
9/15/17

1

“Making	a	difference	by
processing	JSON	as	XML”

Robin	La	Fontaine

DeltaXML	

Today’s	story	is	about…

Viewing	JSON	as	XML	in	order	to	access	XML	comparison

Using	transformation	to	make	life	easier

Representing	changes	in	a	way	that	makes	sense

And	a	challenge	for	XMLT	4.0	…

View	all	structured	information as	XML

This	graphic	borrowed	from	Steven	Pemberton

Access	to	all	the	
XML	processing	stack

Transform	back	
again,	without	loss

The	good	news:	
XSLT	3.0	provides	

this	for	JSON<->XML

If	life	is	difficult,	transform	it

JSON	for	XMLers

Structure
• Name/value	pairs	(a	bit	like	attributes	but	value	can	be	a	structure)
• Text	but	also	numbers,	boolean and	null
• {	Objects	}	have	name	:	value	pairs
• [	Arrays	]	have	one	or	more	values

Text
• Unicode
• Escape	used	for	"	\ /	backspace	form-feed	line-feed	carriage-return	tab	
• No	pretty-printing	for	text,	only	for	structure

JSON	for	XMLers

Good	stuff
• Simpler
• No	difficult	whitespace	processing
• No	mixed	content!!
• Clear	distinction	between	name/value	pairs	and	arrays

Bad	(well,	not	so	good)	stuff
• No	attributes	(they	do	come	in	useful)
• No	structure	within	blocks	of	text	(XML/HTML	gets	embedded)
• Parsing	ambiguities



9/15/17

2

Transforming	JSON	into	XML

{"Image":	
{	"Width":	800,	
"Height":	600,	
"Title":	"View	from	15th	Floor",		

"Thumbnail":	
{	"Url":	
"http://www.example.com/image/481989943",		

"Height":	125,	
"Width":	100	},

"Animated":	false,	
"IDs":	
[	116,	
943,	
234,	
38793	]	}}	

<j:map
xmlns:j="http://www.w3.org/2013/XSL/json">	
<j:map key="Image">	
<j:number key="Width">800</j:number>	
<j:number key="Height">600</j:number>	
<j:string key="Title">View	from	15th	
Floor</j:string>	
<j:map key="Thumbnail">	
<j:string

key="Url">http://www.example.com/image/481989
943</j:string>
<j:number key="Height">125</j:number>	
<j:number key="Width">100</j:number></j:map>	

<j:boolean key="Animated">false</j:boolean>		
<j:array key="IDs">	
<j:number>116</j:number>	
<j:number>943</j:number>				
<j:number>234</j:number>	
<j:number>38793</j:number>	</j:array>	</j:map>	

</j:map>	

This	is	what	you	get	with	standard	XSLT	3.0

Default	XML	is	not	ideal

Does	not	align	well	with:

<j:number key="Width">800</j:number>	

<j:map key="Width">	
<j:number key="value">800</j:number>	
<j:string key="unit">"metre"</j:string>	

</j:map>	

Consider	a	typical	change	to:

"Width":	800,	

"Width":	
{	“value”:	800,
“units”:	“metre”	},	

When	we	look	at	the	XML	representation:

Transforming	XML	into	‘better’	XML

Aligns	better	with:

<member	key="Width">	
<number>800</number>	

</member>	 <member	key="Width">	
<object>
<member	key="value">	

<number>800</number></member>	
<member	key="unit">	

<string>metre</string></member>	
</object>
</member>	

Does	not	align	well	with:

<j:number key="Width">800</j:number>	

<j:map key="Width">	
<j:number key="value">800</j:number>	
<j:string key="unit">"metre"</j:string>	

</j:map>	

Representing	changes	– patch

A B

"hobbies":	
[	"playing	guitar	badly",	
"reading",	
"Cinema"	]

"hobbies":	
[	"Badminton",	
"guitar",	
"reading"	]

{"op":	"remove",	
"path":	"/hobbies/2"	},	
{	"op":	"add",	
"path":	"/hobbies/1",	
"value":	"guitar"	},	

