
XQuery is not (just) 
a query language
Web application development with XQuery

Greg Murray
Princeton Theological Seminary



Limitations of the SQL analogy



Limitations of the SQL analogy

XQuery : XML databases :: SQL : relational databases



Limitations of the SQL analogy

XQuery : XML databases :: SQL : relational databases

Widely accepted: “XQuery is a query language for XML”



Limitations of the SQL analogy

XQuery : XML databases :: SQL : relational databases

Widely accepted: “XQuery is a query language for XML”

The truth but not the whole truth



Limitations of the SQL analogy

XQuery : XML databases :: SQL : relational databases

Widely accepted: “XQuery is a query language for XML”

The truth but not the whole truth

XQuery is both a query language and a programming language



Limitations of the SQL analogy

XQuery : XML databases :: SQL : relational databases

Widely accepted: “XQuery is a query language for XML”

The truth but not the whole truth

XQuery is both a query language and a programming language

Functional language, all benefits of such languages, e.g. no side effects



Limitations of the SQL analogy

When data is XML, can build entire web applications using XQuery as server-side 
programming language



Limitations of the SQL analogy

When data is XML, can build entire web applications using XQuery as server-side 
programming language

Requires implementation-provided extensions



Limitations of the SQL analogy

When data is XML, can build entire web applications using XQuery as server-side 
programming language

Requires implementation-provided extensions (but multiple widely adopted 
implementations offer them)



Limitations of the SQL analogy

When data is XML, can build entire web applications using XQuery as server-side 
programming language

Requires implementation-provided extensions (but multiple widely adopted 
implementations offer them)

Using HTML5 (not limited to XHTML), CSS, JavaScript



Limitations of the SQL analogy

When data is XML, can build entire web applications using XQuery as server-side 
programming language

Requires implementation-provided extensions (but multiple widely adopted 
implementations offer them)

Using HTML5 (not limited to XHTML), CSS, JavaScript

(Not addressing XQuery in the browser here)



Advantages of XQuery
for web delivery of XML content



Advantages of XQuery

XQuery works with XML natively



Advantages of XQuery

XQuery works with XML natively

Classic technology stack for web development: relational database, accessed via 
SQL, paired with a given programming language, usually object-oriented



Advantages of XQuery

XQuery works with XML natively

Classic technology stack for web development: relational database, accessed via 
SQL, paired with a given programming language, usually object-oriented

Requires “object-relational mapping”



Advantages of XQuery

XQuery works with XML natively

Classic technology stack for web development: relational database, accessed via 
SQL, paired with a given programming language, usually object-oriented

Requires “object-relational mapping”

Database (relational) and language (OO) have different data models



Advantages of XQuery

XQuery works with XML natively

Classic technology stack for web development: relational database, accessed via 
SQL, paired with a given programming language, usually object-oriented

Requires “object-relational mapping”

Database (relational) and language (OO) have different data models

Inherent “impedance mismatch” (Kaufmann; Seiferle) — misalignment/gap 
between data and language





Advantages of XQuery

Even with XML data, similar mismatch between XML and OO 
programming languages



Advantages of XQuery

Even with XML data, similar mismatch between XML and OO 
programming languages

Object-document mapping (not object-relational)



Advantages of XQuery

Even with XML data, similar mismatch between XML and OO 
programming languages

Object-document mapping (not object-relational)

Still a mismatch between data (XML) and language (OO)



Advantages of XQuery

With XML + XQuery, no such mismatch between data and language





Advantages of XQuery

With XML + XQuery, we sidestep entire layers of complexity



Advantages of XQuery

With XML + XQuery, we sidestep entire layers of complexity

Unified, stable technology stack



Advantages of XQuery

With XML + XQuery, we sidestep entire layers of complexity

Unified, stable technology stack

Inherently appealing conceptually, but also has practical benefits



Advantages of XQuery

With XML + XQuery, we sidestep entire layers of complexity

Unified, stable technology stack

Inherently appealing conceptually, but also has practical benefits

No glue code, fewer moving parts, less time on maintenance



Advantages of XQuery

With XML + XQuery, we sidestep entire layers of complexity

Unified, stable technology stack

Inherently appealing conceptually, but also has practical benefits

No glue code, fewer moving parts, less time on maintenance

Thus more time for meaningful coding (developing new or 
improved functionality, intentional refactoring)



