[image: Balisage logo]Balisage: The Markup Conference

Up and Sideways
RTF to XML
Ari Nordström

Up-Translation and Up-Transformation: Tasks, Challenges, and Solutions
July 31, 2017

Copyright © 2017 Ari Nordström

How to cite this paper
Nordström, Ari. "Up and Sideways." Presented at: Up-Translation and Up-Transformation: Tasks, Challenges, and Solutions, Washington, DC, July 31, 2017. In Proceedings of Up-Translation and Up-Transformation: Tasks, Challenges, and Solutions.
 Balisage Series on Markup Technologies vol. 20 (2017). https://doi.org/10.4242/BalisageVol20.Nordstrom01.

Abstract
A conversion of hundreds of Rich Text Format documents to highly structured XML is
 always going to be a challenge and a showcase of XML technologies, even if you are
 excluded from a number of them. This paper is a case study of one such conversion,
 dealing with migrating huge volumes of legal commentary, more specifically the
 classic standard text Halsbury's Laws of England, from RTF to
 XML so new editions can be authored and published in XML to various paper and online
 publication targets.
While describing the migration approach in any detail would probably require a
 book-length paper, this attempts to highlight some of the challenges and their
 solutions.

Balisage: The Markup Conference

 Up and Sideways

 RTF to XML

 Table of Contents

 	Title Page

 	From 10,000 ft
 	The Sources

 	So?

 	Requirements

 	Pipeline
 	Pipeline Mechanics

 	Note on ID Transforms

 	The Fun Stuff
 	Merging Title Files

 	Implicit to Explicit Structure

 	Inline Spans

 	Labels in Headings, List Items, and Footnotes

 	Wrapping List Items in Lists

 	Volume Paragraphs

 	Cross-references and Citations
 	Cross-references

 	Citations

 	Symbols

 	Equations

 	QA
 	XSpec for Pipeline Transformations

 	End Notes
 	Some Notes on Conversion Mechanics

 	Preprocessing?

 	Conclusions

 	Lastly

 	About the Author

 Up and Sideways
RTF to XML

From 10,000 ft
This paper is about converting huge volumes of Rich Text Format (RTF) legal commentary
 to XML. For those of you in the know, this is one of the most painful things an XML geek
 will ever experience; it is always about infinite pain and constant regret. RTF is by
 many seen as a bug, and for good reason.
On the other hand, the project had its upsides. It is sometimes immensely satisfying
 to run a conversion pipeline of several dozens of steps over 104 RTF titles comprising
 tens of megabytes each, knowing the process will take hours—sometimes days—and yet end
 up in valid and well-structured XML. IF that happens.
The Sources
The sources are legal documents, so-called commentary. Much
 of this text concerns the standard text for legal commentary in England,
 Halsbury's Laws of England (see [id-halsbury]), published
 by LexisNexis, but some of the discussion also includes its sister publication for
 Scottish lawyers, Stair Memorial Encyclopaedia, also known
 simply as STAIR.
Halsbury consists of 104 titles, each divided
 into volumes that in turn consist of several physical files. A
 listing of the files in a single title might look like this:
-rw-r--r-- 1 arino 197609 975K Sep 2 2016 09_Children_01(1-92).rtf
-rw-r--r-- 1 arino 197609 1.2M Sep 2 2016 09_Children_02(93-168).rtf
-rw-r--r-- 1 arino 197609 920K Sep 2 2016 09_Children_03(169-212).rtf
-rw-r--r-- 1 arino 197609 1.1M Sep 2 2016 09_Children_04(213-263).rtf
-rw-r--r-- 1 arino 197609 985K Sep 9 2016 09_Children_05(264-299).rtf
-rw-r--r-- 1 arino 197609 1.1M Sep 9 2016 09_Children_06(300-351).rtf
-rw-r--r-- 1 arino 197609 1.1M Sep 2 2016 09_Children_07(352-412).rtf
-rw-r--r-- 1 arino 197609 982K Sep 2 2016 09_Children_08(413-464).rtf
-rw-r--r-- 1 arino 197609 1.3M Sep 2 2016 09_Children_09(465-520).rtf
-rw-r--r-- 1 arino 197609 1.1M Sep 2 2016 09_Children_10(521-571).rtf
-rw-r--r-- 1 arino 197609 1.5M Sep 9 2016 09_Children_11(572-634).rtf
-rw-r--r-- 1 arino 197609 1.5M Sep 2 2016 09_Children_12(635-704).rtf
-rw-r--r-- 1 arino 197609 1015K Sep 2 2016 10_Children_01(705-760).rtf
-rw-r--r-- 1 arino 197609 1.1M Sep 2 2016 10_Children_02(761-806).rtf
-rw-r--r-- 1 arino 197609 1012K Sep 2 2016 10_Children_03(807-857).rtf
-rw-r--r-- 1 arino 197609 1.2M Sep 2 2016 10_Children_04(858-924).rtf
-rw-r--r-- 1 arino 197609 953K Sep 2 2016 10_Children_05(925-973).rtf
-rw-r--r-- 1 arino 197609 1.5M Sep 2 2016 10_Children_06(974-1043).rtf
-rw-r--r-- 1 arino 197609 813K Sep 2 2016 10_Children_07(1044-1089).rtf
-rw-r--r-- 1 arino 197609 1.2M Sep 2 2016 10_Children_08(1090-1149).rtf
-rw-r--r-- 1 arino 197609 1.1M Sep 2 2016 10_Children_09(1150-1207).rtf
-rw-r--r-- 1 arino 197609 1.2M Sep 2 2016 10_Children_10(1208-1243).rtf
-rw-r--r-- 1 arino 197609 1.6M Sep 2 2016 10_Children_11(1244-1336).rtf

Here, the initial number is the volume. It is followed by the name of the title,
 an ordinal number for the physical file, and finally the range of volume
 paragraphs contained within that particular part. Yes, the filenames
 follow a very specific format, necessary to keep the titles apart and enable merging
 together the RTF files when publishing them on paper or online in multiple
 systems.
Each title covers what is known as a practice area, divided into
 volume paragraphs, numbered units much like sections[1], each covering a topic within the area. A topic might look like
 this:
Figure 1: A Volume Paragraph
[image:]

The volparas, as they are usually known, are used by lawyers to assist in their
 work, ranging from drafting wills and arguing tax law to arguing cases in court.
 They suggest precedents, highlight legal interpretations and generally offer
 guidance, and as such, are littered with references to relevant caselaw or
 legislation, sometimes in footnotes, sometimes inline.
When the legislation changes or when new caselaw emerges—which is often—the
 commentary needs to change, too. This is done in several ways over a year: there are
 online updates, so called supplements, which are also edited
 and published on paper commonly known as looseleafs[2] or noterups.
The terminology is more complicated than the actual concept. A volume paragraph
 that changes gets a supplement, added below the main text body of the para. For
 example, this supplements the above volume paragraph:
Figure 2: A Supplement Paragraph
[image:]

The supplements amend the original text, add new references to caselaw and
 legislation, and sometimes delete content that is no longer applicable or correct.
 Sometimes, the changes are big enough to result in the addition of new volume
 paragraphs. These new volume paragraphs inherit the parent vol paras number followed
 by a letter, very much in line with the looseleaf way of thinking.
 Called A paras, they are published online and in the looseleaf
 supplements on paper[3]. And once a year, the titles are edited to include the supplemental
 information. The A paras are renumbered and made into ordinary vol
 paras, and a new year of new supplements begins.

So?
The commentary titles have been produced from the RTF sources for decades, first
 to paper and later to paper and several online systems, with increasingly clever—and
 convoluted, and error-prone—publishing macros, each new requirement resulting in
 further complications. Somewhere along the line, it was decided to migrate the
 commentary, along with huge numbers of other documentation, to XML.
Some of the company's content has been authored in XML for years, with new content
 constantly migrated to XML from various sources. The setup is what I'd label as
 highly distributed, with no central source or point of origin, just an increasing
 number of satellite systems. Similarly, there are a number of target publishing
 systems.

Requirements
LexisNexis, of course, have been publishing from a number of formats for years. XML,
 therefore, is not in any way new for them. The requirements, then, were surprisingly
 clear:
	The target schema is an established, proprietary XML DTD controlled by
 LexisNexis.

	The target system is a customisation on top of an established, proprietary
 CMS, Contenta.

