[image: Balisage logo]Balisage: The Markup Conference

Using DITA to Create Security Configuration Checklists
A Case Study
Joshua Lubell
Computer Scientist
National Institute of Standards and Technology

<lubell@nist.gov>

Balisage: The Markup Conference 2017
August 1 - 4, 2017

Official contribution of the National Institute of Standards and Technology; not subject to copyright in the United States.

How to cite this paper
Lubell, Joshua. "Using DITA to Create Security Configuration Checklists." Presented at: Balisage: The Markup Conference 2017, Washington, DC, August 1 - 4, 2017. In Proceedings of Balisage: The Markup Conference 2017.
 Balisage Series on Markup Technologies vol. 19 (2017). https://doi.org/10.4242/BalisageVol19.Lubell01.

Abstract
Many software tools use security configuration checklists expressed in the Extensible
 Configuration Checklist Description Format (XCCDF) to monitor computers and other
 information technology products for compliance with security policies. But XCCDF syntax is
 checklist author-unfriendly. And complex relationships and dependencies between and among
 checklist rules, checking instructions, and software platforms make it difficult to reuse or
 repurpose existing XCCDF content in new checklists. The Darwin Information Typing
 Architecture (DITA) can tame XCCDF syntax and facilitate content management and reuse. A
 case study comparing the use of specialization and other DITA features with a
 currently-deployed ad hoc XCCDF authoring system demonstrates the advantages of the DITA
 approach.

Balisage: The Markup Conference

 Using DITA to Create Security Configuration Checklists

 A Case Study

 Table of Contents

 	Title Page

 	1. Introduction

 	2. XCCDF Overview and Example

 	3. The SCAP Security Guide Approach

 	4. Specialized DITA Element Types for XCCDF
 	Rule Element Type

 	Profile Element Type

 	Other Element Types

 	5. Reuse and Implementation Considerations
 	Block and Inline Content Reuse

 	Code Reuse

 	6. Conclusion

 	Appendix A. List of Acronyms

 	About the Author

 Using DITA to Create Security Configuration Checklists
A Case Study

1. Introduction
The Extensible Configuration Checklist Description Format (XCCDF [1]) Waltermire represents structured collections of security
 configuration rules for target systems. XCCDF is part of the Security Content Automation
 Protocol (SCAP — pronounced ess-cap) Quinn
 Radack: an ecosystem of interoperable Extensible Markup Language (XML) W3C-XML vocabularies, reference data, and software tools. SCAP serves as a
 digital thread
 Hedberg for cybersecurity Lubell2015. System
 administrators rely on SCAP to secure their servers, workstations, and networks. XCCDF saves
 checklist developers the pain of having to learn multiple proprietary formats and lowers
 deployment barriers for automated configuration checking. XCCDF-expressed checklists can be
 used with any SCAP-conforming software product.
XCCDF is a powerful and versatile language, but it is not checklist author-friendly.
 Although XCCDF enables automation of security configuration scans and generation of
 human-readable documentation, it is of limited use in helping authors reuse existing content
 when developing a new checklist.
 XCCDF
 is designed in a modular manner to facilitate reuse of sub-elements across different
 checklists. However, as checklist target types proliferate, efficient management of such
 content becomes increasingly challenging. Also,
 XCCDF's syntax is verbose and cluttered with namespaces, making checklist authoring
 labor-intensive and error-prone.
These shortcomings were of less concern in the recent past when most computing occurred on
 commodity hardware running one of a small number of popular operating systems. But today the
 mobile computing revolution and the Internet of Things are spawning a greater
 variety of devices, operating systems, and applications that need protection from
 cyber-threats. Creating XCCDF content for this multitude of platforms is becoming untenable.
 Checklist authors need better tools to cope with this new diversity — and with the
 ever-increasing need to prevent security incidents.
This paper explores how the Darwin Information Typing Architecture (DITA) OASIS-DITA can improve life for XCCDF checklist authors. Section 2 provides an overview of XCCDF and introduces a sample checklist to be
 used as a case study. Section 3 describes the ad hoc approach the SCAP
 Security Guide (SSG) OpenSCAP-SSG project uses to address XCCDF and SCAP
 authoring and reuse challenges. Section 4 illustrates how DITA
 topic and map element type specializations can be used to
 improve the XCCDF authoring experience. Section 5 discusses how DITA can meet
 reuse challenges in a more robust and maintainable manner than the SSG approach described.
 Section 6 summarizes the case study results and offers some
 concluding remarks.

2. XCCDF Overview and Example
The XCCDF specification Waltermire defines XCCDF's data model and
 processing semantics. The current version of XCCDF is 1.2. The specification references a
 schema XCCDF as XCCDF's normative XML representation. This schema's
 <Benchmark> element is the root element of a checklist, or benchmark
 document using XCCDF terminology. A <Benchmark> element contains a
 collection of <Rule>, <Value>, and <Group>
 elements. A <Rule> specifies a single item to check, such as a firewall's
 default setting. A <Rule> also specifies how the checking should be done, such
 as with an implementation-specific scripting language or with the Open Vulnerability
 Assessment Language (OVAL) OVAL, an SCAP standard for representing system
 configuration information, assessing machine state, and reporting assessment results. A
 <Value> represents a named parameter that can be used within rules and
 tailored for a particular configuration scenario. A <Group> collects
 <Rule>, <Value>, and other <Group> elements
 into an aggregation that is meaningful to a checklist user, for example, a collection of
 firewall configuration settings.
A <Benchmark> element also contains one or more <Profile>
 elements.
 A
 <Profile> is a named collection of references to <Group>,
 <Rule>, and <Value> elements.
 Profiles allow different combinations of groups
 and rules to be enabled so that they are included in a series of tests, or disabled so that
 they are not. Profiles can also tailor the value of the named parameters in
 <Value> elements. Profiles allow a single benchmark to support different
 test scenarios by enabling different combinations of tests and parameter values. XCCDF's
 <Profile> element increases a benchmark document's versatility, but also
 increases the document's complexity by adding many cross references.
This paper uses as an ongoing example a simple XCCDF checklist consisting of four
 ungrouped rules for version 7 of Red Hat Enterprise Linux (RHEL7) [2], none of which use any <Value> parameters. The example was
 extracted from a more complex XCCDF checklist developed by the Center for Internet Security
 CIS. Two of the rules pertain to SELinux StPierre, a
 Linux kernel module for Mandatory Access Control (MAC).
 MAC
 is the security principle of limiting the ability of a user or running application to access
 system resources Hu. The other
 two rules apply to firewall configuration. The checklist defines two profiles:	Firewall with MAC referencing all four rules,

	Firewall referencing only the two firewall-related rules.

