[image: Balisage logo]Balisage: The Markup Conference

The XML Expert's Path to Web Applications
Lessons learned from document and from software engineering
Anne Brüggemann-Klein
Technical University of Munich (TUM)

<brueggemann-klein@tum.de>

XML In, Web Out: International Symposium on sub rosa XML
August 1, 2016

Copyright © 2016 by the author. Used with permission.

How to cite this paper
Brüggemann-Klein, Anne. "The XML Expert's Path to Web Applications." Presented at: XML In, Web Out: International Symposium on sub rosa XML, Washington, DC, August 1, 2016.  In Proceedings of XML In, Web Out: International Symposium on sub rosa XML. 
        Balisage Series on Markup Technologies vol. 18 (2016). https://doi.org/10.4242/BalisageVol18.Bruggemann-Klein01.

Abstract
Web applications offer a golden opportunity for domain experts who work with XML
				documents to leverage their domain expertise, their knowledge of document
				engineering principles, and their skills in XML technology. Current XML technologies
				provide a full stack of modeling languages, implementation languages, and tools for
				Web applications that is stable, platform independent, and based on open standards.
				Combining principles and proven practices from document and software engineering, we
				identify architectures, modeling techniques, and implementation strategies that let
				end-user developers who are conversant with XML technologies create their own Web
				applications.



Balisage: The Markup Conference


      The XML Expert's Path to Web Applications

      Lessons learned from document and from software engineering

      
         Table of Contents

         
            	Title Page

            	Introduction

            	Domain modeling and implementation of the server component

            	The server component as an event-driven system

            	Connececting the server component to Web clients

            	Multi-client Web applications

            	Conclusion

            	About the Author

         

      
   The XML Expert's Path to Web Applications
Lessons learned from document and from software engineering

Introduction
The core uses of XML technologies in document engineering are to encode structured,
			mostly text-based information (XML), to impose validity constraints on XML-encoded
			documents (DTD, XML Schema, Relax NG), to translate, often for presentation
			purposes, XML-encoded information into alternative formats (XSLT) and to query a data
			layer of XML-encoded information (XQuery). Typical applications are information systems
			for publishing and documentation.
This paper discusses how to repurpose XML technologies for Web applications. It turns
			out that current XML technologies provide a full stack of modeling and implementation
			languages and tools for Web applications that is stable, platform independent and based
			on open standards. Most importantly, it works right on top of HTTP. It is bare-bones in
			the sense that it requires little to no glue in the form of an application framework. This
			is a golden opportunity for domain experts who work with XML documents to leverage their
			domain expertise, their knowledge of document engineering principles and their skills in
			XML technology to build Web applications. This lets us pluck a handful of low-hanging
			fruits from the tree of XML technology for Web applications besides familiarity and
			accessability, such as platform and vendor independence, stability, reliance on open
			standards and end-to-end XML-based data encoding without costly impedence mismatches.
			Combining principles and proven practices from document and from software engineering,
			we examine and propose architectures, modeling techniques and implementation strategies
			that let end-user developers who are conversant with XML technologies create their own
			Web applications.
Our claim in this paper is not so much that we have invented something completely new.
			Rather, we review what is known, tailor it to the general domain of Web applications and
			package it as a consistent set of practices. We demonstrate our approach with the
			well-known casino game Blackjack, drawing on previous work, particularly on our browser
			game case study GameX [SKB14][BSK15].
A word about the state of this paper: The ideas that are presented in this paper have
			been at the heart of research and teaching in my group at TUM for a number of years.
			Pertinent aspects are summarized in previous papers at Balisage as cited above, in a
			recent PhD thesis [S16] and in recent Bachelor [O16] Master [T16]
			Theses. I intend this paper to connect previous results and to integrate them into a
			holistic set of practices. I continue to refine and validate these practices using the
			games Blackjack and Mancala in a lab course on XML technology at TUM that I teach in the
			current summer term 2016. At this stage of writing, I discuss principles and practices
			mostly in the abstract. The final version of the paper will draw on a fully worked
			example, the game Blackjack.
A Web application by definition follows the client-server architecture. In this paper,
			we consider thin-client Web applications. The core of
			the application runs in a server component that is accessed by client components through
			a Web server. The client components run in Web browsers; they display relevant
			information and offer interaction alternatives. A chosen interaction is translated into
			an HTTP request which is processed by the server component, resulting in an update of
			the relevant information to display, which is then returned to the client in the form of
			an HTTP response. This implies that the server component of a Web application is best
			viewed as an event-driven system which is ultimately triggered by HTTP requests.
In the further four sections of this paper, we address four aspects of XML-powered Web
			applications: First, we investigate how to implement an object-oriented, domain-driven
			design for the server component of a Web application with XML technologies, focusing on
			the principle of encapsulation. Second, we address the event-driven nature of the server
			component, employing statechart modeling encoded with SCXML. In particular, we define a
			stratification criterion that ensures that the behaviour that is expressed through the
			statechart can be executed in the framework of the request-response cycle of a Web
			application. Third, we put the server component on the Web, following the
			model-view-controler and XRX architectural styles. Fourth and finally, we discuss
			requirements and some solutions for multi-client Web applications that need to implement
			the observer pattern and server push interactions. We conclude with a reflection and
			with some final remarks.