Web application development with XQuery
Limitations of the SQL analogy

Advantages of XQuery for web delivery of XML content



Techniques for web application 
development with XQuery



Utilizing MVC

Techniques for web application development with XQuery



Techniques: Utilizing MVC

MVC (model-view-controller) wildly popular in web development since advent of 
Ruby on Rails



Techniques: Utilizing MVC

MVC (model-view-controller) wildly popular in web development since advent of 
Ruby on Rails

Frameworks for other languages followed suit; nearly universally practiced



Techniques: Utilizing MVC

MVC (model-view-controller) wildly popular in web development since advent of 
Ruby on Rails

Frameworks for other languages followed suit; nearly universally practiced

Popular because so effective for development/maintenance of complex 
applications



Techniques: Utilizing MVC

MVC (model-view-controller) wildly popular in web development since advent of 
Ruby on Rails

Frameworks for other languages followed suit; nearly universally practiced

Popular because so effective for development/maintenance of complex 
applications

MVC just as indispensable for web development in XQuery as for any other 
language



Techniques: Utilizing MVC

Problem: confusion surrounding MVC



Techniques: Utilizing MVC

Problem: confusion surrounding MVC

Very general as a concept, can be applied variously in practice



Techniques: Utilizing MVC

Problem: confusion surrounding MVC

Very general as a concept, can be applied variously in practice

Differing methodologies have proliferated, making MVC seem complicated



Techniques: Utilizing MVC

Problem: confusion surrounding MVC

Very general as a concept, can be applied variously in practice

Differing methodologies have proliferated, making MVC seem complicated

MVC often called an “architecture,” but that term is overburdened, unhelpful



Techniques: Utilizing MVC

Much of this confusion is unnecessary



Techniques: Utilizing MVC

Much of this confusion is unnecessary

In essence, MVC is just a technique for organizing code



Techniques: Utilizing MVC

Much of this confusion is unnecessary

In essence, MVC is just a technique for organizing code

Goal is classic “separation of concerns”



Techniques: Utilizing MVC

Models know how data is represented (modeled), handle database interaction



Techniques: Utilizing MVC

Models know how data is represented (modeled), handle database interaction

Views construct presentation of data



Techniques: Utilizing MVC

Models know how data is represented (modeled), handle database interaction

Views construct presentation of data

Controllers receive input and respond accordingly



Techniques: Utilizing MVC

Models know how data is represented (modeled), handle database interaction

Views construct presentation of data

Controllers receive input and respond accordingly, utilizing models and views



Techniques: Utilizing MVC

Models know how data is represented (modeled), handle database interaction

Views construct presentation of data

Controllers receive input and respond accordingly, utilizing models and views

A more complex application may merit a more complex use of MVC components 
(multiple controllers and/or multiple models)



Techniques: Utilizing MVC

Models know how data is represented (modeled), handle database interaction

Views construct presentation of data

Controllers receive input and respond accordingly, utilizing models and views

A more complex application may merit a more complex use of MVC components 
(multiple controllers and/or multiple models)

But nothing wrong with having one controller, one model, a view for each page



Techniques: Utilizing MVC



Techniques: Utilizing MVC

Modular nature of XQuery lends itself easily/directly to MVC



Techniques: Utilizing MVC

Modular nature of XQuery lends itself easily/directly to MVC:

Each model, view, and controller is implemented as an XQuery library module



Model

Techniques for web application development with XQuery

Utilizing MVC



Techniques: MVC: Model

Model handles database interaction



Techniques: MVC: Model

Model handles database interaction

No other MVC component should create, read, update or delete data



Techniques: MVC: Model

Model handles database interaction

No other MVC component should create, read, update or delete data (no CRUD 
outside the model)



Techniques: MVC: Model

Model handles database interaction

No other MVC component should create, read, update or delete data (no CRUD 
outside the model)

But with XQuery, we have an additional consideration:



Techniques: MVC: Model

Model handles database interaction

No other MVC component should create, read, update or delete data (no CRUD 
outside the model)

But with XQuery, we have an additional consideration:

Whether the model should handle all navigation of structure of XML documents



Techniques: MVC: Model

Model handles database interaction

No other MVC component should create, read, update or delete data (no CRUD 
outside the model)

But with XQuery, we have an additional consideration:

Whether the model should handle all navigation of structure of XML documents

That is, whether only the model should contain XPath expressions



Techniques: MVC: Model

Example: search → search results → “item” view



Techniques: MVC: Model



Techniques: MVC: Model

Example: search → search results → “item” view

In item view, display all bibliographic metadata



Techniques: MVC: Model
In the item view:



Techniques: MVC: Model
In the item view:



Techniques: MVC: Model
In the item view:



Techniques: MVC: Model
In the item view:



Techniques: MVC: Model
In the item view:



Techniques: MVC: Model
Option 1: Get book title directly using XPath



Techniques: MVC: Model
Option 2: Call model to get book title



Techniques: MVC: Model

Example: search → search results → “item” view

In item view, display book title

Trivial example, but in real-world applications XPath expressions will be:



Techniques: MVC: Model

Example: search → search results → “item” view

In item view, display book title

Trivial example, but in real-world applications XPath expressions will be:

More elaborate



Techniques: MVC: Model

Example: search → search results → “item” view

In item view, display book title

Trivial example, but in real-world applications XPath expressions will be:

More elaborate

Distributed throughout presentation code across multiple XQuery modules



Techniques: MVC: Model

Example: search → search results → “item” view

In item view, display book title

Trivial example, but in real-world applications XPath expressions will be:

More elaborate

Distributed throughout presentation code across multiple XQuery modules

Same XPath expressions needed more than once



Techniques: MVC: Model

When knowledge of XML document structure is confined to model, if markup 
changes, only model code has to be refactored



Techniques: MVC: Model

When knowledge of XML document structure is confined to model, if markup 
changes, only model code has to be refactored

Cleaner separation of concerns



Techniques: MVC: Model

When knowledge of XML document structure is confined to model, if markup 
changes, only model code has to be refactored

Cleaner separation of concerns

Separation → practical benefits: flexibility, less maintenance



Techniques: MVC: Model

Use cases for multiple models



Techniques: MVC: Model

Use cases for multiple models:

When application works with XML content in more than one markup 
language, could have a model for each



Techniques: MVC: Model

Use cases for multiple models:

When application works with XML content in more than one markup 
language, could have a model for each

When application includes full-text searching, could group search-related 
functions into a separate model



View

Techniques for web application development with XQuery

Utilizing MVC



Techniques: MVC: View

View provides the presentation



Techniques: MVC: View

View provides the presentation

Example: search → search results → item page



Techniques: MVC: View

View provides the presentation

Example: search → search results → item page: each is a view, each is a 
separate XQuery module



Techniques: MVC: View

View provides the presentation

Example: search → search results → item page: each is a view, each is a 
separate XQuery module

A view can be for human use (HTML)



Techniques: MVC: View

View provides the presentation

Example: search → search results → item page: each is a view, each is a 
separate XQuery module

A view can be for human use (HTML), or machine use (XML or JSON)



Controller

Techniques for web application development with XQuery

Utilizing MVC



Techniques: MVC: Controller

Controller receives input, responds accordingly



Techniques: MVC: Controller

Controller receives input, responds accordingly

In a web application, controller accesses input from HTTP request (URL 
parameters, form data, request headers, cookies)



Techniques: MVC: Controller

Controller receives input, responds accordingly

In a web application, controller accesses input from HTTP request (URL 
parameters, form data, request headers, cookies), then calls the appropriate 
view



Techniques: MVC: Controller

Controller receives input, responds accordingly

In a web application, controller accesses input from HTTP request (URL 
parameters, form data, request headers, cookies), then calls the appropriate 
view

XQuery doesn’t provide built-in functions for such HTTP-specific matters



Techniques: MVC: Controller

Controller receives input, responds accordingly

In a web application, controller accesses input from HTTP request (URL 
parameters, form data, request headers, cookies), then calls the appropriate 
view