Figure 1
<Benchmark xmlns="http://checklists.nist.gov/xccdf/1.2"
id="xccdf_gov.nist_benchmark_Red_Hat_Enterprise_Linux_7_Benchmark"
style="SCAP_1.2">
 <status date="2016-06-02">interim</status>
 <title>Red Hat Enterprise Linux 7 Benchmark</title>
 <description>…</description>
 <version>2.1.0</version>
 <metadata>…</metadata>
 <Profile id="xccdf_gov.nist_profile_Firewall">…</Profile>
 <Profile id="xccdf_gov.nist_profile_Firewall_with_MAC">…</Profile>
 <Rule id="xccdf_gov.nist_rule_Ensure_SELinux_not_disabled_in_
bootloader_configuration" selected="false"…>…</Rule>
 <Rule id="xccdf_gov.nist_rule_Ensure_SELinux_is_installed"
selected="false"…>…</Rule>
 <Rule id="xccdf_gov.nist_rule_Ensure_iptables_is_installed"
selected="false"…>…</Rule>
 <Rule id="xccdf_gov.nist_rule_Ensure_firewall_rules_exist_for_all_
open_ports" selected="false"…>…</Rule>
</Benchmark>
XCCDF checklist representing RHEL7 example.

Figure 1 shows the high-level XCCDF representation of this
 checklist. Ellipsis symbols indicate lower-level details omitted for brevity. In this
 checklist, all rules have a @selected attribute set to false.
 Thus, no rules in the benchmark document are processed by default. Instead, each profile must
 explicitly select the rules it wishes to include in its test scenario (as shown later in Figure 3).
Figure 2 shows the checklist loaded as input into SCAP Workbench OpenSCAP-Workbench, a security configuration scanner user interface. The user
 has selected the Firewall with MAC profile. The Rules pane
 displays the title and description of each rule in the profile. If the user were to click on
 the Scan button, the software would scan a remote machine to determine
 compliance with the four profile rules and report the results back to the user.
Figure 3 shows the XCCDF representation of the
 Firewall with MAC profile. The <select> elements reference
 the rules comprising the profile. Each <select> element has an
 @idref attribute identifying a rule and a @selected attribute set
 to true to explicitly include the referenced rule for use in the profile's test
 scenario.
Figure 2
[image:]
Firewall with MAC profile loaded into SCAP configuration scanner software.

The XCCDF markup shown in Figure 1 and Figure 3 exhibits the following characteristics:	Identifiers are long. XCCDF requires that identifiers be both unique and
 descriptive, and that they contain a reverse-Domain Name System (DNS) style string
 associated with the content author. The profile identifier and four rule identifiers all
 meet these requirements.

	Rule identifiers are repetitive. They all start with
 "xccdf_gov.nist_rule_".

These characteristics promote interoperability and completeness, but at the expense of
 author-friendliness and maintainability.
Now consider Figure 4, the XCCDF representation of the first
 of the four rules referenced by the Firewall with MAC profile. This rule checks
 whether SELinux is enabled. The <description> and <rationale>
 elements document the rule and its justification. The <complex-check> element
 represents a Boolean expression of <check> elements, which in turn reference
 the code for determining whether the system being scanned complies with the rule. In this
 example, checking is done using OVAL. Each <check-content-ref> element's
 @href attribute references an external file containing OVAL definitions, and
 the @name attribute identifies the particular OVAL definition used to perform the
 check. Like XCCDF, OVAL requires identifiers to be descriptive and use reverse-DNS
 syntax.
Figure 3
<Profile xmlns="http://checklists.nist.gov/xccdf/1.2"
id="xccdf_gov.nist_profile_Firewall_with_MAC">
 <title>Firewall with MAC</title>
 <description>This profile extends the "Firewall" profile to check
configuration of Mandatory Access Control(MAC).</description>
 <select idref=
"xccdf_gov.nist_rule_SELinux_not_disabled_in_bootloader_configuration"
selected="true"/>
 <select idref=
"xccdf_gov.nist_rule_SELinux_is_installed" selected="true"/>
 <select idref=
"xccdf_gov.nist_rule_iptables_is_installed" selected="true"/>
 <select idref=
"xccdf_gov.nist_rule_firewall_rules_exist_for_all_open_ports"
selected="true"/>
</Profile>
Profile in XCCDF.

The XML in Figure 4 exhibits the same XCCDF characteristics as
 the profile XML shown in Figure 3. Additionally:	There are multiple Uniform Resource Identifiers (URIs): the XCCDF default namespace
 http://checklists.nist.gov/xccdf/1.2 and the OVAL URI
 http://oval.mitre.org/XMLSchema/oval-definitions-5.

	The markup representing the checking of the rule is verbose and complex.

The rule's <complex-check> markup complexity is partly because the check
 requires a Boolean expression referencing three OVAL definitions, but the
 <check-content-ref> syntax and repetitive @system attributes
 further exacerbate matters.
 This
 added verbosity is perhaps necessary to allow for possibilities such as check systems other
 than OVAL, and embedded code for performing a
 check. However, given that SCAP-conforming tools
 are required to support OVAL as a checking language in XCCDF, and most XCCDF benchmarks use
 OVAL, this extra verbosity is generally not needed in
 practice.
Figure 4
<Rule xmlns="http://checklists.nist.gov/xccdf/1.2" id="xccdf_gov.nist_
rule_SELinux_not_disabled_in_bootloader_configuration" selected="false">
 <title>Ensure SELinux is not disabled in bootloader
configuration</title>
 <description>Configure SELINUX to be enabled at boot time and verify
that it has not been overwritten by the grub boot parameters.
</description>
 <rationale>SELinux must be enabled at boot time in your grub
configuration to ensure that the controls it provides are not overridden.
</rationale>
 <complex-check operator="OR">
 <complex-check operator="AND">
 <check system="http://oval.mitre.org/XMLSchema/oval-definitions-5">
 <check-content-ref
href="CIS_Red_Hat_Enterprise_Linux_7_Benchmark_v2.1.0-oval.xml"
name="oval:gov.nist.redhat_redhat_enterprise_linux_7:def:1058"/>
 </check>
 <check system="http://oval.mitre.org/XMLSchema/oval-definitions-5">
 <check-content-ref
href="CIS_Red_Hat_Enterprise_Linux_7_Benchmark_v2.1.0-oval.xml"
name="oval:gov.nist.redhat_redhat_enterprise_linux_7:def:1059"/>
 </check>
 </complex-check>
 <check system="http://oval.mitre.org/XMLSchema/oval-definitions-5">
 <check-content-ref
href="CIS_Red_Hat_Enterprise_Linux_7_Benchmark_v2.1.0-oval.xml"
name="oval:gov.nist.redhat_redhat_enterprise_linux_7:def:1060"/>
 </check>
 </complex-check>
</Rule>
Rule in XCCDF.