Domain modeling and implementation of the server component
From a document engineering perspective, the server component of a Web application is
			typically seen as a repository of documents that is accessed through query and update
			functions. However, some types of Web applications have state in the server component
			beyond the state of a typical backend data layer. Specifically, they require several
			instances of the server component on one Web server that are dynamically instantiated
			and destroyed under user control. This is not the case with GameX, where all players
			share a single map to play on, but it is the case with Blackjack, where each table of
			Blackjack requires its own instance of a Blackjack game to be created in the server
			component, even in the most simple single-player scenario.
From a software engineering and particularly from an object-oriented perspective, the
			data of the server component are often naturally organized into a number of interrelated
			objects, with methods that locally operate on the data of an object, using methods on
			other objects as services. This is the principle of encapsulation, a form of abstraction
			that together with information hiding and inheritance facilitates software qualities
			such as ease of maintenance and extensibility.
More precisely, coming from an object-oriented modeling [BD] and domain-driven perspective [E04], an application is typically modeled in the object-oriented
			style by a number of classes, with a class corresponding to a type of domain entity and
			defining which data an instance of the class (that is, an object), holds and which
			methods can be performed on these data. This approach is particularly appropriate for
			Web applications that have state as described above.
We demonstrate how to model the data part of a class with a class schema in XML
			Schema. Objects are then implemented as XML elements that conform to their class schema.
			Methods are implemented as XQuery functions that have a reference to the object they are
			operating on as a "self" or "this" parameter. This approach mirrors directly common
			implementation practice for methods in object-oriented programming languages.
The most simple version of our case study Blackjack provides a game server to which
			eventually, due to this strategy of encapsulation, a number of clients can connect
			independently and asynchronously to play their own, separate one-person single-round
			games of Blackjack.
The domain model for Blackjack at this stage comprises the data of a single Blackjack
			game such as player hand, dealer hand and player bet. In addition, there are a number of
			top-level activities that operate on these data, such as placing a bet, executing a hit
			or stand command or tallying the game. There are also activities for creating and
			destroying a game and some helper activities that are invoked by top-level activities,
			for example instantiating and shuffling a deck of cards or drawing a card from the deck.
			The data model is defined by a UML class diagram which is then translated into XML
			Schema. The activities are implemented in an XQuery module, using the encapsulation
			technique described earlier.

The server component as an event-driven system
In the previous section, we have not yet addressed the overall behaviour of the server
			component. We view the server component as an event-driven system whose top-level
			activities are triggered by events, most commonly by user actions. Typically, there are
			constraints to the legal sequences of events, and the specific activity that is
			triggered may be dependent only on a specific pattern in the history of previous events.
			The classical tool to model the behaviour of an event-driven system is statecharts.
			Statecharts have been first introduced by Harel as documented in a book [HP98] he co-authored with Politi. They have later, in
			the object-oriented variant of state diagrams, become part of UML2; see [SSHK15] for a textbook introduction and [H99] for an extensive discussion of the use of
			statecharts in software engineering. Most recently, with SCXML [B15], an XML encoding language for statecharts has been
			standardized, bringing statecharts into the realm of XML technologies. A number of
			research papers discuss use of SCXML in particular, among them the Bachelor Thesis of
				Roxendal [R10], invited expert to the W3C
			committee that defined SCXML.
We complement our domain model of Blackjack with a UML statechart diagram that models
			the behaviour of the server component. The statechart is triggered by events that
			eventually originate from HTTP requests on behalf of a player who operates a Blackjack
			client component running in a Web browser. Execution of the statechart may result in
			computing data that are returned to the client component as a HTTP response. The
			statechart needs to be stratified in the sense that each execution of the statechart
			gives rise to an alternating sequence of events triggered by HTTP requests and returns
			of data in a HTTP response. The returned data specify which potential next actions on
			the part of the user will be accepted according to the statechart in its current state,
			following the principles of REST [F00].
The UML statechart diagram is manually translated into an SCXML encoding, following
			straightforward procedures, so in principle this translation can be automated. The SCXML
			statechart is then implemented in yet another XQuery module. Following the command
			pattern, ultimately each event results in a call to a query which operates on XML data
			representing the current state and on the SCXML data themselves.

