[image: Balisage logo]Balisage: The Markup Conference

Marking up and marking down
Norman Walsh

Balisage: The Markup Conference 2016
August 2 - 5, 2016

Copyright © Norman Walsh

How to cite this paper
Walsh, Norman. "Marking up and marking down." Presented at: Balisage: The Markup Conference 2016, Washington, DC, August 2 - 5, 2016. In Proceedings of Balisage: The Markup Conference 2016.
 Balisage Series on Markup Technologies vol. 17 (2016). https://doi.org/10.4242/BalisageVol17.Walsh01.

Abstract
Markup provides a means of annotating a text such that its
important characteristics are readily apparent. Simplicity of
annotation and richness of meaning are often at odds. Through one
lens, we can see the evolution of markup as developing along this
fault line. TANSTAAFL. SGML provided mechanisms that reduced the
complexity of annotation at considerable cost in implementation. XML
reduced implementation cost at the expense of simplicity in
annotation. HTML attempted to simplify annotation complexity and
implementation cost by choosing a single tag set and inventing
entirely new extension mechanisms. Online communities like GitHub and
Stack Overflow have abandoned angle brackets in favor of Markdown,
Common Mark, AsciiDoc, and other markup reminiscent of wiki syntax or
SGML SHORTREF. Why am I in this basket and where are we going?

Balisage: The Markup Conference

 Marking up and marking down

 Table of Contents

 	Title Page

 	Explicit markup
 	XML

 	SGML

 	JSON

 	CSV

 	HTML

 	Implicit markup

 	Lightweight markup languages
 	Markdown / CommonMark

 	AsciiDoc

 	Org Mode

 	The road not taken

 	Concluding remarks

 	About the Author

 Marking up and marking down

Markup provides a means of annotating a text such that its
important characteristics are readily apparent. Simplicity of
annotation and richness of meaning are often at odds. Through one
lens, we can see the evolution of markup as developing along this
fault line. TANSTAAFL. SGML provided mechanisms that reduced the
complexity of annotation at considerable cost in implementation. XML
reduced implementation cost at the expense of simplicity in
annotation. HTML attempted to simplify annotation complexity and
implementation cost by choosing a single tag set and inventing
entirely new extension mechanisms. Online communities like GitHub and
Stack Overflow have abandoned angle brackets in favor of Markdown,
Common Mark, AsciiDoc, and other markup reminiscent of wiki syntax or
SGML SHORTREF.
Explicit markup
Broadly speaking, if additional characters or sequences of characters
are added to some content in order to impose an interpretation on it, then
we can describe that as explicit markup.
Explicit markup comes in many flavors, a few of which are
described here.
XML
If someone mentions markup, most of us think immediately of
explicit markup. These days—for this audience—most likely
XML. Given a text document, like this one, we
embed XML start and end tags, entity references, etc. within it to
impose a structure on it.
In fact, XML is a metalanguage: a language for creating
languages. This paper is written using DocBook markup, because that’s
what the proceedings require. At another conference it might have been
marked up in JATS. Or TEI. If some future linguistic research is
performed on the corpus of Balisage proceedings, perhaps it will be
marked up in some entirely different way.
Consider the first paragraph of this section:
Figure 1: Some text
If someone mentions markup, most of us think immediately of explicit
markup. These days-for this audience-most likely XML. Given a text
document, like this one, we embed XML start and end tags, entity
references, etc. within it to impose a structure on it.

For these proceedings, it could be marked it up thus:
Figure 2: DocBook markup
<para>If someone mentions markup, most of us think immediately of explicit
markup. These days&mdash;for this audience&mdash;most likely
XML. Given a text document, like <emphasis>this one</emphasis>, we
embed XML start and end tags, entity references, etc. within it to
impose a structure on it.</para>

In another context, it might be marked up like this:
Figure 3: Some other markup
<g13><s>If someone mentions markup<p>,</p> most of us think
immediately of explicit markup<p>.</p></s><s>These
days<p>&mdash;</p>for this audience<p>&mdash;</p>most likely
XML<p>.</p></s><s>Given a text document<p>,</p> like this one<p>,</p>
we embed XML start and end tags<p>,</p> entity references<p>,</p>
<q>etc</q><p>.</p> within it to impose a structure on
it<p>.</p></s></g13>

In fact, the number of ways that it might be marked up is
essentially unbounded. Amongst the strengths of explicit markup
is the fact that different structures can be imposed on the same text.
(The weakness that different structures cannot, in general, be imposed
at the same time with inline markup, is a subject
oft discussed at this conference.)
At one level, this makes XML very extensible: new markup
elements can be invented at will and used immediately. Namespaces
provide a mechanism to ensure that the names one group invents are
unlikely to be the same as the names another group invents.
At another level, however, XML is very inflexible and non-extensible.
The specification leaves effectively no room for exensibility at the
level of parsing:
	A left angle bracket is always the start of a start- or end-tag.

	An ampersand is always the start of an entity or numeric character reference.

	An “'” is always, literally a U+0027 character.

	The interpretation of an entity reference is always explicitly in terms
of the characters used in its definition.

	etc.

This level of specificity (or brittleness) is part of a trade
off between simplicity of parsing and intepretation on one hand and flexibility
on the other.
Consider this random document with some markup in it:
Figure 4: Random markup
<f29>"I believe so," <r>Alice</r> replied thoughtfully. "They have
their tails in their mouths—and they're all over crumbs."</f29>

While the semantics of the tags may be unknown, the structural
interpretation of the document is wholly defined by the XML
specification: it’s a document with an f29 document
element that has three children: a text node, an r
element, and another text node. The r element in turn
has a single text node child.

SGML
SGML, like XML, is a grammar for creating new grammars. I mention it here
for two reasons:
	SGML is thirty years old this year, so it’s bound to be discussed.

	SGML provided an “SGML Declaration” and a much richer set of
features in its DTDs. Taken together, these gave the
document author the ability to make quite profound changes to the way
in which the SGML parser behaved.

The SGML Declaration, DTD syntax, and other mechanisms such as
notations and SDATA entities made SGML documents much more flexibile
than XML documents. It also made the parsers much more difficult to
write and the interpretation of documents much more difficult.
In an SGML context, it’s not possible to make definitive assertions
about the intepretation of a random document like Figure 4.
SGML (before the WebSGML corrigendum anyway) doesn’t attempt to define the
intepretation of an SGML document absent its SGML Declaration and DTD.
We shall return to this topic later in
section “The road not taken”.

JSON
If the sweet spot for XML and SGML is marking up “prose
documents”, the sweet spot for JSON is collections of atomic values.
If you are willing to squint and say that the collection of atomic
values is analagous to the text document we mark up with XML, then
JSON qualifies as explicit markup.
A typical JSON document looks something like this:
Figure 5: JSON data
{
 "p": 3,
 "q": [
 false
],
 "r": [
 null,
 true,
 "true"
]
}

The two organizational structures in JSON are “objects”
(unordered collections of name/value pairs) and “arrays” (strictly
ordered collections of arbitrary types). Beyond these two structures,
JSON defines only four data types: numbers, strings, booleans,
and the literal value “null”. JSON is highly composable. The values in
an object can be any JSON type as can the members of an array.
It’s interesting to note that XML has both of the organizational
structures as well: attributes are unordered collections of name/value
pairs and element content is an ordered collection of nodes. But XML
is far less composable.
It’s not difficult to argue this XML document:
<p>This is important.</p>
And this JSON object:
{
 "p": [
 "This is ",
 {
 "em": [
 "important"
]
 },
 "."
]
}
are equivalent representations of the same underlying data: a
“p” that has three “children” including one that is an “em” with one
“child”.
As a matter of practicality, JSON documents are not at all
constrained to represent data that has an equivalent form in XML.
There isn’t any XML document that’s a lossless representation of Figure 5, for example. Consequently, JSON tools don’t lend
themselves to efficient processing of the equivalent subset.
Note: Aside
JSON lacks anything that closely resembles XPath. It is possible
to define a coherent model for XPath expressions over JSON data, as
MarkLogic version 8.x and above do, but it leads to some unexpected
consequences. (What, for example, is the node name of the value 3 in
an array and is it distinguished from the node name of any other value
in the array?)

JSON “in the wild” is subject to considerable variation. The
current official definition of the “application/json” media type is
RFC 7159 but the format is a subset of the data structures allowed in
Javascript. In as much as JSON data structures are often constructed
by Javascript, it is not uncommon to find examples of objects and
arrays that are putatively JSON but in fact stray outside the
boundaries of RFC 7159. (For example, Javascript doesn’t require that
property names be quoted.)