XQuery doesn’t provide built-in functions for such HTTP-specific matters, so 
implementation has to supply them



Techniques: MVC: Controller

Controller receives input, responds accordingly

In a web application, controller accesses input from HTTP request (URL 
parameters, form data, request headers, cookies), then calls the appropriate 
view

XQuery doesn’t provide built-in functions for such HTTP-specific matters, so 
implementation has to supply them (but multiple widely adopted 
implementations do)



Web application development with XQuery
Limitations of the SQL analogy

Advantages of XQuery for web delivery of XML content

Techniques for web application development with XQuery

Utilizing MVC



Keeping functions testable



Keeping functions testable

When responding to an HTTP request using MVC, processing forms a loop



Keeping functions testable

When responding to an HTTP request using MVC, processing forms a loop



Keeping functions testable

When responding to an HTTP request using MVC, processing forms a loop

Throughout this loop, there will be decision points



Keeping functions testable

When responding to an HTTP request using MVC, processing forms a loop

Throughout this loop, there will be decision points — a given function in a given 
module must have access to the input values (URL parameters, etc.)



Keeping functions testable

When responding to an HTTP request using MVC, processing forms a loop

Throughout this loop, there will be decision points — a given function in a given 
module must have access to the input values (URL parameters, etc.)

Example: “search results” view — how to sort results, how many results to 
display at a time, etc.



Keeping functions testable

When responding to an HTTP request using MVC, processing forms a loop

Throughout this loop, there will be decision points — a given function in a given 
module must have access to the input values (URL parameters, etc.)

Example: “search results” view — how to sort results, how many results to 
display at a time, etc. — indicated by input from user on HTTP request



Keeping functions testable

When responding to an HTTP request using MVC, processing forms a loop

Throughout this loop, there will be decision points — a given function in a given 
module must have access to the input values (URL parameters, etc.)

Example: “search results” view — how to sort results, how many results to 
display at a time, etc. — indicated by input from user on HTTP request

XQuery implementations provide functions to get input values ...



Keeping functions testable



Keeping functions testable



Keeping functions testable

Have to access these input values, but doing so inherently creates a problem:



Keeping functions testable

Have to access these input values, but doing so inherently creates a problem:

Functions that directly access HTTP parameters can’t be independently tested



Keeping functions testable

Have to access these input values, but doing so inherently creates a problem:

Functions that directly access HTTP parameters can’t be independently tested

Building robust, maintainable web applications requires unit testing



Keeping functions testable

Have to access these input values, but doing so inherently creates a problem:

Functions that directly access HTTP parameters can’t be independently tested

Building robust, maintainable web applications requires unit testing

whereby a single unit of code (in XQuery, a function) is tested



Keeping functions testable

Have to access these input values, but doing so inherently creates a problem:

Functions that directly access HTTP parameters can’t be independently tested

Building robust, maintainable web applications requires unit testing

whereby a single unit of code (in XQuery, a function) is tested

in isolation from the rest of the application



Keeping functions testable

Have to access these input values, but doing so inherently creates a problem:

Functions that directly access HTTP parameters can’t be independently tested

Building robust, maintainable web applications requires unit testing

whereby a single unit of code (in XQuery, a function) is tested

in isolation from the rest of the application

in a deliberately controlled environment



Keeping functions testable

Have to access these input values, but doing so inherently creates a problem:

Functions that directly access HTTP parameters can’t be independently tested

Building robust, maintainable web applications requires unit testing

whereby a single unit of code (in XQuery, a function) is tested

in isolation from the rest of the application

in a deliberately controlled environment

using sample data



Keeping functions testable

If a function accesses a value taken from the HTTP request



Keeping functions testable

If a function accesses a value taken from the HTTP request,

when that function gets called for testing purposes (outside the context of 
any HTTP request)



Keeping functions testable

If a function accesses a value taken from the HTTP request,

when that function gets called for testing purposes (outside the context of 
any HTTP request),

that value will always be empty



Keeping functions testable

If a function accesses a value taken from the HTTP request,

when that function gets called for testing purposes (outside the context of 
any HTTP request),

that value will always be empty

No HTTP request, no request parameter



Keeping functions testable

If a function accesses a value taken from the HTTP request,

when that function gets called for testing purposes (outside the context of 
any HTTP request),

that value will always be empty

No HTTP request, no request parameter

So how do we independently verify the behavior of the function?



Keeping functions testable

Solution: provide a function in controller (receives input)



Keeping functions testable

Solution: provide a function in controller (receives input)

to access URL parameters (or other input values)



Keeping functions testable

Solution: provide a function in controller (receives input)

to access URL parameters (or other input values)

and put them in an XQuery map (or other structure)



Keeping functions testable

Solution: provide a function in controller (receives input)

to access URL parameters (or other input values)

and put them in an XQuery map (or other structure)

Then controller can pass that map to any given view



Keeping functions testable

Solution: provide a function in controller (receives input)

to access URL parameters (or other input values)

and put them in an XQuery map (or other structure)

Then controller can pass that map to any given view

and view can pass map to internal functions as needed



Keeping functions testable

Solution: provide a function in controller (receives input)

to access URL parameters (or other input values)

and put them in an XQuery map (or other structure)

Then controller can pass that map to any given view

and view can pass map to internal functions as needed

Thus all functions have access to input values needed to make decisions



Keeping functions testable

Now we can test any given function in a controlled environment



Keeping functions testable

Now we can test any given function in a controlled environment (outside any 
HTTP request)



Keeping functions testable

Now we can test any given function in a controlled environment (outside any 
HTTP request)

1. Construct a map containing sample input values



Keeping functions testable

Now we can test any given function in a controlled environment (outside any 
HTTP request)

1. Construct a map containing sample input values
2. Pass map to function being tested



Keeping functions testable

Now we can test any given function in a controlled environment (outside any 
HTTP request)

1. Construct a map containing sample input values
2. Pass map to function being tested
3. Verify expected return value



Web application development with XQuery
Limitations of the SQL analogy

Advantages of XQuery for web delivery of XML content

Techniques for web application development with XQuery

Utilizing MVC

Keeping functions testable



Improving code portability and sharing



Improving code portability and sharing

Web applications in XQuery require implementation-provided functions



Improving code portability and sharing

Web applications in XQuery require implementation-provided functions

Easy for codebase to become peppered with calls to those functions



Improving code portability and sharing

Web applications in XQuery require implementation-provided functions

Easy for codebase to become peppered with calls to those functions

Results in code that requires extensive refactoring to port



Improving code portability and sharing

Web applications in XQuery require implementation-provided functions

Easy for codebase to become peppered with calls to those functions

Results in code that requires extensive refactoring to port

And inhibits sharing code



Improving code portability and sharing

Web applications in XQuery require implementation-provided functions

Easy for codebase to become peppered with calls to those functions

Results in code that requires extensive refactoring to port

And inhibits sharing code

Contributes to fragmenting XQuery web development community



Using available standardizations

Improving code portability and sharing



Code portability/sharing: Using standardizations

XQuery web development remains a niche area, but there are options for 
standardizing practices



Code portability/sharing: Using standardizations

XQuery web development remains a niche area, but there are options for 
standardizing practices

EXQuery group (exquery.org) has proposed several specifications for 
standardizing functionality across XQuery implementations



Code portability/sharing: Using standardizations

XQuery web development remains a niche area, but there are options for 
standardizing practices

EXQuery group (exquery.org) has proposed several specifications for 
standardizing functionality across XQuery implementations

some of these are specific to XQuery web development



Code portability/sharing: Using standardizations

XQuery web development remains a niche area, but there are options for 
standardizing practices

EXQuery group (exquery.org) has proposed several specifications for 
standardizing functionality across XQuery implementations

some of these are specific to XQuery web development

of these, the most widely implemented is RESTXQ



Code portability/sharing: Standardizations: RESTXQ

RESTXQ (proposed by Adam Retter in 2012) utilizes XQuery 3.0 annotations to 
associate a given URL with a corresponding XQuery function



Code portability/sharing: Standardizations: RESTXQ

RESTXQ (proposed by Adam Retter in 2012) utilizes XQuery 3.0 annotations to 
associate a given URL with a corresponding XQuery function

Replaces URL rewriting



Code portability/sharing: Standardizations: RESTXQ

RESTXQ (proposed by Adam Retter in 2012) utilizes XQuery 3.0 annotations to 
associate a given URL with a corresponding XQuery function

Replaces URL rewriting

Instead of rewriting URLs (from user-friendly to code-friendly), RESTXQ maps 
URLs to functions directly



Code portability/sharing: Standardizations: RESTXQ

Example: search → search results → item view



Code portability/sharing: Standardizations: RESTXQ

Example: search → search results → item view

Say item view is requested by URL like /item/a1



Code portability/sharing: Standardizations: RESTXQ

Example: search → search results → item view

Say item view is requested by URL like /item/a1

With URL rewriting, translate /item/a1 to /?id=a1



Code portability/sharing: Standardizations: RESTXQ

Example: search → search results → item view

Say item view is requested by URL like /item/a1

With URL rewriting, translate /item/a1 to /?id=a1 

Then web server passes that URL to XQuery processor



Code portability/sharing: Standardizations: RESTXQ



Code portability/sharing: Standardizations: RESTXQ



Code portability/sharing: Standardizations: RESTXQ



Code portability/sharing: Standardizations: RESTXQ



Code portability/sharing: Standardizations: RESTXQ



Code portability/sharing: Standardizations: RESTXQ



Code portability/sharing: Standardizations: RESTXQ

URL rewriting code tends to be idiosyncratic and cumbersome to maintain



Code portability/sharing: Standardizations: RESTXQ

URL rewriting code tends to be idiosyncratic and cumbersome to maintain

“creating a spaghetti of if/else statements” (Retter)



Code portability/sharing: Standardizations: RESTXQ

URL rewriting code tends to be idiosyncratic and cumbersome to maintain

“creating a spaghetti of if/else statements” (Retter)

But with RESTXQ, we can directly map /item/a1 to an XQuery function



Code portability/sharing: Standardizations: RESTXQ



Code portability/sharing: Standardizations: RESTXQ



Code portability/sharing: Standardizations: RESTXQ



Code portability/sharing: Standardizations: RESTXQ



Code portability/sharing: Standardizations: RESTXQ

Locates the URL mapping code at the function declaration itself



Code portability/sharing: Standardizations: RESTXQ

Locates the URL mapping code at the function declaration itself (not in a 
separate “rewrite engine” module)



Code portability/sharing: Standardizations: RESTXQ

Locates the URL mapping code at the function declaration itself (not in a 
separate “rewrite engine” module)

Annotation is concise, declarative, standardized, easy to read and maintain



Code portability/sharing: Standardizations: RESTXQ

Locates the URL mapping code at the function declaration itself (not in a 
separate “rewrite engine” module)

Annotation is concise, declarative, standardized, easy to read and maintain

RESTXQ supported in BaseX, eXist, and MarkLogic — thus effectively a de facto 
standard



Code portability/sharing: Standardizations: RESTXQ

Locates the URL mapping code at the function declaration itself (not in a 
separate “rewrite engine” module)

Annotation is concise, declarative, standardized, easy to read and maintain

RESTXQ supported in BaseX, eXist, and MarkLogic — thus effectively a de facto 
standard

RESTXQ easy to incorporate into MVC



Code portability/sharing: Standardizations: RESTXQ

Locates the URL mapping code at the function declaration itself (not in a 
separate “rewrite engine” module)

Annotation is concise, declarative, standardized, easy to read and maintain

RESTXQ supported in BaseX, eXist, and MarkLogic — thus effectively a de facto 
standard

RESTXQ easy to incorporate into MVC

Add RESTXQ annotations to functions in the controller



Web application development with XQuery
Limitations of the SQL analogy

Advantages of XQuery for web delivery of XML content

Techniques for web application development with XQuery

Utilizing MVC

Keeping functions testable

Improving code portability and sharing

Using available standardizations



Isolating implementation-specific 
functions

Improving code portability and sharing



Isolating implementation-specific functions

Implementation-provided functions pose main barrier to code portability/sharing



Isolating implementation-specific functions

Implementation-provided functions pose main barrier to code portability/sharing

Technique: a library module containing generically named/namespaced 
functions ...