Connececting the server component to Web clients
We are now ready to put the server component on the Web. We deploy the server
			component in an XML database system on the Web, currently we use eXist, but system
			dependencies are minimal. Browsers who wish to initiate a new Blackjack game connect to
			a dispatcher XQuery file on the server, which in turn instantiates a new Blackjack
			server component cum statechart object. From then on, communication between the browser
			and the server component is mediated by a controler query which translates HTTP
			requests from the browser into events for its statechart and translates data from the
			statechart into HTTP responses. The Blackjack client is implemented in XForms. It holds
			the information it is to display and the interactions it is to enable in its model,
			submitting requests AJAX-style and receiving responses in its model. The architecture is
			an instance of the model-view-controler architectural style named model-view-presenter
			with passive view and passive model [F02] and a
			one-to-one relationship between presenter and model.

Multi-client Web applications
It is straightforward to extend the Blackjack game to multiple players playing at
			multiple tables as long as all players at one table play through the same browser. The
			situation changes completely if we want to support a truly distributed game in which
			each player at a Blackjack table plays through their own browser. In that case, we have
			a number of controlers, one per player, who each are able to forward commands from
				their player to the server object and play back any data that the
			server component returns, possibly in reaction to commands issued by another controler.
			The latter destroys the ping-pong rhythm of request and response in the HTTP protocol.
			In this type of communication, which is actually a type of server broadcast, a server
			needs to be able to push responses to clients from whom there is no open request.
There are ways to emulate the server-push or server-broadcast communication pattern
			over HTTP by using so-called busy polling or long polling
			techniques in combination with AJAX-like requests. In fact, our browser game GameX uses
			busy polling to propagate changes in the map that were caused by one player to all other
			players. However, these solutions are not stable and do not scale. HTML5-based
			architectures go beyond the request-response cycle of the HTTP protocol towards server
			push solutions by supporting APIs such as Server-Sent Events and WebSockets [WSM13] in the client and with corresponding server-side
			implementations, for example in Node.js [HW12]. There
			does not seem to exist an XML-savvy implementation of these approaches, yet.

Conclusion
In this paper, we have laid out a coherent and coordinated set of practices for
			developing XML-powered Web applications. With Blackjack, this paper provides a worked
			example that illustrates these practices. The practices draw on previous work and are
			have been and are being bullet-proofed with further case studies.
One source of inspiration have been proven principles and practices from software
			engineering. We have demonstrated how the principle of encapsulation can be emulated
			with XML technology by mapping objects and methods operating on objects to XML elements
			and XQuery-encoded activities that are parameterized with the object-element they are
			supposed to operate on as a "self" or "this" parameter.
From data model to a model that also addresses actions: (1) defining a domain model.
			(2) data-behaviour-activities: modeling state with statemachine diagrams, encoded in
			SCXML. This facilitates model-driven code generation.
By systematically analysing the model-view-controler (MVC) architectural style and how
			it can be applied in the context of Web applications and the request-response cycle, we
			have worked out how a server component can be kept independent of its clients as long as
			there is a one-to-one relationship between a client and an instance object that the
			server component creates for the client to interact with.
The challenge is how to design an XML-driven solution for real multi-client
			applications or, more precisely, how to realize the observer pattern in the XML context.
			HTML5-based architectures go beyond the request-response cycle of the HTTP protocol
			towards server push solutions by supporting APIs such as Server-Sent Events and
			WebSockets in the client and with corresponding server-side implementations, for example
			in Node.js. If we wish to rely solely on XML technolgies, the only options seem to be
			emulations of server push through long pulling or busy pulling. It is a point for
			discussion and further development if we can fill this gap better with technologies in
			the XML stack.
The practices proposed in this paper are compatible with domain-driven design and
			model-driven solutions.