{	"op":	"replace",	
"path":	"/hobbies/0",	
"value":	"Badminton"	}	

[	"playing	guitar	badly",	 "reading",	"Cinema"	]JSON	standard	patch:

[	"playing	guitar	badly",		"reading"]

[	"playing	guitar	badly",		”guitar",	" reading	"	]

["Badminton",		"reading",	"Cinema"	]

Representing	changes	– patch

A B

"hobbies":	
[	"playing	guitar	badly",	
"reading",	
"Cinema"	]

"hobbies":	
[	"Badminton",	
"guitar",	
"reading"	]

DECLARATIVE	delta:

"hobbies":	[	
{"dx_delta":	
{	"A":	"playing	guitar	badly",	
"B":	"Badminton"	}},	

{"dx_delta":	{"B":	"guitar"}},	
“reading”,	
{"dx_delta":	{"A":	"Cinema"}}	]	

Representing	changes	– patch

A B

"hobbies":	
[	"playing	guitar	badly",	
"reading",	
"Cinema"	]

"hobbies":	
[	"Badminton",	
"guitar",	
"reading"	]

DECLARATIVE	delta:

"hobbies":	[	
{"dx_delta":	
{	"A":	"playing	guitar	badly",
"B":	"Badminton"	}},	

{"dx_delta":	{"B":	"guitar"}},	
“reading”,
{"dx_delta":	{"A":	"Cinema"}}	]	

Highlight	A
"hobbies":	[	
{"dx_delta":	
{	"A":	"playing	guitar	badly",	
"B":	"Badminton" }},	

{"dx_delta":	{"B":	"guitar"}},	
“reading”,	
{"dx_delta":	{"A":	"Cinema"}}	]	

Highlight	B



9/15/17

3

Declarative	delta	provides	new	opportunities

A B

"hobbies":	
[	"playing	guitar	badly",	
"reading",	
"Cinema"	]

"hobbies":	
[	"Badminton",	
"guitar",	
"reading"	]

"hobbies":	[	
{"dx_delta":	
{	"A":	"playing	guitar	badly",	
"B":	"Badminton"	}},	

{"dx_delta":	{"B":	"guitar"}},	
null,	
{"dx_delta":	{"A":	"Cinema"}}	]	

DECLARATIVE	changes-only	delta:

This	is	“reading”	which	is	unchanged
Full	context	– all	data Changes	only	– omit	unchanged	data

"hobbies":	[	
{"dx_delta":	
{	"A":	"playing	guitar	badly",	
"B":	"Badminton"	}},	

{"dx_delta":	{"B":	"guitar"}},	
“reading”,	
{"dx_delta":	{"A":	"Cinema"}}	]	

DECLARATIVE	Full	delta:

Representing	changes	– patch

A B

"hobbies":	
[	"playing	guitar	badly",	
"reading",	
"Cinema"	]

"hobbies":	
[	"Badminton",	
"guitar",	
"reading"	]

{"op":	"remove",	
"path":	"/hobbies/2"	},	
{	"op":	"add",	
"path":	"/hobbies/1",	
"value":	"guitar"	},	

{	"op":	"replace",	
"path":	"/hobbies/0",	
"value":	"Badminton"	}	

"hobbies":	[	
{"dx_delta":	
{	"A":	"playing	guitar	badly",	
"B":	"Badminton"	}},	

{"dx_delta":	{"B":	"guitar"}},	
null,	
{"dx_delta":	{"A":	"Cinema"}}	]	

OPERATIONAL	patch: DECLARATIVE	delta:

Unidirectional Bidirectional/reversible

Taking	patch	one	step	further	– ‘smart	patch’

OPERATIONAL
Patch

DECLARATIVE	
Changes-only delta

DECLARATIVE	
Full	context	delta

‘A’	file	to	‘B’	file Yes Yes Both included

‘B’	file	to	‘A’	file No Yes Both included

What about	3	or	more	
files?

No Yes Yes

Apply changes	to	
variant	of	‘A’	file	
(Target	for	changes)

No No Yes	– so	a	‘smart	patch’	
(is	there	a	better name	
for	this??)

Confidence	in	the	‘smart	patch’	change

Relationship between	A	and	Target Smart	patch:	
Add	
(in B	not	A)

Smart	patch:	
Delete
(in A	not	B)

Smart	patch:	
Change
(in B	and	A)

In	Target	only	(no	changes	can	happen) Good n/a n/a

Not in	Target (no	changes	can	be	
applied	because	it	is	not	in	target)

Good Good Good

Target equal	to	A Good Good Good

Target	not equal	to	A Good OK	– may	be	an
issue

Fair	– could	be	a	
conflict

‘Apply	the	changes	between	A	and	B	to	Target’

(this	is	a	simplified	table,	does	not	take	account	of	non-leaf	nodes)

Representing	text	changes	in	JSON

A B

{"description":	"This	is	a	good	example	of	
Word	by	Word	processing"}	

{"description":	"This	is	a	great	example	of	
Word	by	Word	processing"}	

{"description":	{"dx_delta":	{	
"A":	"This	is	a	good	example	of	Word	by	Word	processing",	
"B":	"This	is	a	great	example	of	Word	by	Word	processing"	}}}	

{"description":	{"dx_delta_string":	
[	"This	is	a	",	
{"dx_delta":	{	"A":	"good",	"B":	"great"	}},	
"	example	of	Word	by	Word	processing"	]}}

A	word-by-word	representation	using	an	array	of	strings:

A	simple	representation	using	a	string:

Representing	text	changes	in	XML

A B

<p>This	is	a	good	example	of	Word	by	Word	
processing</p>

<p>This	is	a	great	example	of	Word	by	Word	
processing</p>

<p dx:deltaV2="A!=B"><dx:textGroup dx:deltaV2="A!=B">
<dx:text dx:deltaV2="A">This	is	a	good	example	of	Word	by	Word	processing</dx:text>
<dx:text dx:deltaV2="B">This	is	a	great	example	of	Word	by	Word	processing</dx:text>
</dx:textGroup>
</p>

<p dx:deltaV2="A!=B">This	is	a
<dx:textGroup dx:deltaV2="A!=B">
<dx:text dx:deltaV2="A">good</dx:text>
<dx:text dx:deltaV2="B">great</dx:text>

</dx:textGroup>
example	of	Word	by	Word	processing</p>

A	word-by-word	representation	using	an	array	of	strings:

A	simple	representation	using	a	string:



9/15/17

4

Lessons	on	change	representation

Similar	representation(s)	possible	in	JSON	and	XML

OPERATIONAL	patch	has	limited	applications

DECLARATIVE	delta	has	more	applications:
• Bi-directional	for	two	files	
• Changes	only	or	full	context	
• Can	represent	changes	between	more	than	2	files
• Can	be	used	to	propagate	changes	to	multiple	variant	Targets

Lessons	on	transformation

Transformation	much	easier	in	XML	than	JSON
• No	equivalent	of	XPath	or	XSLT	in	JSON

XSLT	3.0	provides	good	bi-directional	transformation	JSON<->XML

If	the	XML	structure	is	not	easy	to	process,	transform	it!
• Not	always	easy	to	design	loss-less	bi-directional	transformations
• Not	always	trivial	to	write	reverse	transformations

How	about	reversible	transformations	in	XSLT	4.0?

Reversible transformation

1. Specify	two	XML	patterns	– source	and	target

2. Specify	an	XPath	to	specify	where	to	trigger	the	transformation

3. XSLT	compiles	this	and	guarantees	reversibility
It	would	need	to	generate	the	XPath	for	the	reverse	trigger	point

4. Reversibility	means:
For	any	general	XML	source	having	one	or	more	trigger	points,	the	transformed	
source	can	be	reverse-transformed	back	to	XML	that	is	equal	to	the	source

And	coming	back	to	planet	earth	again…

JSON	users	can	enjoy	the	benefits	of	XML

XML	users	need	no	longer	fear	JSON
Just	turn	it	into	XML	using	XSLT	3.0

Difficult	XSLT	code	can	be	turned	into	easy	code

Using	loss-less	bi-directional	transformation

The	End
Thank	you!