	As we've seen, the source titles consist of multiple files. The target XML, on
 the other hand, needs to be one single file per commentary title. There were a
 number of reasons for this, with perhaps the most important being that the
 target CMS has a chunking solution of its own, one with sizes and composition
 that greatly differs from the RTF files[4].

	As the number of sources is huge and the conversion project was expected to
 take a significant amount of time and effort, a roundtrip back to RTF was
 required for the duration of the project[5]. An existing XML to RTF conversion was already in place but is in
 the process of being extended to handle the new content.

An all-important requirement was a substantial QA on all aspects of the content, from
 the obvious is everything there?[6] to did the upconversion produce the desired semantics? and
 beyond. This implies:
	A pipelined conversion comprising multiple conversion steps, isolating
 concerns and so being able to focus on isolated tasks per step.

	Testing the pipeline, both for individual steps and for making sure that the
 input matched the output, sometimes dozens of conversion steps later.

	Validation of the output. DTD validation, obviously, but also Schmatron
 validation, both for development use and for highlighting possible problems to
 the subject matter experts.

	Generated HTML files listing possible issues. Here, footnotes provide a good
 example as the source RTF markup was sometimes poor, resulting in
 orphaned footnotes, that is, footnotes lackcing a reference
 or footnote references lacking a target.

	And, of course, manual reviews of a conversion of a representative subset,
 both by technical and legal experts, frequently aided by the above validation
 reports.

Pipeline
Thankfully, rather than having to write an RTF parser from scratch, commercial
 software is available to convert RTF to a structured format better suited for further
 conversion, namely WordML. LexisNexis have been using Aspose.Words
 for past conversions, so using it was a given. Aspose was run using Ant macros, with the
 Ant script also in charge of the pipeline that followed.
The basic idea is this:
	Convert RTF to WordML.

	Convert WordML to flat XHTML5.
Note
As RTF and WordML are both essentially event-based formats where any
 structure is implied, this is replicated in an XHTML5 consisting of
 p elements with an attribute stating the name of
 theoriginal RTF style.

	Use a number of subsequent upconversion steps to produce a more structured
 version of the XHTML5, for example by adding nested section
 elements as implied by the RTF style names that identify headings, and so
 on.

	With a sufficiently enriched XHTML5, add a number of steps that first convert
 the XHTML5 to the target XML format and then enrich it, until done.

A recent addition was the realisation that some of the titles contain equations,
 resulting in several further steps. See section “Equations”.
Pipeline Mechanics
The pipeline consists of a series of XSLT stylesheets, each transforming a
 specific subset of the document; one step might convert inline elements while
 another wrap list items into list elements. The XSLTs are run by an
 XProc script (see [id-nicg-xproc-tools]) that determines which XSLTs to run and in which
 order by reading a manifest file:
<?xml version="1.0" encoding="UTF-8"?>
<?xml-model href="../../../../Content%20Development%20Tools/DEV/DataModelling/Physical/Schemata/RelaxNG/production/pipelines/manifest.rng" type="application/xml" schematypens="http://relaxng.org/ns/structure/1.0"?>
<manifest
 xmlns="http://www.corbas.co.uk/ns/transforms/data"
 xml:id="migration.p1.p2"
 description="migration.p1.p2"
 xml:base="."
 version="1.0">

 <group
 xml:id="p12p2.conversion"
 description="p12p2.conversion"
 xml:base="."
 enabled="true">

 <item
 href="p2_structure.xsl"
 description="Do some basic structural stuff"/>
 <item
 href="p2_orphan-supps.xsl"
 description="Handle orphaned supps"/>
 <item
 href="p2_trintro.xsl"
 description="Handle tr:intros"/>
 <item
 href="p2_volbreaks.xsl"
 description="Generate HALS volume break PIs"/>
 <item
 href="p2_para-grp.xsl"
 description="Produce vol paras and supp paras"/>
 <item
 href="p2_blockpara.xsl"
 description="Add display attrs to supp blockparasw.
 Add print-only supp blockparas."/>
 <item
 href="p2_ftnotes.xsl"
 description="Move footnotes inline"/>
 <item
 href="p2_orphan-ftnotes.xsl"
 description="Convert orphaned footnotes in supps to
 paras starting with the footnote label"/>
 <item
 href="p2_removecaseinfo.xsl"
 description="Remove metadata in case refs"/>
 <item
 href="p2_xpp-pi.xsl"
 description="Generate XPP PIs"/>
 <item
 href="p2_xref-cleanup.xsl"
 description="Removes leading and trailing whitespace from xrefs"/>
 <item
 href="p2_cleanup.xsl"
 description="Clean up the XML, including namespaces"/>
 </group>

</manifest>

Each step can also save its output in a debug folder, which is extremely useful
 when debugging[7]:
-rw-r--r-- 1 arino 197609 6.6M Apr 3 12:05 1-p2_structure.xsl.xml
-rw-r--r-- 1 arino 197609 9.2M Apr 3 12:05 2-p2_orphan-supps.xsl.xml
-rw-r--r-- 1 arino 197609 8.8M Apr 3 12:05 3-p2_trintro.xsl.xml
-rw-r--r-- 1 arino 197609 8.8M Apr 3 12:05 4-p2_volbreaks.xsl.xml
-rw-r--r-- 1 arino 197609 8.0M Apr 3 12:05 5-p2_para-grp.xsl.xml
-rw-r--r-- 1 arino 197609 8.0M Apr 3 12:05 6-p2_blockpara.xsl.xml
-rw-r--r-- 1 arino 197609 7.3M Apr 3 12:05 7-p2_ftnotes.xsl.xml
-rw-r--r-- 1 arino 197609 7.3M Apr 3 12:05 8-p2_orphan-ftnotes.xsl.xml
-rw-r--r-- 1 arino 197609 7.3M Apr 3 12:05 9-p2_removecaseinfo.xsl.xml
-rw-r--r-- 1 arino 197609 7.3M Apr 3 12:05 10-p2_xpp-pi.xsl.xml
-rw-r--r-- 1 arino 197609 7.3M Apr 3 12:05 11-p2_xref-cleanup.xsl.xml
-rw-r--r-- 1 arino 197609 6.3M Apr 3 12:05 12-p2_cleanup.xsl.xml
The above pipeline is relatively short, as it transforms an intermediate XML
 format to the target XML format. The main pipeline for converting Halsbury
 Laws of England RTF to XML (the aforementioned intermediate XML
 format) currently contains 39 steps.
The XProc is run using a configurable Ant build script[8] that also runs the initial Aspose RTF to WordML conversion, validates
 the results against the DTD and any Schematrons, and runs the XSpec descriptions
 testing the pipeline steps, among other things.
The pipeline code, including the XProc and its auxiliary XSLTs and manifest file
 schema, is based on Nic Gibson's XProc Tools (see [id-nicg-xproc-tools]) but
 customised over time to fit the evolving conversion requirements at
 LexisNexis.

Note on ID Transforms
Any pipeline that wishes to only change a subset of the input will have to carry
 over anything outside that subset unchanged so a later step can then take care of
 the unchanged content at an appropriate time. This transform, known as the identity,
 or ID, transform, will copy over anything not in scope:
<xsl:template
 match="node()"
 mode="#all">
 <xsl:copy copy-namespaces="no">
 <xsl:copy-of select="@*"/>
 <xsl:apply-templates
 select="node()"
 mode="#current"/>
 </xsl:copy>
</xsl:template>
The subset is then processed by defining a mode for anything in scope, with the
 document element always starting unmoded:
<xsl:template match="/">
 <xsl:apply-templates select="node()" mode="MY_SUBSET"/>
</xsl:template>
Anything outside the subset (mode="MY_SUBSET") is copied over using
 the same ID transform, above, while anything in scope uses moded templates:
<xsl:template
 match="para"
 mode="MY_SUBSET">
 <xsl:copy copy-namespaces="no">
 <xsl:copy-of select="@*"/>
 <xsl:attribute name="needs-review">
 <xsl:value-of
 select="if (parent::*[@pub='supp'])
 then ('yes')
 else ('no')"/>
 </xsl:attribute>
 <xsl:apply-templates
 select="node()"
 mode="MY_SUBSET"/>
 </xsl:copy>
</xsl:template>
This simple design pattern, used by every step in the pipeline, makes it very easy
 to focus on specific tasks, be they to add a single attribute (such as the example
 above) to handling inline semantics.

The Fun Stuff
From a markup geek point of view, the conversion is actually a fascinating mix of
 methods and tools, the horrors of the RTF format notwithstanding. This section attempts
 to highlight some of the more notable ones.
Merging Title Files
The many RTF files comprising the volumes that in turn comprised a single title
 needed to be converted and merged (stitched together) into a single
 output XML file. The earlier publishing system had Word macros do this, but running
 the macro was error-prone and half manual work; it was unsuitable for an automated
 batch conversion of the entire set of commentary titles.
Instead, this approach emerged:
	Convert all of the individual RTFs to matching raw XHTML files where the
 actual content were all p and div elements inside
 the XHTML body element.

	Stitch together the files per commentary title[9] by adding together the contents of the XHTML body
 elements into one big file.
Merging together files per title would have been far more difficult
 without a filename convention used by the editors (also see the listing in
 section “The Sources”):
09_Children_12(635-704).xml
This was expressed in a regular expression[10] (actually three, owing to how the file stitcher works):
<xsl:param
 name="base-pattern"
 select="'[()a-zA-Z0-9_\s%]+'"/>

<xsl:param
 name="numparas-pattern"
 select="'_[0-9]{2}\([0-9]+[A-Z]*[\-][0-9]+[A-Z]*\)'"/>

<xsl:param
 name="suffix-pattern"
 select="'\.xml'"/>
An XProc pipeline listed all the source XHTML in a folder and any
 subfolders, called an XSLT that did the actual work. It grouped the files
 per title, naming each title according to an agreed-upon set of conventions,
 merged each title contents, saving the merged file in a secondary output,
 fed back a list of the original files that were then deleted, leaving behind
 the merged XHTML.

Implicit to Explicit Structure
The raw XHTML produced by the first step from the WordML is a lot like the RTF;
 whatever structure there is, is implicit. Every block-level component is actually a
 p element, with the RTF style given in
 data-lexisnexis-word-style attributes. Here, for example, is a
 level two section heading followed by a volume paragraph with a heading, some
 paragraphs and list items:
<p data-lexisnexis-word-style="vol-H2">
 (1) THE BENEFITS
</p>
<p data-lexisnexis-word-style="vol-PH">
 1. The benefits.
</p>
<p data-lexisnexis-word-style="vol-Para">Following a review of the social security benefits
 system¹, the government introduced universal credit, a new single payment for
 persons looking for work or on a low income².</p>
<p data-lexisnexis-word-style="vol-Para">Universal credit is being phased in³ and
 will replace income-based jobseeker’s allowance⁴, income-related employment and
 support allowance⁵, income support⁶, housing benefit⁷,
 child tax credit and working tax credits⁸.</p>
<p data-lexisnexis-word-style="vol-Para">Council tax benefit has been abolished and replaced by
 council tax reduction schemes⁹.</p>
<p data-lexisnexis-word-style="vol-Para">In this title, welfare benefits are considered under
 the following headings:</p>
<p data-lexisnexis-word-style="vol-L1">(1)entitlement to universal
 credit¹⁰;</p>
<p data-lexisnexis-word-style="vol-L1">(2)claimant responsibilities,
 including work related requirements¹¹;</p>
<p data-lexisnexis-word-style="vol-L1">(3)non-contributory benefits,
 including carer’s allowance, personal independence payment, disability living allowance,
 attendance allowance, guardian’s allowance, child benefit, industrial injuries benefit, the
 social fund, state pension credit, age-related payments and income related benefits that are
 to be abolished¹²;</p>
<p data-lexisnexis-word-style="vol-L1">(4)contributions¹³;</p>
<p data-lexisnexis-word-style="vol-L1">(5)contributory benefits, including
 jobseeker’s allowance, employment and support allowance, incapacity benefit, state maternity
 allowance and bereavement payments¹⁴;</p>
<p data-lexisnexis-word-style="vol-L1">(6)state retirement
 pensions¹⁵;</p>
<p data-lexisnexis-word-style="vol-L1">(7)administration¹⁶;
 and</p>
<p data-lexisnexis-word-style="vol-L1">(8)European law¹⁷.</p>
<p data-lexisnexis-word-style="vol-PH">
 2. Overhaul of benefits.
</p>
<p data-lexisnexis-word-style="vol-Para">In July 2010 the government published its consultation
 paper 21st Century Welfare setting
 out problems of poor work incentives and complexity in the existing benefits and tax credits
 systems¹. The paper considered the following five options for reform: (1)
 universal credit²; (2) a single unified taper³; (3) a single working
 age benefit⁴; (4) the Mirrlees model⁵; and (5) a single
 benefit/negative income tax model⁶.</p>
The implied structure (a level two section containing a volume paragraph that in
 turn contains a heading, a few paragraphs and a list) is made explicit using a
 series of steps.

Inline Spans
RTF, as mentioned earlier, is a non-enforceable, event-based, flat format. It
 lists things to do with the content in the order in which the instructions appear,
 with little regard to any structure, implied or otherwise. The instructions happen
 when the author inserts a style, either where the marker is or on a selected range
 of text. This can be done as often as desired, of course, and will simply add to
 existing RTF style instructions, which means that an instruction such as use
 bold might be applied multiple times on the same, or mostly the same,
 content.
The resulting raw XHTML converted from WordML might then look like this
 (indentatiton added for clarity):
<p data-lexisnexis-word-style="vol-PHa">
 2.O
 pen
 ing
 a childcare account
</p>
Simply mapping and converting this to a target XML format will not result in what
 was intended (i.e. <core:para><core:emph>2. Opening a childcare
 account</core:emph></core:para>) but instead a huge mess, so
 cleanup steps are required before the actual conversion, merging spans, eliminating
 nested spans, etc.
With just one intended semantics such as mapping bold to an emphasis tag, the
 cleanup can be relatively uncomplicated. When more than one style is present in the
 sources, however[11], the raw XHTML is anything but straight-forward. Heading labels (see
 section “Labels in Headings, List Items, and Footnotes”),
 cross-references and case citations (see section “Cross-references and Citations”) all have
 problems in part caused by the inline span elements.

Labels in Headings, List Items, and Footnotes
The span elements cause havoc in headings and any kind of ordered
 list, as the heading and list item labels use many different types of numbering in
 legal commentary. A volpara sometimes includes half a dozen ordered lists, each of
 which must use a different type of label (numbered, lower alpha, upper alpha, lower
 roman, ...) so the items can be referenced later without risking confusion.
Here, for example, is a level one list item using small caps alphanumeric:
<p data-lexisnexis-word-style="vol-L1">(a)the
 allowable losses accruing to the transferor are set off against the chargeable gains so accruing
 and the transfer is treated as giving rise to a single chargeable gain equal to the aggregate of
 the gains less the aggregate of the losses²²;</p>
Note the tab character, mapped to a span[@class='tab'] element in the
 XHTML, separating the label from the list contents, but also the parentheses
 wrapping the smallcaps
 span. The code used to extract the list item contents, determine the
 list type used, and extract the labels must take into account a number of
 variations.
The source RTF list items all follow the same pattern, a list item label followed
 by a tab and the item contents:
Figure 3: List Items
[image:]

In the XHTML, the result is this:
<p data-lexisnexis-word-style="vol-L1">(1)protecting plants or wood or other
 plant products from harmful organisms⁸;</p>
<p data-lexisnexis-word-style="vol-L1">(2)regulating the growth of
 plants⁹;</p>
<p data-lexisnexis-word-style="vol-L1">(3)giving protection against harmful
 creatures¹⁰;</p>
<p data-lexisnexis-word-style="vol-L1">(4)rendering such creatures
 harmless¹¹;</p>
<p data-lexisnexis-word-style="vol-L1">(5)controlling organisms with harmful
 or unwanted effects on water systems, buildings or other structures, or on manufactured
 products¹²; and</p>
Footnotes use a similar construct, separating the label from the contents with a
 tab character:
Figure 4: Footnotes
[image:]

In both cases, the XSLT essentially attempts to determine the type of list by
 analysing the content before
 span[@class="tab"] to create a list item element with the list type
 information placed in @type, and then includes everything
 after the span as list item contents:
<?xml version="1.0" encoding="UTF-8"?>
<xsl:when
 test="@data-lexisnexis-word-style=('L1', 'vol-L1', 'vol-L1CL', 'vol-L1P', 'sup-L1', 'sup-L1CL')">
 <!-- Note that the if test is needed to parse lists where the number and tab are in italics or similar -->
 <!-- the span must be non-empty since the editors sometimes use a new list item but then remove the
 numbering and leave the tab (span class=tab) to make it look as if it was part of the immediately
 preceding list item -->
 <xsl:element
 name="core:listitem">
 <xsl:attribute
 name="type">
 <xsl:choose>
 <xsl:when
 test="span[1][@class='smallcaps' and
 matches(.,'\(?[a-z]+\)?')]">
 <xsl:analyze-string
 select="span[1]"
 regex="^(\(?[a-z]+\)?)$">
 <xsl:matching-substring>
 <xsl:choose>
 <xsl:when
 test="regex-group(1)!=''">upper-alpha</xsl:when>
 </xsl:choose>
 </xsl:matching-substring>
 </xsl:analyze-string>
 </xsl:when>

 <xsl:otherwise>
 <xsl:analyze-string
 select="if (node()[1][self::span and .!=''])
 then (span[1]/text()[1])
 else (text()[1])"
 regex="^(\(([0-9]+)\)[\s]?)|
 (\(([ivx]+)\)?[\s]?)|
 (\(([A-Z]+)\))|
 (\(([a-z]+)\))$">
 <xsl:matching-substring>
 <xsl:choose>
 <xsl:when
 test="regex-group(1)!=''">number</xsl:when>
 <xsl:when
 test="regex-group(3)!=''">lower-roman</xsl:when>
 <xsl:when
 test="regex-group(5)!=''">upper-alpha</xsl:when>
 <xsl:when
 test="regex-group(7)!=''">lower-alpha</xsl:when>
 </xsl:choose>
 </xsl:matching-substring>
 <xsl:non-matching-substring>
 <xsl:value-of
 select="'plain'"/>
 </xsl:non-matching-substring>
 </xsl:analyze-string>
 </xsl:otherwise>
 </xsl:choose>

 </xsl:attribute>

 <xsl:element name="core:para">
 <xsl:copy-of
 select="@*"/>
 <!-- This does not remove the numbering of list items where the numbers
 are inside spans (for example, in italics); that we handle later -->
 <xsl:apply-templates
 select="node()[not(following-sibling::span[@class='tab'])]"
 mode="KEPLER_STRUCTURE"/>
 </xsl:element>
 </xsl:element>
</xsl:when>

The xsl:choose handles two cases. The first handles a case where the
 list item label was in a small caps RTF style (here translated to
 span[@class="smallcaps"] in a previous step), the second deals with
 all remaining types of list item labels. The key in both cases is a regular
 expression that relies on the original author writing a list item in the same way,
 every time[12]. I've added line breaks in the above example to make the regex easier to
 read; essentially, the different cases simply replicate the allowed list
 types.
The overall quality of the RTF (list and footnote) sources was surprisingly good,
 but since the labels were manually entered, this would sometimes break the
 conversion.
Headings are somewhat different. Here is a level four heading:
<p data-lexisnexis-word-style="vol-H4">c. housing costs</p>
There is no tab character separating the label from the heading contents, so we
 are relying on whitespace rather than a mapped span element to separate
 the label and the heading contents from each other. The basic heading label
 recognition mechanism still relies on pattern-matching the label, however. The
 difficulties here would usually involve the editor using a bold or smallcaps RTF
 style to select the label, but accidentially marking up the space that followed,
 necessitating
Note
Here, the contents are in lower case only. The RTF vol-H4
 style automatically provided the small caps formatting, so editors would simply
 enter the text without bothering to use title caps. This resulted in a
 conversion step that, given an input string, would convert that string to
 heading caps, leaving prepositions in lower case and
 adding all caps to a predefined list of keywords such as UK or
 EU.

The code to identify list item, footnote, and heading labels evolved over time,
 recognising most variations in RTF style usage, but nevertheless, some problems were
 only spotted in the QA that followed (see section “QA”).

Wrapping List Items in Lists
List items in RTF have no structure, of course. They are merely paragraphs with
 style instructions that make them look like lists by adding a label before the
 actual contents, separating the two with a tab character as seen in the previous
 section.
That step does not wrap the list items together, it merely identifies the list
 types and constructs list item elements. A later step adds list wrapper elements by
 using xsl:for-each-group instructions such as this:
<xsl:template
 match="*[core:listitem[core:para/@data-lexisnexis-word-style=('L1','L2','L3',
 'vol-L1','vol-L1CL','vol-L2','vol-L3', 'sup-L1', 'sup-L1CL', 'sup-L2',
 'sup-L3', 'term-ref', 'vol-FL1', 'vol-FL2')]]"
 mode="KEPLER_LISTS"
 priority="1">
 <xsl:copy copy-namespaces="no">
 <xsl:copy-of select="@*"/>
 <xsl:for-each-group
 select="*"
 group-adjacent="boolean(self::core:listitem[core:*/@data-lexisnexis-word-style=('L1','L2','L3',
 'vol-L1', 'vol-L1CL', 'vol-L1P', 'vol-Quote', 'vol-L2','vol-L3',
 'sup-L1', 'sup-L1CL', 'sup-L2', 'sup-L3', 'term-ref',
 'vol-QuoteL1', 'vol-FL1', 'vol-FL2')])">
 <xsl:choose>
 <xsl:when test="current-grouping-key()">
 <xsl:element name="core:list">
 <xsl:call-template name="restart-attr"/>
 <xsl:attribute name="type" select="@type"/>
 <xsl:for-each-group
 select="current-group()"
 group-adjacent="boolean(self::core:listitem[core:*/@data-lexisnexis-word-style=('L2','L3',
 'vol-L1P', 'vol-Quote','vol-L2','vol-L3',
 'sup-L2', 'sup-L3','term-ref', 'vol-FL2')])">
 <xsl:choose>
 <xsl:when test="current-grouping-key()">
 <xsl:element name="core:list">
 <xsl:attribute
 name="type"
 select="@type"/>
 <xsl:apply-templates
 select="current-group()" mode="KEPLER_LISTS"/>						
 </xsl:element>
 </xsl:when>
 <xsl:otherwise>
 <xsl:apply-templates
 select="current-group()"
 mode="KEPLER_LISTS"/>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:for-each-group>
 </xsl:element>
 </xsl:when>
 <xsl:otherwise>
 <xsl:apply-templates
 select="current-group()"
 mode="KEPLER_LISTS"/>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:for-each-group>
 </xsl:copy>
</xsl:template>
Note the many different RTF styles taken into account; these do not all do
 different things, they are actually duplicates or near duplicates, the result of the
 non-enforceable nature of RTF. Also note the boolean() expression in
 @group-adjacent. The expression checks for matching attribute
 values in the children of the list items, as these will still
 have the style information from the RTFs.
The xsl:for-each-group instruction is frequently used in the pipeline
 steps as it is perfect when grouping a flat content model to make any implied
 hierarchies in it explicit.

Volume Paragraphs
The volume paragraphs provide another implicit sction grouping. They are
 essentially a series of block-level elements that always start with a numbered title
 (see Figure 1). The raw XHTML looks something like this:
<p data-lexisnexis-word-style="vol-PH">
 104. Claimants required to participate in an interview.
</p>

<p data-lexisnexis-word-style="vol-Para">...</p>
<p data-lexisnexis-word-style="vol-L1">...</p>
<p data-lexisnexis-word-style="vol-L1">...</p>
<p data-lexisnexis-word-style="vol-L1">...</p>
<p data-lexisnexis-word-style="vol-Para">....</p>

<p data-lexisnexis-word-style="sup-PH">
 104
 Claimants required to participate in an interview
</p>
<p data-lexisnexis-word-style="sup-Para">...</p>
Using the kind of upconversions outlined above, the result is a reasonably
 structured sequence of block-level elements:
<core:para edpnum-start="104">
 <core:emph typestyle="bf">Claimants required to participate in an interview.</core:emph>
</core:para>

<core:para>...</core:para>
<core:list type="number">
 <core:listitem type="number">
 <core:para data-lexisnexis-word-style="vol-L1">...</core:para>
 </core:listitem>
 <core:listitem type="number">
 ...
 </core:listitem>
 ...
</core:list>
<core:para>...</core:para>
With longer volume paragraphs, frequently with supplements added, processing them
 becomes difficult and unwieldy.
Figure 5: Supplement Added
[image:]

We added semantics to the DTD to make later publishing and processing easier,
 wrapping the volume paragraphs and the supplements inside them:
<core:para-grp>
 <core:desig value="104">104.</core:desig>
 <core:title>Claimants required to participate in an interview.</core:title>

 <core:para>...</core:para>
 <core:list type="number">
 <core:listitem>
 <core:para>...</core:para>
 </core:listitem>
 <core:listitem>
 ...
 </core:listitem>
 ...
 </core:list>
 <core:para>...</core:para>
 <su:supp pub="supp">
 <core:no-title/>
 <su:body>
 <su:para-grp>
 <core:desig value="104">104</core:desig>
 <core:title>Claimants required to participate in an interview</core:title>
 <core:para>...</core:para>
 </su:para-grp>
 </su:body>
 </su:supp>
</core:para-grp>

This was achieved using a two-stage transform where the first template, matching
 volume paragraph headings (para[@edpnum-start] elements) only, would
 add content along the following-sibling axis until (but not including)
 the next volume paragraph heading[13]:
<!-- Common template for following-sibling axis -->
<xsl:template name="following-sibling-blocks">
 <xsl:param name="num"/>
 <xsl:apply-templates
 select="following-sibling::*[(local-name(.)='para' or
 local-name(.)='list' or
 local-name(.)='blockquote' or
 local-name(.)='figure' or
 local-name(.)='comment' or
 local-name(.)='legislation' or
 local-name(.)='endnotes' or
 local-name(.)='supp' or
 local-name(.)='generic-hd' or
 local-name(.)='q-a' or
 local-name(.)='digest-grp' or
 local-name(.)='form' or
 local-name(.)='address' or
 local-name(.)='table' or
 local-name(.)='block-wrapper') and
 not(@edpnum-start) and
 preceding-sibling::core:para[@edpnum-start][1][@edpnum-start=$num]]"
 mode="P2_INSIDE_PARA-GRP"/>
</xsl:template>
This, of course, created duplicates of every block-level sibling in what
 essentially is a top-down transform, so a second pattern was needed to eliminate the
 duplicates in a matching child axis template:
<xsl:template
 match="core:list|
 core:para[not(@edpnum-start)]|
 core:blockquote|
 table|
 core:figure|
 lnb-leg:legislation|
 fn:endnotes|
 form:form|
 core:comment|
 core:q-a|
 core:generic-hd|
 lnbdig-case:digest-grp|
 su:supp|
 su:block-wrapper"
 mode="P2_PARA-GRP"
 priority="1"/>
The supplements were enriched using a similar pattern, including along the
 following-sibling axis and deleting the resulting duplicates along
 the descendant axis.

Cross-references and Citations
Perhaps the most significant case of upconversion came with cross-references and
 citations (to statutes, cases, and so on).
Cross-references
A cross-reference in the RTFs would always be manually entered in the RTF sources[14]:
Figure 6: Cross-reference to a Volume Paragraph in the Current Title
[image:]

The cross-reference here is the keyword para followed by
 a (volume paragraph) number. The problem here is that the only identifiable
 omponent was the para (or paras, in case of multiple volume paragraph
 references) keyword:
As to the meaning of allowable losses
see para 609.
In some cases, the editor had used the small caps style on the number in
 addition to the keyword, causing additional complications.
The reference might be to a combined list of numbers and ranges of
 numbers:
paras 10–21, 51, 72–74
These were handled in a regular expression that would locate the keyword and
 attempt to match characters in the first following-sibling text node[15]:
<xsl:when
 test="matches(following-sibling::text()[1],
 '^[\s]*[0-9]+[A-Z]*([–][0-9]+[A-Z]*)?(,\s+[0-9]+[A-Z]*([–][0-9]+[A-Z]*)?)*')">
 <xsl:analyze-string
 select="following-sibling::text()[1]"
 regex="^[\s]*([0-9]+[A-Z]*([–][0-9]+[A-Z]*)?(,\s+[0-9]+[A-Z]*([–][0-9]+[A-Z]*)?)*)(.+)$">
 <xsl:matching-substring>
 <xsl:text> </xsl:text>
 <xsl:for-each
 select="tokenize(regex-group(1),',')">
 <lnci:paragraph>
 <xsl:attribute
 name="num"
 select="if (matches(.,'–'))
 then (normalize-space(substring-before(.,'–')))
 else normalize-space(.)"/>
 <xsl:if test="matches(.,'–')">
 <xsl:attribute name="lastnum">
 <xsl:value-of
 select="normalize-space(substring-after(.,'–'))"/>
 </xsl:attribute>
 </xsl:if>
 <xsl:value-of
 select="normalize-space(.)"/>
 </lnci:paragraph>
 <xsl:if test="position()!=last()">
 <xsl:text>, </xsl:text>
 </xsl:if>
 </xsl:for-each>
 <xsl:value-of select="regex-group(5)"/>
 </xsl:matching-substring>
 </xsl:analyze-string>
</xsl:when>
Note
The xsl:when shown here covers the case where the reference
 follows after the keyword.
The regular expression includes letters after the numbers to accommodate
 the so-called A paras.

This needed to be combined with a kill template for the same
 text node but on a descendant axis. In other words, something like this:
<xsl:template
 match="node()[self::text() and
 preceding-sibling::*[1][self::*:span and @class='smallcaps' and
 matches(.,'^para[s]?[\s]*$')]]"
 mode="KEPLER_CONSTRUCT-REFS"/>
The end result would be something like this (indentation added for
 readability):
see the Taxation of Chargeable Gains Act 1992 s 21(1); and
<core:emph typestyle="smcaps">para</core:emph>
<lnci:cite type="paragraph-ref">
 <lnci:book>
 <lnci:bookref>
 <lnci:paragraph num="613"/>
 </lnci:bookref>
 </lnci:book>
 <lnci:content>613</lnci:content>
</lnci:cite>.
If the reference was given to a list, each list item would be tagged in a
 separate lnci:cite element, while a range would instead add a
 lastnum attribute to the lnci:cite.
The following-sibling axis to match content, paired with a
 descendant axis to delete duplicates is, as we have seen,
 frequently used in the pipeline.
In some cases, the cross-reference would point to a volume paragraph in a
 different title:
Figure 7: Cross-reference to a Different Title
[image:]

Here, we'd have the target title name styled in an
 *xtitle RTF style, here in purple, followed by
 text-only volume number information, the para keyword, and
 the target volume paragraph number. This was handled much like the above, the
 difference being an additional step to match the title in a separate step and
 combine the title with the cross-reference markup in yet another step.

Citations
Halsbury's Laws of England contain huge numbers of
 citations, but very few of them have any kind of RTF styling and were thus
 mostly unidentifiable in the conversion. Instead, they will be handled later,
 when the XML is uploaded into the target CMS, by using a cite pattern-matching
 tool developed specifically for the purpose.
The sister publication for Scotland, on the other hand, had plenty of case
 citations, most of which would look like this:
Figure 8: Case Citations
[image:]

Here, the blue text indicates the case name and uses the
 *case RTF style, while the brown(-ish) text is the
 actual formal citation and uses the RTF style *citation.
 The citation markup we want looks like this:
<lnci:cite>
 <lnci:case>
 <lnci:caseinfo>
 <lnci:casename>
 <lnci:text
 txt="Bushell v Faith"/>
 </lnci:casename>
 </lnci:caseinfo>
 <lnci:caseref
 normcite="[1970] AC 1099[1970]1All ER 53, HL"
 spanref="spd93039e7444"/>
 </lnci:case>
 <lnci:content>
 <core:emph typestyle="it">Bushell v Faith</core:emph>
 <lnci:span
 spanid="spd93039e7444"
 statuscode="citation">[1970] AC 1099,
 [1970], 1, All ER 53, HL</lnci:span></lnci:content>
</lnci:cite>
Essentially, the citation consists of two parts, one formal part where the
 machine-readable citation (in the normcite attribute) lives, along
 with the case name, and another, referenced by the formal part (the
 spanref/spanid is an ID/IDREF pair, in case you
 didn't spot it), where the content visible to the end user lives.
My first approach was to convert the casename and citation parts in one step,
 then merge the two and add the wrapper markup when done in another.
 Unfortunately, there were several problems:
	Neither the casename nor the citation was always present. Sometimes, a
 case would be referred to only by its citation. Sometimes, a previously
 referred case would be referred to again using only its name.

	Multiple case citations might occur in a single paragraph, sometimes
 in a single sentence.

	Sometimes, there woul be other markup between the
 casename and its matching citation.

	As the RTF style application was done manually, there were plenty of
 edge cases where not all of the name or citation had been selected and
 marked up. In quite a few, the unmarked text was then selected and
 marked up separately, resulting in additional span elements
 in the raw XHTML.

This resulted in the citation construction being divided into three separate
 steps, beginning with a cleanup to fnd and merge span elements, a
 second to handle the casenames and citations, and a third to construct the
 wrapper markup with the two citation parts and the ID/IDREF pairs.
 This sounds simple enough, but consider the following: In a paragraph containing
 multiple citations, how does one know what span belongs to what
 citation? How does ne express that in an XSLT template? Here is a relatively
 simple one:
Secretary of State for Business,
 Enterprise and Regulatory Reform v UK Bankruptcy Ltd
<core:emph typestyle="it"> </core:emph>
[2010] CSIH 80,

2011 SC 115,
2010 SCLR 801,
2010 SLT 1242,
[2011] BCC 568.
Do all citations belong to the same casename? Only the first? Here is another
 one (note that it's all in a single sentence):
Bushell v Faith
[1970] AC 1099,
[1970]
1
All ER 53, HL;
Cumbrian Newspapers Group Ltd v
 Cumberland and Westmorland Newspapers and Printing Co Ltd
[1987] Ch 1,
[1986] 2 All ER 816.
Note the fragmentation of spans and the comma and semicolon separators,
 respectively. When looking ahead along the following-sibling axis,
 how far should we look? Would the semicolon be a good separator? The
 comma?
The decision was a combination of asking the editors to update some of the
 more ambiguous RTF citations and a relatively conservative approach where
 situations like the above resulted in multiple case citation markup. There was
 no way to programmatically make sure that a preceding case name is actually part
 of the same citation.

Symbols
An unexpected problem was with missing characters: en dashes (U+2013) and em
 dashes (U+2014) would mysteriously disappear in the conversion. After looking at the
 debug output of the early steps, I realised that the characters were actually
 symbols, inserted using Insert Symbol in Microsoft Word. In
 WordML, the symbols were mapped to w:sym elements, but these were then
 discarded.
When looking at the extent of the problem, it turned out that the affected
 documents were all old, meaning an older version of Microsoft Word and implying that
 the problem with symbols was fixed in later versions, inserting Unicode caracters
 rather than (presumably) CP1252 characters. Furthermore, only two symbols were used
 from the symbol map, the en and em dashes. This fixed the problem:
<xsl:param name="charmap">
 <symbols>
 <symbol>
 <wchar>F02D</wchar>
 <ucode>–</ucode>
 </symbol>
 <symbol>
 <wchar>F0BE</wchar>
 <ucode>—</ucode>
 </symbol>
 </symbols>
</xsl:param>

<xsl:template
 match="w:sym[@w:char and @w:font='Symbol']">
 <xsl:param
 name="wchar"
 select="@w:char"/>
 <xsl:value-of
 select="$charmap//symbol[wchar=$wchar]/ucode/text()"/>
</xsl:template>

Equations
A very recent issue, two weeks old as I write this, is the fact that a few of the
 titles contain equations created in Microsoft Equation 3.0. The
 equations would quietly disappear during our test conversions without me noticing,
 until one of the editors had the good sense to check. What happened was that Aspose
 converted the equtions to uuencoded and gzipped Windows Meta Files and embedded them
 in a binary object elements that were then discarded.
Unfortunately for me, the requirements extended beyond equations as images, which
 required me to rethink the process. What I'm doing now is this:
	Add placeholder processing instructions in an early step to mark where to
 (re-)insert equations later. Finish converting the title to XML.

	Convert the RTF to LaTeX. It turns out that there are quite a few
 converters available open source, including some that handle Microsoft
 Equation 3.0. What I've decided on for now is
 rtf2latex2e (see [id-rtf2latex]), as
 it is very simple to run from an Ant script and provides reasonable-looking
 TeX, meaning that the equations are handled. The process can also be
 customised, mapping RTF styles to LaTeX macros so some of the hidden styles
 I need to identify title metadata are kept intact.

	Convert the LaTeX to XHTML+MathML. Again, it turns out that there are
 quite a few options available. I chose a converter called
 TtM (see [id-ttm]). It
 produces some very basic and very ugly XHTML, but the equations are pure
 presentation MathML.

	Extract the equations per title, in document order, and reinsert them in
 the converted XML titles where the PIs are located.

This process is surprisingly uncomplicated and very fast. There are a few niggles
 as I write this, most to do with the fact that I need to stitch together the
 XHTML+MathML result files to match the converted XML, but I expect to have completed
 the work within days.

QA
With a conversion as big as the Halsbury titles migration,
 quality assurance is vital, both when developing the pipeline steps and after running
 them. Here are some of the more important QA steps taken:
	Most of the individual XSLT steps were developed using XSpec tests for unit
 testing to make sure that the templates did what they were supposed to.

	We also used XSpec tests to validate the content for key steps in the
 pipeline. Typically, an XSpec test might perform node counts before and after a
 certain step, making sure that nothing was being systematically lost.

	Headings, list items and footnotes were particularly prone to problems, as the
 initial identification of content as being a labelled content type rather than,
 say, an ordinary paragraph relied solely on pattern matching (see section “Labels in Headings, List Items, and Footnotes”). A failed
 list item conversion would usually result in an ordinary paragraph (a
 core:para element) with a procesing attribute
 (@data-lexisnexis-word-style) attached, hinting at where the
 problem occurred and what the nature of the problem was (the contents of the
 processing attribute giving the name of the original RTF style).

	Obviously, DTD validation was part of the final QA.

	The resulting XML was also validated against Schematron rules, some of which
 were intended for developers and others for the subject matter experts going
 through the converted material. For example, a number of the rules highlighted
 possible issues with citations and cross-references, due to the many possible
 problems the pipeline might encounter because of source issues (see section “Cross-references and Citations”).
Other schematron rules provided sanity checks, for example, that heading and
 list item labels were in sequence and were being extracted correctly.

	Some conversion steps were particularly error-prone because of the many
 variations in the sources, so these steps included debug information inside XML
 comments. These were then used to generate reports for the SME review.
Footnotes, for example, would sometimes have a broken footnote reference due
 to a missing target or a wrongly applied superscript style or simply the wrong
 number. All these cases would generate a debug comment that would then be
 included in an HTML report to the SME review.

XSpec for Pipeline Transformations
XSpec, of course, is a testing framework for single
 transformations, meaning one XSLT applied to input producing output,
 not a testing framework for testing a pipeline comprising several XSLTs with
 multiple inputs and outputs. Our early XSpec scenarios were therefore used for
 developing the individual steps, not for comparing pipeline input and output, which
 initially severely limited the usability of the framework in our
 transformations.
To overcome this limitation, I wrote a series of XSLT transforms and Ant macros to
 define a way to use XSpecs on a pipeline. While still not directly comparing
 pipeline input and output, the Ant macro, run-xspecs, accepted an XSpec
 manifest file (compare this to the XSLT manifest briefly described in section “Pipeline Mechanics”)
 that declared on which pipeline steps to apply which XSpec tests and produce
 concatenated reports. Here's a short XSpec manifest file:
<?xml version="1.0" encoding="UTF-8"?>
<tests
 xmlns="http://www.sgmlguru.org/ns/xproc/steps"
 manifest="xslt/manifest-stair-p1-to-p2.xml"
 xml:base="file:/c:/Users/nordstax/repos/ca-hsd/stair">

 <!-- Use paths relative to /tests/@xml:base for pipeline manifest, XSLT and XSpec -->

 <test
 xslt="xslt/p2_structure.xsl"
 xspec="xspec/p2_structure.xspec"
 focus="batch"/>
 <test
 xslt="xslt/p2_para-grp.xsl"
 xspec="xspec/p2_para-grp.xspec"
 focus="batch"/>
 <test
 xslt="xslt/p2_ftnotes.xsl"
 xspec="xspec/p2_ftnotes.xspec"
 focus="batch"/>

</tests>

The assumption is here that the pipeline produces debug step output (see section “Pipeline Mechanics”) so
 the XSpec tests can be applied on the step debug inputs/outputs. The
 run-xspecs macro includes a helper XSLT that takes the basic XSpecs
 (three of them in the above example) and transforms them into XSpec instances for
 each input and output XML file to be tested[16]. The Ant build script then runs each generated XSpec test and generates
 XSpec test reports.
The run-xspecs code, while still in development and rather lacking in
 any features we don't currently need, works beautifully and has significantly eased
 the QA process.

End Notes
Some Notes on Conversion Mechanics
Some notes on the conversion meachanics:
	The conversions were run by Ant build scripts that ran all of the various
 tasks, from Aspose RTF to WordML, the pipeline(s), validation, XSpec tests
 and reporting.

	The volumes were huge. We are talking about several gigabytes of
 data.

	The conversions, all of them in batch, were done on a file system. While I
 don't recommend this approach (I would gladly have done conversion in an XML
 database), it does work.

	The pipeline enabled a very iterative approach.

It should be noted that while I keep talking about a
 pipeline, several similar data migrations were actually done in parallell with other
 products, each with similar pipelines and similar challenges. The techniques
 discussed here apply to those other pipelines, of course, but they all had their
 unique challenges. While the pipelines all had a common ancestor, a first pipeline
 developed to handle forms publication, they were developed at different times by
 different people on different continents.
Even so, yours truly did refactor, merge and rewrite two of his pipelines for two
 separate legal commentary products into a single one where a simple reconfiguration
 of the pipeline using build script properties was all that was needed to switch
 between the two products.
Note
An alternative way of doing pipelines is explored in a 2017 Balisage paper I
 had the good fortune to review before the conference,
 micropipelining. This paper, Patterns and
 antipatterns in XSLT micropipelining by David J. Birnbaum, explores micropipelining, a
 pipelining method where a pipeline in a single XSLT is constructed by adding a
 series of variables, each of them a step doing something to the input.
We used these techniques in some of our steps, essentially creating pipelines
 within pipelines. Describing them would bring up the size of this paper to that
 of a novel, so I recommend you to read David's paper instead.

Preprocessing?
One of the reviewers of this paper wanted to know if preprocessing the content
 would have helped. While his or her question was specifically made in the context of
 processing list items, footnotes and headings, the answer I wish to provide should
 apply to everything in this paper:
First, yes, preprocessing helps! We did, and we do, a lot of
 that. Consider that the RTFs were (and still are, at the time of this writing) being
 used for publishing in print and online, and some of the problems encountered when
 migrating are equally problematic when publishing. There are numerous Microsoft Word
 macros in place to check, and frequently correct, various aspects of the content
 before publication. To pick but one example, there is a macro that converts every
 footnote created using Microsoft functionality to an inline superscripted label
 matching its footnote body placed elsewhere in the document, as the MS-style
 footnotes will break the publishing (and migration) process.
Second, what is the difference between a preprocess and a pipeline step? If it's
 simply that the former is something done to the RTFs, before the pipelined
 conversion domain, the line is already somewhat blurred. The initial conversion
 takes the RTF to first docx and then to XHTML, but I would argue that the XHTML is a
 reasonably faithful reproduction of the RTF's event-based semantics and so equally
 well-suited for preprocessing, unless the problem we want to solve is
 the lack of semantics, neatly bringing me to my final point.
Third, the kind of problem that cannot be solved by
 preprocessing is an authoring mistake, typically ranging from not using a style to
 using the wrong one. It is the very lack of semantics that is the problem. If the
 style used was the wrong one, the usual consequence is a processing attribute left
 behind and discovered during QA. This can be detected but it cannot be automatically
 fixed.
That said, we did sometimes preprocess the RTF rather than adding a pipeline step,
 mostly because there was already a macro to process the RTFs that did what we
 wanted, not because the macro did something the pipeline couldn't.

Conclusions
Some conclusions I am willing to back up:
	A conversion from RTF to XML is error-prone but quite possible to
 automate.

	The slightest errors in the sources will cause problems but they can be
 minimised and controlled. At the very least, it is possible to develop
 workarounds with relative ease.

	A pipeline with a multitude of steps is the way to go, every step doing
 one thing and one thing only.
 It is easy for a developer to defocus ever so slightly and add more to a
 step than intended (I'll just fix this problem here so I don't have
 to do another step). This is bad. Remain focussed and your
 colleagues will thank you.

Lastly
Here's where I thank my colleagues at LexisNexis, past and present, without whom I
 would most certainly be writing about something else. Special thanks must go to
 Shely Bhogal and Mark Shellenberger, my fellow Content Architects in the project,
 but also to Nic Gibson who designed and wrote much of the underlying pipeline
 mechanics.
Also, thanks to Fiona Prowting and Edoardo Nolfo, my Project Manager and Line
 Manager, respectively, who sometimes believe in me more than I do.

References
[id-halsbury] Halsbury's Laws of England http://www.lexisnexis.co.uk/en-uk/products/halsburys-laws-of-england.page#
[id-nicg-xproc-tools] XProc Tools
 https://github.com/Corbas/xproc-tools
[id-rtf2latex] rtf2latex2e
 http://rtf2latex2e.sourceforge.net/
[id-ttm] TtM, a TeX to MathML translator http://hutchinson.belmont.ma.us/tth/mml/

[1] And seen as such; the terminology may sometimes be confusing for structure
 nazis like yours truly.
[2] Originally referring to literally loose leafs to be
 added to binders.
[3] Sometimes the changes warrant whole new chapters or sections containing
 the new A paras. These chapters and sections will then follow
 the number-letter numbering conventions.
[4] Another being that the paper publishing system, SDL
 XPP, a proprietary print solution for XML used by
 LexisNexis, appears to require a single file as input.
[5] Another early motivation for the roundtrip was to have the in-house
 editors perform QA on the converted files—by first converting them back
 to RTF. Thankfully, we were able to show the client that there are
 better ways to perform the QA.
[6] A surprisingly difficult question to answer when discussing several gigabytes
 of data.
[7] Enabling the developer to run a step against the previous step's
 output.
[8] Options include debug output, stitch patterns, validation, and much
 more.
[9] There were more than a hundred titles, meaning more than a
 thousand physical files.
[10] What's shown here are the default patterns in the file stitcher
 XSLT. In reality, as several different commentary title sets were
 converted, the calling XProc pipeline would add other
 patterns.
[11] Legal documents tend to add small caps to their formatting, just to pick
 one example.
[12] While the RTF template includes a number of basic list styles, the labels
 in an ordered list are usually entered manually; a single volpara will have
 a well-defined progression of allowed ordered list types so that each list
 item can be referenced in the text.
[13] Or the last following sibling, if there were no more volume paragraphs to
 add.
[14] That is, there was no actual linking support to be had.
[15] Or inside the span, or a combination of both.
[16] Most of our conversions ran in batch, sometimes with dozens or

Balisage: The Markup Conference

Up and Sideways
RTF to XML
Ari Nordström
Ari Nordström is a freelance markup
 geek, based in Göteborg, Sweden, but offering his services across a number of
 borders. He has provided angled brackets and such to a number of organisations
 and companies over the years, with LexisNexis UK being the latest. His favourite
 XML specification remains XLink, and so quite a few of his frequent talks and
 presentations on XML include various aspects of linking.
Ari is the proud owner and head
 projectionist of Western Sweden's last functioning 35/70mm cinema, situated in
 his garage, which should explain why he once wrote a paper on automating
 commercial cinemas using XML.

Balisage: The Markup Conference

content/images/Nordstrom01-001.png
* 1018.:-Control-of'spread-of-pests.q

A-competent-authority' ‘may-make-such-orders-as-it-thinks-expedient-or-called-for-by-any-
Community-obligation’-for-preventing-the-spread-of-pests*-in-Great-Britain-or-the-conveyance-
ofpests-by-articles-exported-from-Great-Britain®.-Such-an-order -may-prohibit-the-selling,-or-
exposing-or-offering-for-sale, -or-the-keeping, -of*living-specimens-of-a-pest, -or-the-distribution-in-
any-manner-of-such-specimens’,-and-may-also-direct-or-authorise:

(1) » the'removal,-treatment-or-destruction-of-any-crop®,-or-any-seed, plant-or-part-thereof-
or-any-container, wrapping-or-other-article-or-any-substance-which-has-on-it,-or-is-
infected-with, -a-pest, -or-to-or-by-means-of-which-a-pest-is-in-the-opinion-of-the-
competent-authority-likely-to-spread’;-andf

(2) - the-entering-on-any-land-or-elsewhere-for-the-purpose-of-any-removal, treatment-or-
destruction-authorised-by-the-orders, -or-any-examination-or-inquiry-so-authorised, -or-
for-any-other-purpose-of-the-orders®.q

Orders-may-provide-for-the-punishment-of-persons-guilty-of-an-offence-against-them’,-
proceedings-for-which-may-be-instituted-at-any-time-within-12 -months-of the-alleged-offence'®.q

Member-states-are-also-authorised!!temporarily-to-take-additional -measures-in-this regard-
where-authorised-so-to-do-by-a-decision-of the-European-Commission'>.q

1

2
3
4

As-to-the-competent-authorities-forthese purposes-see PARA 1017 note- 1.9
As-to-the'meaning-of*‘Community-obligation’-see PARA-1017 ‘note-2.q
As-to-the'meaning-of*‘pests’-see PARA1016.

Plant-Health-Act-1967s:3(1)(amendedby-the ‘European-Communities-Act-1972-Sch-4-para-
8(1),%(2)).-As to-the'meaning-of*‘Great-Britain’ see PARA"701 note- 1.
Plant-Health-Act-1967-s3(3).9

content/images/Nordstrom01-006.png
nsions-of-approved-use{|
-SI-2007/295 replaced:-see'PARA1038.9

content/images/Nordstrom01-007.png
(including-all-England-and-Wales-legislation-whenever-passed-or-made)-has-effect-in-
accordance-with-s-11(1):s'11(2).-See-also's*11(3),(4), Schs"3,"4;-and MATRIMONIAL-AND-CIVIL-
PARTNERSHIP-LAW-v0l-72+(2015).PARA2.

content/images/Nordstrom01-008.png
e-death-would-seemnot-to-involve-common-law-disqualification.q

I - Re-Crippen[1911]-P-108.-See-also-Cleaver-v-Mutual-Reserve-Fund-Life-Association-[1892]-1-
QB-147,CA;Beresfordv-Royal-Insurance{o-Ltd[1938]-AC-586, HL .

2 - Smith-1979-SLT-(Sh-Ct)-35.

3 - Burns-v-Secretary-of-State-for-Social-Services-1985-SLT-351.9

. 1985-SLT-351-at-353,-per-Lord-President-Emslie.q|

content/images/Nordstrom01-002.png
1018:-Control-of'spread-of-pestsq|

TEXT-AND-NOTE-2—References-to-Community-obligation-are-now-to-EU-obligation: see-
PARA'1017.9

NOTE-10—Head(1).-SI-1974/768 revoked-in-relation-to-England:-SI-2015/741.-Head"(3).-SI-
2004/3213 further-amended:-SI-2013/755.-SI-2005/2517 -amended:‘see:PARA-1017-NOTE"6.-
Head(4).-SI-2006/1643-further-amended:-see-'PARA-1017-NOTE-6.

Heads(4),"(6)—(8).-SI-1996/26 replaced: -Plant-Health-(Fees)-(England)-Regulations-2014, -
SI-2014/601-(see'PARA 1017-NOTE6); Plant-Health-(Fees)-(Wales)-Regulations-2014,-SI-
2014/1792+(see’PARA-1017-NOTE-6).-SI-2006/1879 replaced:-seenow-SI-2012/745.-SI-
2001/3194,-S1-2004/-1452,-S1-2005/279 replaced -by-SI-2005/2530-art-19(3)-(added by-SI-
2008/2411).-S1-2001/3541,-SI-2004/2697 -and-SI-2005/1 162 replaced -by-SI-2006/1643 -art-
19(3)-(added-by-SI-2008/2411;-and-substituted-by-SI-2012/3143).-S1-2005/2530-further-
amended:-SI-2012/697,-S1-2012/2922,-SI-2012/3033,-S1-2013/23,-S1-2013/1477,ST-
2013/2687,-S1-2014/979,-S1-2014/2385.-S1-2007/720 replaced:-SI-2014/601 -above. -SI-
2007/1765 replaced:-SI-2012/1493 -(see-above).q

Head-(5).-SI-2004/2590 replaced: -Plant-Health-(England)-Order-2015,-SI-2015/610-(see-
PARA'1017-NOTE-6).9

content/images/Nordstrom01-003.png
(1) » protecting-plants-or-wood-or-other-plant-products-from-harmful-organisms®;q
(2) - regulating-the-growth-of-plants®;{

(3) -~ giving-protection-against-harmful-creatures'%

(4) ~ rendering-such-creatures-harmless'’;q

(5) + controlling-organisms-with-harmful-or-unwanted-effects-on-water-systems, -buildings-
or-other-structures, -or-on-'manufactured-products'?;-andq

content/images/Nordstrom01-004.png
e comphance Al

2

As-to-the-Secretary-of*State-and the-Welsh-Ministers-see PARA 1312.9
Agriculture-Act-1947-s-99.-As to-the service-of ‘notices-see ‘PARA 1021 ‘note-4.-In‘the-case-ofland-
used for-agriculture-the notice may-be-served-upon-an-agent-or-servant-of'the-occupier-where*
the-agent-or-servant-is-responsiblefor-the-control-and-farming-of‘the-land: s-100(6).As to-the*
meaning-of-‘agriculture’-forthese purposes-see PARA-901.
See-the-Agriculture-Act-1947-s:100(1);-and-PARA-1021.
See-the-Agriculture-Act-1947-s:100(2);-and ‘PARA-1021.

content/images/Nordstrom01-005.png
- l104. -Claimants-required to-participate‘in-an-interview.q
3647_Compliance
e
The-Secretary-of-State!‘may require-a-claimant?-to-participate-in-an-interview-for-any-
purpose-relating-to:]
(1) - the-imposition-of-a-work-related-requirement-on the-claimant®;q
(2) -~ verifying-the-claimant’s-compliance-with-a-work-related requirement*;J
(3) - assisting-the-claimant-to-comply-with-a-work-related requirement®.q

The-Secretary-of-State‘may-specify-how, when-and-where-such-an-interview-is to-take-place®.q

1+ Astothe-Secretary-of-State-see PARA'14.Y

2 - As-to-the'meaning-of-‘claimant’‘see‘PARA'46 note-1.Y

3 -+ Welfare'Reform-Act-2012-s23(1)(a)."Asto-the ‘meaning-of-‘work related requirement’ ‘see ‘PARA"
93.-At-the-date-at-which-this-volume states-the-laws-23 -was-in-force-for-purposes-of-certain-
claims-only: see the-Welfare Reform-Act-2012-(Commencement-No-9-and-Transitional-and-
Transitory-Provisions-and-Commencement-No-8-and-Savings-and ‘Transitional Provisions-
(Amendment))-Order-2013,-SI-2013/983;-the ‘Welfare Reform-Act-2012(Commencement-No-11-
and-Transitional-and-Transitory-Provisions-and-Commencement-No-9-and-Transitional-and-
Transitory-Provisions-(Amendment))-Order-2013,-SI-2013/1511;-the-Welfare Reform-Act-2012-
(Commencement-No-13-and-Transitional -and-Transitory-Provisions)-Order-2013,-SI2013/2657;
the Welfare‘Reform-Act-2012-(Commencement-No-14-and-Transitional-and-Transitory-
Provisions)-Order-2013,-SI-2013/2846;-and PARA 3.

4 - Welfare'‘Reform-Act-2012-s23(1)(b).]

5 -+ Welfare'‘Reform-Act-2012-s:23(1)(c).|

6 - Welfare'‘Reform-Act-2012-s23(2).§

= NUS{

104--Claimants-requiredto-participate-in-an-interviewq
NOTE-3—Welfare-Reform-Act-2012s-23 in-force-for-further -purposes:-SI1-2014/2321,-SI-

2015/101,-SI-2015/634,-SI-2016/407.1]
NUEY

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