Bibliography
[B15] Jim Barnett (Editor-in-Chief). State
				Chart XML (SCXML): State Machine Notation for Control Abstraction. W3C
			Recommendation 1 September 2015. [online]. [cited 11 April 2016].
				http://www.w3.org/TR/2015/REC-scxml-20150901/.
[BD] Bernd Brügge; Allen Dutoit.
				Object-Oriented Software Engineering Using UML, Patterns, and Java.
			Prentice Hall, 2009.
[BSK15] Anne Brüggemann-Klein;
			Marouane Sayih; Zlatina Keskivov. Statecharts and State Chart XML as a Modeling
				Technique in Web Engineering. In Proceedings of
				Balisage: The Markup Conference 2015. Balisage Series on Markup
			Technologies, vol. 15 (2015). [online]. [cited 11 April 2016].
				http://www.balisage.net/Proceedings/vol15/html/Sayih01/BalisageVol15-Sayih01.html. doi:https://doi.org/10.4242/BalisageVol15.Sayih01.
[E04] Eric Evans. Domain-Driven Design:
				Tackling Complexity in the Heart of Software. Addison-Wesley,
			2004.
[F00] Roy Thomas Fielding.
				Architectural Styles and the Design of Network-based Software
				Architectures. PhD Thesis University of California, Irvine
			2000.
[F02] Martin Fowler. Patterns of
				Enterprise Application Architecture. Addison-Wesley, 2002.
[F11] Martin Fowler. Domain-Specific
				Languages. Addison-Wesley, 2011.
[H99] Ian Horrocks. Constructing
				the User Interface with Statecharts. Addison-Wesley 1999.
[HP98] David Harel; Michal Politi.
				Modeling Reactive Systems with Statecharts: The STATEMATE Approach.
			McGraw-Hill, 1998. [online] [cited 19 2016]
				http://www.wisdom.weizmann.ac.il/~harel/reactive_systems.html.
[HW12]  Tom Hughes-Croucher; Mike Wilson.
				Node: Up and Running: Scalable Server-Side Code with JavaScript.
			O'Reilly 2012. 
[R10] Johan Roxendal. Managing Web
				Based Dialog Systems Using StateChart XML. Bachelor Thesis University of
			Gothenburg 2010.
[S16] Marouane Sayih Web Engineering mit
				XML-Technologien. PhD Thesis, 2016. [submitted at TUM].
[SKB14] Marouane Sayih; Martin Kuhn; Anne
			Brüggemann-Klein. GameX — Event-Based Programming with XML Technology. In
				Proceedings of Balisage: The Markup Conference
				2014. Balisage Series on Markup Technologies, vol. 13 (2014). [online].
			[cited 20 April 2016].
				http://www.balisage.net/Proceedings/vol13/html/Bruggemann-Klein01/BalisageVol13-Bruggemann-Klein01.html. doi:https://doi.org/10.4242/BalisageVol13.Bruggemann-Klein01.
[SSHK15] Martina Seidl; Marion Scholz;
			Christian Huemer; Gerti Kappel. UML@Classroom. An Introduction to Object-Oriented
				Modeling. Springer-Verlag 2015.
[T16] Nina Tanakova. Domain-Driven
				Design for Web Applications with XML-Technology. Master Thesis TUM,
			2016.
[O16] Jakob Oelkers. Modeling and
				Implementing a Distributed 2-Person Board Game with XML Technology. Bachelor
			Thesis TUM, 2016.
[WSM13] Vanessa Wang; Frank Salim; Peter
			Moskovits. The Definite Guide to HTML5 WebSocket. APress 2013.
		

Balisage: The Markup Conference

The XML Expert's Path to Web Applications
Lessons learned from document and from software engineering
Anne Brüggemann-Klein
Technical University of Munich (TUM)

<brueggemann-klein@tum.de>


Balisage: The Markup Conference

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies





