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XQuery : XML databases :: SQL : relational databases

Widely accepted: “XQuery is a query language for XML”

The truth but not the whole truth

XQuery is both a query language and a programming language

Functional language, all benefits of such languages, e.g. no side effects
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Limitations of the SQL analogy

When data is XML, can build entire web applications using XQuery as server-side 
programming language

Requires implementation-provided extensions (but multiple widely adopted 
implementations offer them)

Using HTML5 (not limited to XHTML), CSS, JavaScript

(Not addressing XQuery in the browser here)
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Advantages of XQuery

XQuery works with XML natively

Classic technology stack for web development: relational database, accessed via 
SQL, paired with a given programming language, usually object-oriented

Requires “object-relational mapping”

Database (relational) and language (OO) have different data models

Inherent “impedance mismatch” (Kaufmann; Seiferle) — misalignment/gap 
between data and language
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Advantages of XQuery

With XML + XQuery, we sidestep entire layers of complexity

Unified, stable technology stack

Inherently appealing conceptually, but also has practical benefits

No glue code, fewer moving parts, less time on maintenance

Thus more time for meaningful coding (developing new or 
improved functionality, intentional refactoring)
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Advantages of XQuery for web delivery of XML content
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Techniques: Utilizing MVC

MVC (model-view-controller) wildly popular in web development since advent of 
Ruby on Rails

Frameworks for other languages followed suit; nearly universally practiced

Popular because so effective for development/maintenance of complex 
applications

MVC just as indispensable for web development in XQuery as for any other 
language
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Problem: confusion surrounding MVC

Very general as a concept, can be applied variously in practice

Differing methodologies have proliferated, making MVC seem complicated

MVC often called an “architecture,” but that term is overburdened, unhelpful
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Techniques: Utilizing MVC

Much of this confusion is unnecessary

In essence, MVC is just a technique for organizing code

Goal is classic “separation of concerns”
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Techniques: Utilizing MVC

Models know how data is represented (modeled), handle database interaction

Views construct presentation of data

Controllers receive input and respond accordingly, utilizing models and views

A more complex application may merit a more complex use of MVC components 
(multiple controllers and/or multiple models)

But nothing wrong with having one controller, one model, a view for each page
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Techniques: Utilizing MVC

Modular nature of XQuery lends itself easily/directly to MVC:

Each model, view, and controller is implemented as an XQuery library module
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Techniques: MVC: Model

Model handles database interaction

No other MVC component should create, read, update or delete data (no CRUD 
outside the model)

But with XQuery, we have an additional consideration:

Whether the model should handle all navigation of structure of XML documents

That is, whether only the model should contain XPath expressions
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Techniques: MVC: Model

Example: search → search results → “item” view

In item view, display all bibliographic metadata
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Techniques: MVC: Model

Example: search → search results → “item” view

In item view, display book title

Trivial example, but in real-world applications XPath expressions will be:

More elaborate

Distributed throughout presentation code across multiple XQuery modules

Same XPath expressions needed more than once
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Techniques: MVC: Model

When knowledge of XML document structure is confined to model, if markup 
changes, only model code has to be refactored

Cleaner separation of concerns

Separation → practical benefits: flexibility, less maintenance
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Techniques: MVC: Model

Use cases for multiple models:

When application works with XML content in more than one markup 
language, could have a model for each

When application includes full-text searching, could group search-related 
functions into a separate model
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Techniques: MVC: View

View provides the presentation

Example: search → search results → item page: each is a view, each is a 
separate XQuery module

A view can be for human use (HTML), or machine use (XML or JSON)
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Techniques: MVC: Controller

Controller receives input, responds accordingly

In a web application, controller accesses input from HTTP request (URL 
parameters, form data, request headers, cookies), then calls the appropriate 
view

XQuery doesn’t provide built-in functions for such HTTP-specific matters, so 
implementation has to supply them (but multiple widely adopted 
implementations do)
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When responding to an HTTP request using MVC, processing forms a loop

Throughout this loop, there will be decision points — a given function in a given 
module must have access to the input values (URL parameters, etc.)

Example: “search results” view — how to sort results, how many results to 
display at a time, etc. — indicated by input from user on HTTP request

XQuery implementations provide functions to get input values ...
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Keeping functions testable

Have to access these input values, but doing so inherently creates a problem:

Functions that directly access HTTP parameters can’t be independently tested

Building robust, maintainable web applications requires unit testing

whereby a single unit of code (in XQuery, a function) is tested

in isolation from the rest of the application

in a deliberately controlled environment

using sample data
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Keeping functions testable

If a function accesses a value taken from the HTTP request,

when that function gets called for testing purposes (outside the context of 
any HTTP request),

that value will always be empty

No HTTP request, no request parameter

So how do we independently verify the behavior of the function?
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Keeping functions testable

Solution: provide a function in controller (receives input)

to access URL parameters (or other input values)

and put them in an XQuery map (or other structure)

Then controller can pass that map to any given view

and view can pass map to internal functions as needed

Thus all functions have access to input values needed to make decisions
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Keeping functions testable

Now we can test any given function in a controlled environment (outside any 
HTTP request)

1. Construct a map containing sample input values
2. Pass map to function being tested
3. Verify expected return value
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Utilizing MVC

Keeping functions testable
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Improving code portability and sharing

Web applications in XQuery require implementation-provided functions

Easy for codebase to become peppered with calls to those functions

Results in code that requires extensive refactoring to port

And inhibits sharing code

Contributes to fragmenting XQuery web development community



Using available standardizations

Improving code portability and sharing



Code portability/sharing: Using standardizations

XQuery web development remains a niche area, but there are options for 
standardizing practices



Code portability/sharing: Using standardizations

XQuery web development remains a niche area, but there are options for 
standardizing practices

EXQuery group (exquery.org) has proposed several specifications for 
standardizing functionality across XQuery implementations



Code portability/sharing: Using standardizations

XQuery web development remains a niche area, but there are options for 
standardizing practices

EXQuery group (exquery.org) has proposed several specifications for 
standardizing functionality across XQuery implementations

some of these are specific to XQuery web development



Code portability/sharing: Using standardizations

XQuery web development remains a niche area, but there are options for 
standardizing practices

EXQuery group (exquery.org) has proposed several specifications for 
standardizing functionality across XQuery implementations

some of these are specific to XQuery web development

of these, the most widely implemented is RESTXQ
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Code portability/sharing: Standardizations: RESTXQ

RESTXQ (proposed by Adam Retter in 2012) utilizes XQuery 3.0 annotations to 
associate a given URL with a corresponding XQuery function

Replaces URL rewriting

Instead of rewriting URLs (from user-friendly to code-friendly), RESTXQ maps 
URLs to functions directly
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Code portability/sharing: Standardizations: RESTXQ

Example: search → search results → item view

Say item view is requested by URL like /item/a1

With URL rewriting, translate /item/a1 to /?id=a1 

Then web server passes that URL to XQuery processor
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Code portability/sharing: Standardizations: RESTXQ

URL rewriting code tends to be idiosyncratic and cumbersome to maintain

“creating a spaghetti of if/else statements” (Retter)

But with RESTXQ, we can directly map /item/a1 to an XQuery function
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Code portability/sharing: Standardizations: RESTXQ

Locates the URL mapping code at the function declaration itself (not in a 
separate “rewrite engine” module)

Annotation is concise, declarative, standardized, easy to read and maintain

RESTXQ supported in BaseX, eXist, and MarkLogic — thus effectively a de facto 
standard

RESTXQ easy to incorporate into MVC

Add RESTXQ annotations to functions in the controller
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Using available standardizations
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Isolating implementation-specific functions

Implementation-provided functions pose main barrier to code portability/sharing

Technique: a library module containing generically named/namespaced 
functions ...

Within generic function, call corresponding implementation-provided function

Throughout codebase, whenever needed, call applicable generic function

Creates a layer of abstraction, isolates implementation-dependent code from all 
other application code
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Isolating implementation-specific functions

This technique greatly facilitates:

Sharing code with individuals/projects

Porting entire application?

By simply swapping out one “implementation” module for another

As more code uses such “implementation” modules, more code becomes 
implementation-independent — across one’s own projects, perhaps also across 
XQuery web development community?
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