The discussion so far has focused on XCCDF characteristics that impede authoring such as
 verbosity and redundancy. An additional concern is that XCCDF and other SCAP languages do not
 facilitate reuse of content applicable to multiple platforms Lubell2017. To
 see why, consider as an example the third rule shown in Figure 2,
 Ensure iptables is installed. Iptables, an application for configuring the
 Linux kernel firewall, is available in all Linux distributions. Therefore, this rule is
 potentially applicable to all Linux systems.
A reasonable way to check for compliance with this rule would be for the rule's OVAL
 definition to invoke RHEL's package manager, rpm, to verify that iptables is installed. But
 unlike iptables, not all Linux distributions come with rpm. Fedora, an open source Linux
 distribution closely related to RHEL, has rpm. On the other hand, Debian and Ubuntu (a Debian
 derivative) both use dpkg for package management. Figure 5 shows
 the relationships between the Debian, Ubuntu, RHEL, and Fedora Linux distributions in terms of
 their shared kernel and package manager components.
Figure 5
[image:]
Linux distribution shared components.

This example illustrates the problem of platform fragmentation. Platform fragmentation
 occurs when the same operating system, software application, or hardware component is bundled
 by multiple entities — with each bundler providing different
 customizations Vecchiato. Although XCCDF and other SCAP languages allow for
 associations between rules or collections of rules and platforms, the SCAP ecosystem currently
 does not provide the kind of guidance shown in Figure 5 to
 checklist authors. Therefore, checklist authors need other methods and tools outside the scope
 of SCAP to help them leverage taxonomic and other relationships to maximize reuse when
 creating new checklists. The next section discusses how this is done in the SSG
 project.

3. The SCAP Security Guide Approach
The SSG OpenSCAP-SSG is an open source project whose output is a growing
 collection of SCAP-expressed content (security guides) for Linux distributions and software
 applications. This SSG-generated SCAP content is widely used in government and industry.
 Current and recent users
 include
 cloud computing providers, national defense agencies, and the financial services and airline
 industries [3]. The SSG source code consists of:	Scripts and Extensible Style Language Transformations (XSLT) W3C-XSLT for generating SCAP content,

	XML files that serve as input to the scripts and XSLT.

To deal with
 platform
 fragmentation and to facilitate source code
 management, the source code is modularized. Shareable module files applicable to two or more
 security guides reside in a single shared directory tree. Platform-specific
 module files applicable only to an individual security guide reside in platform-specific
 directory trees. The XML input files are further modularized into logically-related checklist
 components such as profiles, groups, and OVAL definitions. Building SCAP security guides from
 the source requires running scripts that perform XML transformations, macro substitutions, and
 merging of the XML input modules into bigger SCAP-conforming files.
SSG contributors create rules, profiles, and other XML input modules using a shorthand XML
 vocabulary. The shorthand is less verbose and namespace-heavy than the XCCDF markup shown in
 Section 2. The SSG build process converts the shorthand to XCCDF and OVAL.
 This build process is complicated and requires SSG contributors to understand not only SCAP,
 but also the one-off way the SSG source files are organized and structured Preisler.
Figure 6 shows a high-level view of the SSG source code directory
 structure. The shared directory subtree shown in the left-hand column contains
 content, XSLT, and scripts applicable to more than one Linux distribution. Platform-specific
 subtrees contain content, transforms, and scripts applicable only to a single distribution or
 application. The right-hand column shows the subtree for RHEL7. Each distribution-specific
 directory tree has a Makefile with targets needed for building SCAP content for that
 distribution. A master Makefile in the source code root directory has targets for building all
 the SCAP content.
Figure 6
	Shared Content and Transforms	RHEL7-specific Content and Transforms
	
 shared
├── images
├── misc
├── modules
├── oval
├── references
├── remediations
├── templates
├── transforms
├── utils
└── xccdf

 	
 RHEL
└──7
 ├── input
 │ ├── auxiliary
 │ ├── oval
 │ └── profiles
 ├── kickstart
 ├── templates
 ├── transforms
 └── utils

SSG source code shared and RHEL7-specific directory subtrees.

All rules and profiles in the source code are defined using the SSG shorthand XML. Rules
 that are common across multiple Linux distributions, such as the rule for determining whether
 SELinux is enabled, reside in shared/xccdf. Rules specific to a particular Linux
 distribution are in the distribution's input directory subtree. Since all rules
 for RHEL7 come from shared/xccdf, the RHEL7 input directory has no
 xccdf
 subdirectory.
 Profiles are distribution-specific and reside in the distribution's
 input/profiles directory.
XSLT stylesheets in a platform-specific transforms directory generate
 SCAP-conforming XML, such as the RHEL7 benchmark shown in Figure 1.
 These stylesheets use <xsl:include> elements to incorporate stylesheets from
 ../../../shared/transforms. The stylesheets first combine the individual
 shorthand XML files (both shared and distribution-specific) into a single shorthand benchmark
 file. They then transform the combined shorthand benchmark into an XCCDF-conforming benchmark
 document.
The SSG XSLT stylesheets support reuse not only of structural checklist components such as
 rules, but also of inline fragments. The stylesheets automatically insert frequently-occurring
 fragments when feasible to do so. For example, the value of the @system attribute
 in all XCCDF rules using OVAL is the same URI:
 http://oval.mitre.org/XMLSchema/oval-definitions-5 . Therefore, the shorthand
 XML syntax omits @system and its value, saving authors the trouble of having to
 repeatedly specify it.
For reusable fragments where the author determines placement, the SSG shorthand employs
 -macro elements. For example, a RHEL7 checklist author might want to use the
 full name of the product to which the checklist applies — Red Hat Enterprise
 Linux 7 — in multiple places within elements where mixed content is allowed.
 To save authors the trouble of having to specify a full product name for every occurrence, the
 RHEL-specific XSLT in RHEL/7/transforms contains the following variable
 declaration:<xsl:variable
name="product_long_name">Red Hat Enterprise Linux 7</xsl:variable>
The
 stylesheet in shared/transforms for converting the combined shorthand XML
 components into an XCCDF benchmark contains the following template
 rule:<xsl:template match="product-name-macro">
 <xsl:value-of select="$product_long_name"/>
</xsl:template>
The
 template rule and variable declaration enable an SSG author to specify a product name inline
 as <product-name-macro/>. Doing so not only minimizes the opportunity for
 undetected typos, but also maximizes the reusability of the <rule> or other
 structural element containing the product name.
Figure 7
[image:]
SCAP Security Guide transformation from shorthand to
 XCCDF.

