

valry & romance and we used to
remember that

act plays composed by him out of

i pep hanke the nrineinal

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

content/images/Cayless01-004.png
1 C.] GPAg Ulit. Wernsd. Glaeser sqq. om. Ntix p O. eByup edd. ante Glaeser Nondum] nundum G (corr. G)
P declinis] N Heins. Schenkl declivis GV edd. declivus P p declives p

2 quamvis] quatinus @TinOr praela] praeda P

3 om. kx musta] iniusta P

content/images/Cayless01-002.png
<div type="textpart" n="1" xml:id="poeml">
<head>Poem 1. [Corydon, Ornytus]</head>
<l n="1">
<label type="speaker">
<app>
<lem wit="#G #P #A #¢@" source="#Ulit. #Wernsd.">C.</lem>
<note><ref target="#Glaeser">Glaeser</ref> sqq.</note>
<rdg wit="#N #u #x" source="#p" ana="#subtractive"/>
<rdg wit="#e #B #y #p #p" xml:id="rdg-1.1-0" ana="#lexical">0.</rdg>
<note target="#rdg-1.1-0">edd. ante <ref target="#Glaeser">Glaeser</ref></note>
</app>
</label><unclear>ame</unclear>
<gap reason="lost" quantity="3" unit="characters"/>
<unclear>a tenebat aram</unclear>
<gap reason="lost" quantity="10" unit="characters"/>
<app>
<lem xml:id="Teml.lnondum">Nondum</lem>
<rdg wit="#G #P" xml:id="rdgl.lnundum" ana="#orthographical">nundum</rdg>
<witDetail wit="#G" target="#rdgl.lnundum" type="correction-original">corr. <ref
target="#G1">G<hi rend="super">1</hi></ref></witDetail>
</app> Solis equos <app>
<lem wit="#N" source="#Heins. #Schenkl">declinis</lem>
<rdg wit="#G #V" source="#edd." ano="#lexical">declivis</rdg>
<rdg wit="#P" source="#p" ana="#lexical">declivus</rdg>
<rdg wit="#u" ano="#lexical #morphological">declives</rdg>
</app> mitigat aestas,</1>
<l n="2"><app>
<lem>quamvis</lem>
<rdg wit="#¢@ #u #n #0 #r" ano="#lexical">quatinus</rdg>
</app> et madidis incumbant <app>
<lem>praela</lem>
<rdg wit="#P" ana="#lexical #orthographical">praeda</rdg>
</app> racemis</1>
<app type="line-omission">
<lem>
<l n="3">et spument rauco ferventia <app>
<lem>musta</lem>
<rdg wit="#P">iniusta</rdg>
</app> susurro. </1>
</lem>
<rdg wit="#k #x" ano="#subtractive"/>

content/images/Cayless01-003.png
Poem 1. [Corydon, Ornytus]

C.

Nondum Solis equos declinis mitigat aestas,
quamvis et madidis incumbant praela racemis

et spument rauco ferventia musta susurro.
cernis ut ecce pater quas tradidit, Ornyte, vaccae
molle sub hirsuta latus explicuere genista?