Isolating implementation-specific functions

Implementation-provided functions pose main barrier to code portability/sharing

Technique: a library module containing generically named/namespaced 
functions ...

Within generic function, call corresponding implementation-provided function



Isolating implementation-specific functions

Implementation-provided functions pose main barrier to code portability/sharing

Technique: a library module containing generically named/namespaced 
functions ...

Within generic function, call corresponding implementation-provided function

Throughout codebase, whenever needed, call applicable generic function



Isolating implementation-specific functions

Implementation-provided functions pose main barrier to code portability/sharing

Technique: a library module containing generically named/namespaced 
functions ...

Within generic function, call corresponding implementation-provided function

Throughout codebase, whenever needed, call applicable generic function

Creates a layer of abstraction, isolates implementation-dependent code from all 
other application code



Isolating implementation-specific functions

Example: Set up “implementation” module



Isolating implementation-specific functions

Example: Set up “implementation” module, add generically named function for 
getting value of a given HTTP request parameter



Isolating implementation-specific functions

Example: Set up “implementation” module, add generically named function for 
getting value of a given HTTP request parameter



Isolating implementation-specific functions

Example: Set up “implementation” module, add generically named function for 
getting value of a given HTTP request parameter



Isolating implementation-specific functions

Example: Set up “implementation” module, add generically named function for 
getting value of a given HTTP request parameter



Isolating implementation-specific functions

Example: Set up “implementation” module, add generically named function for 
getting value of a given HTTP request parameter



Isolating implementation-specific functions

Example: Set up “implementation” module, add generically named function for 
getting value of a given HTTP request parameter



Isolating implementation-specific functions

Allows creating an “implementation” module for any given XQuery 
implementation that supports web application development



Isolating implementation-specific functions

Allows creating an “implementation” module for any given XQuery 
implementation that supports web application development



Isolating implementation-specific functions

Allows creating an “implementation” module for any given XQuery 
implementation that supports web application development



Isolating implementation-specific functions

Allows creating an “implementation” module for any given XQuery 
implementation that supports web application development



Isolating implementation-specific functions

Import “implementation” module for target implementation, call generic 
function



Isolating implementation-specific functions

Import “implementation” module for target implementation, call generic 
function



Isolating implementation-specific functions

Import “implementation” module for target implementation, call generic 
function



Isolating implementation-specific functions

Import “implementation” module for target implementation, call generic 
function



Isolating implementation-specific functions

Import “implementation” module for target implementation, call generic 
function



Isolating implementation-specific functions

To target MarkLogic, controller code is identical except filename



Isolating implementation-specific functions

To target MarkLogic, controller code is identical except filename



Isolating implementation-specific functions

This technique greatly facilitates:

Sharing code with individuals/projects



Isolating implementation-specific functions

This technique greatly facilitates:

Sharing code with individuals/projects

Porting entire application?



Isolating implementation-specific functions

This technique greatly facilitates:

Sharing code with individuals/projects

Porting entire application?

By simply swapping out one “implementation” module for another



Isolating implementation-specific functions

This technique greatly facilitates:

Sharing code with individuals/projects

Porting entire application?

By simply swapping out one “implementation” module for another

As more code uses such “implementation” modules, more code becomes 
implementation-independent



Isolating implementation-specific functions

This technique greatly facilitates:

Sharing code with individuals/projects

Porting entire application?

By simply swapping out one “implementation” module for another

As more code uses such “implementation” modules, more code becomes 
implementation-independent — across one’s own projects, perhaps also across 
XQuery web development community?



Greg Murray
Princeton Theological Seminary

Bibliography
Kaufmann, Martin and Donald Kossmann. 
“Developing an enterprise web application in 
XQuery” (2009).

Retter, Adam. “RESTful XQuery: Standardised 
XQuery 3.0 annotations for REST” (2012).

Seiferle, Michael. “Implementing web 
applications using XQuery: XML from front to 
back” (2012).