Figure 7 summarizes the overall SSG transformation process
 discussed in the preceding paragraphs. The stylesheets first combine individual shorthand XML
 files and then, using constants defined as variable declarations and macros defined as
 template rules, produce an XCCDF-conforming benchmark document.

4. Specialized DITA Element Types for XCCDF
The DITA standard OASIS-DITA is an XML-based architecture for creating,
 managing, reusing, and delivering technical content. A variety of authoring applications and
 processors — commercial as well as free and open source — conform to DITA OASIS-DITA-xml.org. DITA has two basic building blocks: the topic
 and map element types. A topic is a reusable chunk of
 information. A map is an aggregation of topics or other maps. DITA supports
 reuse not only of topics and maps, but also of inline XML elements and fragments.
DITA information types are specializable. Specialization is an information modeling
 technique that helps avoid inconsistency and facilitate interoperability Krima. A specialized information type is a refinement of an existing base type and therefore must
 be at least as constrained.
 Specialization
 imposes some discipline on designers of new DITA information types, with the upside that
 implementations can easily leverage other DITA-conforming implementations Kimber. DITA includes built-in specialized element types based on the
 topic base type, such as concept, task,
 reference, and glossary group. DITA also allows for definition
 of new specialized element types based on topic, map, or other
 specialized types.
In this section, I define new DITA specialized element types to support the authoring of
 XCCDF rules and profiles.
 I
 also provide examples of other XCCDF elements for which DITA specializations could be
 defined. These types have the same advantages
 as the XCCDF shorthand vocabulary, but with the added benefits of validation and more
 author-friendliness when using DITA-aware XML editing software. The specialization approach
 follows guidance from the DITA standard OASIS-DITA and from Eliot Kimber's
 DITA Configuration and Specialization Tutorials Kimber.
Rule Element Type
To develop a specialized DITA information type for XCCDF rule authoring, let us begin by
 revisiting the Ensure SELinux is not disabled in bootloader configuration
 rule shown in Figure 4. A DITA rule element type
 should mitigate the three XCCDF authoring barriers highlighted in Section 2:	Repetitive and overly long identifiers,

	Namespace proliferation,

	Overly verbose check expressions.

I choose to define the new rule element type as a specialization of the
 DITA concept topic type. A concept has the loosest content
 model of DITA's built-in topic-based types, making it easy to specialize.
 <concept>, the concept topic type's root element, contains
 a <title> followed by <conbody>, the main body element.
 <conbody> may contain DITA <section> elements, which
 subdivide content within a topic and are not allowed to be nested. DITA
 <sectiondiv> elements subdivide content within a <section>
 and may be nested inside one another. <section> and
 <sectiondiv> may contain mixed content including <xref>, a
 DITA linking element. <xref> has an @href attribute, which may
 reference another topic, map, or non-DITA resource.
The next step is to create a rule document type shell based on the
 concept document type shell. A DITA document type shell defines which
 elements and attributes are allowed in a DITA document, and is usually specified using
 Document Type Definition (DTD) syntax. The DITA standard provides a modular architecture for
 document type shells to facilitate creation of new shells. A recommended practice is to make
 a copy of an existing shell (the concept shell in our case) and modify the
 modules as needed for the new document type.
Figure 8 shows the Ensure SELinux is not disabled in
 bootloader configuration rule represented in a manner similar in spirit to the SSG
 shorthand syntax, which mitigates the XCCDF rule authoring barriers. The new
 rule document type shell will specify a grammar for authoring rules such as
 the rule in Figure 8.
Figure 8
<rule id="SELinux_not_disabled_in_bootloader_configuration">
 <title>Ensure SELinux is not disabled in bootloader configuration
</title>
 <rulebody>
 <description>Configure SELINUX to be enabled at boot time and
verify that it has not been overwritten by the grub boot parameters.
</description>
 <rationale>SELinux must be enabled at boot time in your grub
configuration to ensure that the controls it provides are not
overridden.</rationale>
 <check>
 <OR>
 <AND>
 <oval href="oval/1058.dita"/>
 <oval href="oval/1059.dita"/>
 </AND>
 <oval href="oval/1060.dita"/>
 </OR>
 </check>
 </rulebody>
</rule>
Rule represented using specialization of concept DITA topic [4].

Looking at Figure 8 in the context of the DITA
 concept element type, one observes the following:	The <oval> element can be specialized from DITA's
 <xref> element, without additional constraints.

	<OR> and <AND> can be specialized from DITA's
 <sectiondiv> element, constrained to allow one or more
 <oval> elements or Boolean expressions as content.

	<check> can be specialized from DITA's <section>
 element, constrained to allow either a single <oval> element or
 Boolean expression of <oval> elements as content.

	<description> and <rationale> can be
 specializations of <section> without additional constraints.

	<rulebody> can be specialized from <conbody>, but
 constrained to allow only a <description>,
 <rationale>, and <check> as content.

	<rule> can be specialized from <concept>, but
 constrained to allow only a <title> and <rulebody> as
 content.

	The DITA <title> element can be used as is.

After creating a rule document type shell reflecting these observations,
 I add DITA @class attributes with default values to each specialized element:
 <rule>, <rulebody>, <description>,
 <rationale>, <rationale>, <check>,
 <AND>, <OR>, and <oval>. Default values
 are used to hide the DITA specialization machinery from authors, who have no need to see it
 when editing content. The @class attribute specifies the element's
 specialization hierarchy — a mapping from the element name to its more generalized
 DITA concept and topic element equivalents. For example, the <rule>
 element's @class attribute has the value "- topic/topic concept/concept
 rule/rule ", which specialization-aware DITA processors interpret to meanThe <rule> element in the rule element type
 specializes <concept> from the concept element type,
 which in turn specializes <topic> from the topic element
 type.

Table I
Specialization hierarchies and document type shell constraints for each
 rule element.

	Element	Specialization Hierarchy (@class value)	Document Type Shell Constraints
	<rule>	"- topic/topic concept/concept rule/rule "	(title, rulebody)
	<rulebody>	"- topic/body concept/conbody rule/rulebody "	(description, rationale, check)
	<description>	"- topic/section concept/section rule/description "	none
	<rationale>	"- topic/section concept/section rule/rationale "	none
	<check>	"- topic/section concept/section rule/check "	(OR | AND | oval)
	<OR>	"- topic/sectiondiv concept/sectiondiv rule/OR "	(OR | AND | oval)+
	<AND>	"- topic/sectiondiv concept/sectiondiv rule/AND "	(OR | AND | oval)+
	<oval>	"- topic/xref concept/xref rule/oval "	none

Table I shows the specialization hierarchy and document type
 shell constraint for each new element in the rule element type. The
 specialization hierarchy effectively specifies the default specialization-aware DITA
 processing behavior. DITA specialization hierarchies maximize reuse of existing markup and
 transformation code Priestley. The document type shell constraints specify
 requirements for valid XML.
 Suppose an XCCDF rule author were to use a DITA specialization-aware XML application
 such as Oxygen XML Editor. Figure 9 shows the Ensure
 SELinux is not disabled in bootloader configuration rule as presented in Oxygen's
 user interface. The screen capture occurred when the user was about to insert a new element
 following the <oval> element whose @href value is
 oval/1059.dita. A simple Cascading Style Sheet (CSS) W3C-CSS augments Oxygen's CSS styling for the concept element type by adding
 Rule:, Description:, Rationale:, and
 Check: labels, as well as the parentheses and OR and
 AND in the check expression. This is all the CSS code
 does. Other presentation aspects such as the fonts used and the clickable @href
 links are derived using the specialization hierarchies shown in Table I.
Figure 9
[image:]
Rule in DITA specialization-aware authoring environment.

Analogous to the CSS augmentation of the default DITA presentation, the rule document
 type shell constraints shown in Table I augment the default DITA
 visual editing and validation capabilities. The drop-down list of elements shown in Figure 9 limits the user's choices to inserting an
 <AND>, <OR>, or <oval> element, or adding
 a new <AND> after the current <AND> element. Any DITA
 concept topic document type shell constraints not overridden by the
 rule document type shell remain. For example, the user can add any content
 inside the <description> or <rationale> elements permitted
 by the concept document type shell's content model for
 <section>.

Profile Element Type
I choose to define the new profile element type as a simple
 specialization of the DITA map element type. <map>, the
 map type's root element, may contain a <title>, followed by
 a <topicmeta> element, followed by a sequence of <topicref>
 elements. <topicmeta>, in this context, specifies metadata applicable to all
 topics in the map, and may contain a brief description of the map in a
 <shortdesc> element. The <topicref> element uses
 @href to reference a map resource.
I first create a profile document type shell based on the
 map document type shell. Figure 10 shows the
 Firewall with MAC profile represented in a manner similar in spirit to the
 SSG shorthand syntax, and that mitigates the XCCDF authoring barriers discussed in Section 2.
Figure 10
<profile id="Firewall_with_MAC">
 <title>Firewall with MAC</title>
 <profilemeta>
 <shortdesc>This profile extends the "Firewall" profile to check
configuration of Mandatory Access Control (MAC).</shortdesc>
 </profilemeta>
 <rule href=
"rules/SELinux_not_disabled_in_bootloader_configuration"/>
 <rule href="rules/SELinux_is_installed"/>
 <rule href="rules/iptables_is_installed"/>
 <rule href="rules/firewall_rules_exist_for_all_open_ports"/>
</profile>
Profile represented using specialization of DITA
 <map>
 [5].

Table II
Specialization hierarchies and document type shell constraints for each
 profile element.

	Element	Specialization Hierarchy (@class value)	Document Type Shell Constraints
	<profile>	"- map/map profile/profile "	(title, profilemeta, rule+)
	<profilemeta>	"- map/topicmeta profile/profilemeta "	none
	<rule>	"- map/topicref profile/rule "	none

Looking at Figure 10 in the context of the DITA
 map document type, one observes the following:	<rule> can be specialized from DITA's <topicref>
 element, without additional constraints.

	<profilemeta> can be specialized from DITA's
 <topicmeta> element, without additional constraints.

	<profile> can be specialized from DITA's <map>
 element, but constrained to allow only a <title>,
 <profilemeta>, and one or more <rule> elements as
 content.

	The DITA <title> and <shortdesc> elements can be
 used as is.

Table II shows the specialization hierarchy and document
 type shell constraint for each new element in the profile type. Figure 11 shows the Oxygen presentation with clickable
 @href links. Minimal CSS styling adds the Profile: label. All
 other presentation characteristics are inherited from the map element type's
 CSS styling.
Figure 11
[image:]
Profile in DITA specialization-aware authoring environment.

Other Element Types
The previous subsections demonstrated how shorthand XML vocabularies for XCCDF rules and
 profiles can be implemented as specializations of the DITA concept and
 map element types respectively. Specialization can also be used to create
 DITA element types for XCCDF groups and values as well. A group type could be
 specialized from the DITA map element type, and value can be
 specialized from the base topic type or one of the DITA built-in types
 specialized from topic.
An XCCDF benchmark document as a whole could be represented using a
 benchmark element type specializing map. Doing so would
 explicitly represent the high-level checklist structure, which the SSG build system
 represents implicitly in Makefiles and in the XSLT implementing the Transform
 shorthand to XCCDF box in the Figure 7 flowchart.
 DITA maps have additional benefits besides making the transformation process more explicit
 and self-documenting for XCCDF authors. As the next section will discuss, maps enable reuse
 of XCCDF content and can reduce the coding needed to implement the shorthand-to-XCCDF
 transformation.

5. Reuse and Implementation Considerations
This section revisits the SSG approach covered in Section 3 from a reuse
 perspective. The first subsection describes how maps and other DITA features can improve upon
 SSG solutions for reusing XCCDF content. The second subsection discusses how the use of DITA
 can simplify implementation of the conversion from shorthand XML to XCCDF.
Block and Inline Content Reuse
DITA maps can improve upon the SSG shared/xccdf reuse
 mechanism. Relying on directory subtrees imposes a rigid hierarchy on reuse relationships,
 and is insufficient to account for all the varieties of platform fragmentation. There are a
 lot ways to categorize platforms. The package manager-based classification shown in Figure 5 is just one of many. Lineage is another way to
 characterize a platform. For example, Ubuntu Linux is derived from Debian, while RHEL is a
 commercial sibling of the open source Fedora. Linux distributions can also be classified
 according to graphical desktop environment. For example, some Linux distributions come
 bundled with GNOME , while others come with Enlightenment. And GNOME and Enlightenment each
 have variants. Linux distributions optimized for specialized hardware, increasingly common
 as the Internet of Things continues to grow, add yet another wrinkle to
 platform fragmentation. Raspbian Raspbian, a Debian derivative tailored
 for Raspberry Pi hardware, is an example of a hardware-optimized Linux distribution.
Multiple
 DITA maps can be used to slice and dice a repository of DITA resources for creating XCCDF
 benchmarks covering a wide variety of Linux-based
 platforms. Each map can represent a different
 platform class. And maps can overlap with one another, or a map can reference another map.
 Maps can capture parent-child relationships as well as sibling relationships. Also, DITA
 supports conditional profiling OASIS-DITA, which allows the same content
 to be associated with multiple organization schemes as defined using DITA's filtering
 attributes. The classification possibilities are endless. Unlike the SSG shared
 directory subtree, a DITA map-based approach is flexible enough to keep pace with growing
 platform fragmentation.
Figure 12
<benchmark class="- map/map benchmark/benchmark ">
 <title>Benchmark for <ph keyref="product_name"/></title>
 <keydef keys="product_name"><topicmeta><keywords>
 <keyword>Red Hat Enterprise Linux 7</keyword>
 </keywords></topicmeta></keydef>
 <intro href="introduction.dita" class=
"- map/topicref benchmark/intro "/>
 …
</benchmark>
Key defined in benchmark's root map and referenced in <title> element.

The discussion of DITA so far has focused on topics and maps, with an emphasis on
 reusability of topic-based information such as XCCDF rules. In addition to facilitating
 reuse of structural block content, DITA provides mechanisms for reusing inline content.
 These mechanisms can be applied to frequently repeated fragments in an XCCDF benchmark
 document such as the product name (Red Hat Enterprise Linux 7 in our
 scenario). One such DITA capability is content key references, a method for indirectly
 addressing inline content locations Oxygen.
 A content key and key reference can implement the same functionality as the
 product-name-macro SSG's XSLT template rule. One way to do this is to use
 DITA's <keydef> element to define a product_name key in a
 benchmark's root map as shown in the DITA benchmark document (specializing on the base
 map element type) in Figure 12. The
 product_name key can then be referenced from anywhere within the root map
 using the @keyref attribute of the DITA <ph> (phrase)
 element.
The product_name key can also be referenced from within any resource the
 root map references. For example, the referenced topic introduction.dita could
 contain the following paragraph:
<p>This document provides prescriptive guidance for establishing a
secure configuration for <ph keyref="product_name"/> systems.</p>

Code Reuse
A major benefit of DITA is that it can reduce the amount of coding needed to transform a
 collection of resources to a desired output format. The savings result from the DITA
 standard's requirements for output-producing processors. A conforming DITA processor must be
 able to merge topics in a map as well as resolve content references, eliminating the need
 for custom transformation code to perform these functions. A specialization-aware DITA
 processor can do all the above for specialized DITA documents through inheritance of
 processing behavior from base types via the @class attribute. The DITA Open
 Toolkit DITA-OT, an output-producing and specialization-aware DITA
 processor used in Oxygen and other XML software applications, illustrates the potential
 benefits of DITA for transformation of shorthand XML to XCCDF.
The DITA Open Toolkit is not part of the DITA standard — they are separately
 managed. However, both originated from the same research and development effort at IBM Priestley
 S-R. The Toolkit does not support XCCDF out of the box, but has an
 extensible plug-in mechanism for implementing custom output formats or adding additional
 functionality to existing output formats. The plug-in architecture allows for developers to
 reuse built-in transformation code, as well as code from other plug-ins, by integrating new
 XSLT via extension points. The DITA Open Toolkit's built-in transformation
 code includes a preprocessing module that implements map operations and content references.
 The preprocessing is used in all transformations by default.
A Toolkit XCCDF plug-in would require XSLT template rules matching against
 @class attribute values to convert elements from the specialized types from
 Section 4 into XCCDF equivalents. For example, the template
 rule below transforms the rule element type's <rule> element
 into an <xccdf:Rule> element. The value of $rule-prefix could
 be passed as a parameter to the plug-in. For the RHEL7 example from Section 2, the parameter value would be xccdf_gov.nist_rule_.
 fn:rule-id is a stylesheet-defined function that constructs a reverse-DNS
 syntax XCCDF identifier from $rule-prefix and the <rule>
 element's @id attribute value.
<xsl:template match="*[contains(@class, ' rule/rule ')]">
 <xccdf:Rule id="{fn:rule-id($rule-prefix,@id)}" …>
 <xsl:apply-templates/>
 </xccdf:Rule>
</xsl:template>
The template rule below transforms the rule element type's
 <oval> element into an <xccdf:check> element with a nested
 <xccdf:check-content-ref>. fn:oval-def constructs the OVAL
 definition's reverse-DNS name from the $oval-def-prefix parameter value
 (oval:gov.nist.redhat_redhat_enterprise_linux_7:def: for the RHEL7 example)
 and the <oval> element's @href attribute value.
 $oval-uri provides the value of <xccdf:check>'s
 @href attribute
 (http://oval.mitre.org/XMLSchema/oval-definitions-5).
 <xccdf:check-content-ref>'s @href attribute is assigned the
 value of $oval-location
 (CIS_Red_Hat_Enterprise_Linux_7_Benchmark_v2.1.0-oval.xml).
<xsl:template match="*[contains(@class, ' rule/oval ')]">
 <xccdf:check system="{$oval-uri}">
 <xccdf:check-content-ref
 href="{$oval-location}"
 name="{fn:oval-def($oval-def-prefix,@href)}"/>
 </xccdf:check>
</xsl:template>

6. Conclusion
The case study described in this paper investigated the feasibility of DITA for creating XCCDF security configuration checklists, and whether DITA could improve upon the SCAP Security Guide project's ad hoc approach to authoring and reuse. Proof-of-concept implementations of DITA element types for rules and profiles showed that DITA specialization is both feasible and offers tangible benefits beyond the SSG shorthand XML, such as validation and an improved authoring experience. Additional analysis and examples showed how DITA topic maps can improve reuse of structural XCCDF elements, and how DITA features such as key referencing can facilitate reuse of inline fragments.
This case study has a significant limitation. Analysis was limited to a single XCCDF
 checklist with only four rules, two profiles, and no <Group> or
 <Value> XCCDF
 elements.
 The rule and profile DITA element types do not provide the full range of XCCDF's flexibility [6]. For example, rule and profile do not consider XCCDF
 checklist capabilities such as automated remediation of misconfigurations. Similarly, the case
 study also assumed checklist authors would use OVAL for rule checking and would adopt a
 specific convention for using the @selected attribute. While these simplifying
 assumptions align with a large amount of the XCCDF content published thus far, some authors
 might find these assumptions limiting. Until more sophisticated checklists from a cross
 section of Linux platforms are studied, it would be premature to conclude definitively that
 DITA will revolutionize the development of XCCDF and other SCAP content. The SSG authoring
 approach may have its shortcomings, but it has been successful in producing an impressive
 collection of widely-deployed SCAP content. Further implementation and testing are needed to
 determine whether the promising results presented in this paper can scale up to a collection
 of larger and more diverse
 checklists.
An open question is to what extent adoption of DITA as an alternative to the SSG's ad hoc
 authoring approach would simplify the SSG transformation shown in Figure 7. At the very least, assembly relationships, platform
 commonalities, and reusable structures and fragments would be more maintainable explicitly
 represented in DITA than implicitly represented in XSLT and Makefiles. Additionally, DITA's
 default processing of maps and key references should simplify implementation of the
 Combine shorthand XML components and Transform shorthand to
 XCCDF steps. Implementing an XCCDF plug-in would be a good way to learn how much the
 DITA Open Toolkit further simplifies implementation.
Author's Note
I am grateful to Eliot Kimber for his DITA Configuration and Specialization Tutorials,
 which were immensely helpful when writing this paper and creating the implementation
 examples. I also wish to thank Charles Schmidt, co-author of the XCCDF specification, for
 his thoughtful and helpful review of an earlier draft.

Appendix. List of Acronyms
	CSS
	Cascading Style Sheet

	DITA
	Darwin Information Typing Architecture

	DTD
	Document Type Definition

	MAC
	Mandatory Access Control

	NIST
	National Institute of Standards and Technology

	OVAL
	Open Vulnerability Assessment Language

	RHEL
	Red Hat Enterprise Linux

	SELinux
	Security-Enhanced Linux

	SCAP
	Security Content Automation Protocol

	SSG
	SCAP Security Guide

	URI
	Uniform Resource Identifier

	XCCDF
	Extensible Configuration Checklist Description Format

	XSLT
	Extensible Stylesheet Language Transformation

References
[CIS] Center for Internet Security. CIS Red Hat
 Enterprise Linux 7 Benchmark v2.1.0 (2016). https://benchmarks.cisecurity.org [Prose documentation, XCCDF, and OVAL available to CIS
 members]
[DITA-OT] DITA Open Toolkit. http://www.dita-ot.org
[Hedberg] T. Hedberg, J. Lubell, L. Fischer, L. Maggiano, and A. Barnard
 Feeney. Testing the Digital Thread in Support of Model-Based Manufacturing and
 Inspection.
 Journal of Computing and Information Science in Engineering.
 16 (2) (2016). doi:https://doi.org/10.1115/1.4032697
[Hu] V.C. Hu, D.R. Kuhn, T. Xie, and J. Hwang. Model Checking for
 Verification of Mandatory Access Control Models and Properties.
 International Journal of Software Engineering and Knowledge
 Engineering. 21 (1). pp. 103–27 (2011). doi:https://doi.org/10.1142/S021819401100513X.
[Kimber] E. Kimber. DITA for Practitioners Volume 1:
 Architecture and Technology. XMLPress (2012). [Configuration and Specialization
 tutorials online at http://www.xiruss.org/tutorials/dita-specialization]
[Krima] S. Krima and J. Lubell. Flat Versus Hierarchical Information
 Models in PLM Standardization Frameworks. In Product Lifecycle
 Management for Digital Transformation of Industries: 13th IFIP WG 5.1 International
 Conference, PLM 2016, Columbia, SC, USA, July 11-13, 2016, Revised Selected
 Papers. R. Harik, L. Rivest, A. Bernard, B. Eynard, and A. Bouras, Eds. Cham:
 Springer International Publishing. pp. 121–133 (2016). doi:https://doi.org/10.1007/978-3-319-54660-5_12
[Lubell2015] J. Lubell. Extending the Cybersecurity Digital Thread
 with XForms. In Proceedings of Balisage: The Markup Conference
 2015. Balisage Series on Markup Technologies, vol. 15 (2015). doi:https://doi.org/10.4242/BalisageVol15.Lubell01
[Lubell2017] J. Lubell and T. Zimmerman. The Challenge of Automating
 Security Configuration Checklists in Manufacturing Environments. In Critical Infrastructure Protection XI. M. Rice and S. Shenoi, Eds.
 Springer Berlin Heidelberg (2017). [To appear]
[OASIS-DITA] Organization for the Advancement of Structured Information
 Standards. Darwin Information Typing Architecture (DITA) Version 1.3 Part 2: Technical
 Content Edition. OASIS Standard (2016). http://docs.oasis-open.org/dita/dita/v1.3/dita-v1.3-part2-tech-content.html
[OASIS-DITA-xml.org] Organization for the Advancement of Structured
 Information Standards. DITA XML.org.
 http://dita.xml.org
[OpenSCAP-SSG] OpenSCAP Portal. SCAP Security Guide.
 http://www.open-scap.org/security-policies/scap-security-guide
[OpenSCAP-Workbench] OpenSCAP Portal. SCAP Workbench.
 https://www.open-scap.org/tools/scap-workbench
[OVAL] OVAL Documentation. http://ovalproject.github.io
[Oxygen] Oxygen XML Editor Blog. DITA Reuse Strategies (Short
 Tutorial describing all DITA Reuse possibilities).
 http://blog.oxygenxml.com/2015/11/dita-reuse-strategies-short-tutorial.html
[Priestley] M. Priestley and D. A. Schell. Specialization in DITA:
 Technology, Process, & Policy. In Proceedings of the 20th
 Annual International Conference on Computer Documentation. pp. 164–176 (2002).
 doi:https://doi.org/10.1145/584955.584980
[Preisler] M. Preisler. Contributing to SCAP Security Guide —
 Part 1.
 https://martin.preisler.me/2016/10/contributing-to-scap-security-guide-part-1
[Raspbian] Raspbian. https://www.raspbian.org
[StPierre] P. St. Pierre. Securing Linux with Mandatory Access
 Controls.
 Linux.com (2005). https://www.linux.com/news/securing-linux-mandatory-access-controls
[Quinn] S. Quinn, K. Scarfone, and D. Waltermire. Guide to Adopting
 and Using the Security Content Automation Protocol (SCAP) Version 1.2 (Draft). NIST
 Special Publication 800-117. Revision 1 (2012). http://csrc.nist.gov/publications/PubsDrafts.html#SP-800-117-Rev.%201
[Radack] S. Radack and R. Kuhn. Managing Security: The Security
 Content Automation Protocol.
 IT Professional. vol. 13(1). pp. 9–11 (2011). doi:https://doi.org/10.1109/MITP.2011.11
[S-R] K. Schengili-Roberts. Don Day and Michael Priestley on the
 Beginnings of DITA: Part 1.
 http://www.ditawriter.com/don-day-and-michael-priestley-on-the-beginnings-of-dita-part-1
[Vecchiato] D. Vecchiato, M. Vieira, and E. Martins. The Perils of
 Android Security Configuration.
 Computer. vol. 49(6). pp. 15-21 (2016). doi:https://doi.org/10.1109/MC.2016.184
[Waltermire] D. Waltermire, C. Schmidt, K. Scarfone, and N. Ziring.
 Specification for the Extensible Configuration Checklist Description Format (XCCDF)
 Version 1.2. NIST Interagency Report 7275 Revision 4 (2012). https://scap.nist.gov/specifications/xccdf
[W3C-CSS] World Wide Web Consortium. Cascading Style Sheets Level 2
 Revision 1 (CSS 2.1). W3C Recommendation (2011). https://www.w3.org/TR/CSS2
[W3C-XML] World Wide Web Consortium. Extensible Markup Language (XML)
 1.0 (Fifth Edition). W3C Recommendation (2008). https://www.w3.org/TR/xml
[W3C-XSLT] World Wide Web Consortium. XSL Transformations (XSLT)
 Version 2.0. W3C Recommendation (2007). https://www.w3.org/TR/xslt20
[XCCDF] XCCDF — The Extensible Configuration Checklist Description
 Format. https://scap.nist.gov/specifications/xccdf

[1] An Appendix lists all acronyms and their expansions.
[2] Certain commercial and third-party products and services are identified in this paper
 to foster understanding. Such identification does not imply recommendation or endorsement
 by the National Institute of Standards and Technology, nor does it imply that the
 materials or equipment identified are necessarily the best available for the
 purpose.
[3] https://www.open-scap.org/security-policies/scap-security-guide/#references
[4] This rule element type assumes that an XCCDF rule is disabled by
 default. Thus, an XCCDF <Rule> element generated from a DITA
 rule should have @selected="false". Although more
 restrictive than the XCCDF specification, this assumption allows for a more
 simplified rule syntax.
[5] This shorthand syntax assumes that rules in the benchmark are disabled by
 default. Identifying a rule in a profile thus implies that it should be changed to a
 selected status (with
 @selected="true").
[6] This lack of flexibility is a limitation of the case study and not of DITA. The rule
 and profile element types described in this paper only scratch the surface of what is
 possible with DITA's specialization mechanism.

Balisage: The Markup Conference

Using DITA to Create Security Configuration Checklists
A Case Study
Joshua Lubell
Computer Scientist
National Institute of Standards and Technology

<lubell@nist.gov>
Joshua Lubell is a computer scientist in the NIST Engineering Laboratory's Systems Integration Division. His interests include model-based engineering, cybersecurity, cyber-physical systems, long-term preservation of digital data, information modeling, and XML and other markup technologies. He received the United States Department of Commerce Silver Medal for his leadership in developing ISO 10303-203, a standard for representation and exchange of computer-aided designs. He is also a Balisage 2017 hyper-local, residing in the heart of Rockville, Maryland.

Balisage: The Markup Conference

content/images/Lubell01-002.png

content/images/Lubell01-003.png
XCCDF

88G shorthand Constants
files And Macros
benchmark
Comblne Transform
shorthand XML shorthand
components to XCCDF

content/images/Lubell01-004.png
Rule: Ensure SELinux is not disabled in
bootloader configuration

Description: Configure SELINUX to be enabled at boot time and verify that it has not
been overwritten by the grub boot parameters.

Rationale: SELinux must be enabled at boot time in your grub configuration to ensure
that the controls it provides are not overridden.

Check:

(orR

(AND #+oval/ 108 dita«#voval/1059.ditas)

e o e
Con

S

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

content/images/Lubell01-005.png
Profile: Firewall with MAC

“This profie extends the "Firewll" profie to check configuration of Mandatory.
Access Control (MAC).

5 rules/SELinux_is_installed.dita

#0 rules/SELinux_is_not_disabled_in_bootloader_configurati
~0 rules/iptables_is_installed.dita

2 rules/firewall_rules_exist_for_all_open_ports.dita

content/images/Lubell01-001.png
Title Red Hat Enterprise Linux 7 Benchmark

Customization [one selected =~
Profile [Firewall with MAC (4) ~| customize

Target € Local Machine 5 Remote Machine (over S5H)

Port [22 = [Recent v
Rules Collapse al

¥ Ensure SELinux is not disabled in bootloader configuration

User and host. |

Configure SELINUX to be enabled at boot time and verify that it has not been overwritten by the grub boot parameters.
¥ Ensure SELinux i installed

SELinux provides Mandatory Access Controls.
¥ Ensure iptables is installed

iptables allows configuration of the IPv4 tables in the linux kernel and the rules stored within them. Most firewall
configuration utiities operate as a front end to iptables.

¥ Ensure firewall rules exist for all open ports

Any ports that have been opened on non-loopback addresses need firewall rules to govern traffic.

0% (0 results, 4 rules selected)

I” Dryrun I Fetchremoteresources |~ Remedate §can