SGML and XML are defined with a concept of validity: their metalanguages
define new elements (and attributes) in the context of a grammar that
divides the universe of documents into valid ones that conform and invalid
ones that do not.
The definition of JSON includes no notion of validity at the
structural level, but several proposals, such as JSON Schema, exist to
fill this gap. If widely adopted, they would give JSON a degree of
metamodel extensibility not unlike XML.
Syntactically, JSON is as tightly constrained as XML. Attempts
to relax the syntactic constraints exist, for example HJSON, but they
do so by defining wholly new syntaxes not be extending JSON in any
standard way.

CSV
CSV files contain lines of text that are interpreted as “comma
separated values” (or sometimes tab separated values, but it comes to
the same thing).
In the interest of completeness, it can probably be argued that
CSV also qualifies as a kind of explicit markup. In practice, there is
tremendous variation in how applications interpret CSV
documents.
This variation probably traces back to the notion that it’s
“so simple it doesn’t need a specification” combined with implementors’
attempts to be “bugward compatible” with the tools with which they
wanted to interoperate.
There is now a specification for the “Model for Tabular Data and
Metadata on the Web” (W3C, 17 Dec 2015).

HTML
HTML, despite it’s surface similarity to XML and SGML, is a
particular language, a particular set of tags, not a metalanguage. It
was originally described using SGML, but never implemented that way.
An XML definition was specified, but it was rejected by the
browser vendors. Today, when we speak of HTML, we mean HTML5.
HTML uses
angle brackets and entity references, and the realization
of a document is ultimately a tree, but HTML is maximally Postelian.
Where XML imposes both well-formedness and validity constraints, HTML
imposes none. Every sequence of characters is an HTML document.
One of the principle goals of the HTML5 effort was to specify
the language in such a way that every sequence of characters has
exactly one interpretation as an HTML document. In other words, the
goal is complete interoperability at the level of constructing a
document tree. There is no formal, grammatical definition of HTML;
it’s defined in prose in the specification and by running code and a
test suite.
In principle, HTML leaves no room for
extensibility. Every sequence of characters already has an interpretation.
In practice, it provides several mechanisms: class attributes,
“data” attributes (that is to say, attributes with names
that begin data-), meta elements, rel
attributes on link elements, script and
embed elements, and Javascript.
HTML can obviously be used in a great many contexts, but for the
overwhelming majority of users, the web browser is the only context
that matters. On the modern web, Javascript and CSS are effectively
required components of that context.
The current HTML maintainers have also asserted that no standard
HTML element name will ever contain a hyphen. Various extensibility
mechanisms have been described that rely on this fact. Cleverly packaging
a hyphenated tag name (such as db-funcsynopsis) with appropriate Javascript
and CSS offers the potential for considerable extensibility in the future.
Unlike namespaces in XML, the hyphenated names described by HTML provide
no mechanism for establishing global uniqueness. This is obviously a problem in theory
as your definition of ex-image and my version of ex-image
are likely to collide in Very Bad™ ways if we attempt to use them together in
the same document. Whether this turns out to be a significant problem in practice
remains to be seen.

Implicit markup
Having surveyed the state of several explicit markup langauges, let’s
turn our attention to implicit markup.
There’s no such thing.
While a human being, with the syntax and semantics of a tag set
in mind, may be able to look at a document and work out where markup
boundaries are implied, computers can’t. At least not unless the
current crop of AI systems turn out to be much more successful than
previous efforts.
What we mean when we speak of “implicit markup” in this context
would be better described as “lightweight markup”: interpreting
characters and features of prose documents—as they occur in the
prose—as markup.

Lightweight markup languages
On the surface, lightweight markup language appear to make
simple things simple. Presented with a page consisting of several
blocks of text separated by blank lines, we’re all comfortable
assuming that those are, logically, paragraphs of text. Similarly,
lines beginning with “*” or “-” characters
form a bulleted list, and so on.
Many of the conventions used in lightweight markup languages go
back as far as text files on computers. They’re clearly inspired by
wiki markup (from before the days when the browser was an application
platform). There are lots of lightweight markup languages, dozens at
least, perhaps hundreds.
The current resurgence in popularity probably derives from the
fact that, for many applications, the web browser is the predominant
user interface. To the extent that it’s useful to solicit marked-up
text from users, the browser presents a significant challenge. Two
challenges, in fact: a technical challenge and a usability
challenge.
The technical challenge is that the obvious way to solicit input
is with an HTML textarea element into which users type.
Note
Moore’s Law and advances in compiler technology have made
the web browser an incredibly powerful application development platform.
Much more sophisticated editing applications can
be developed for strucured authoring in the browser: Oxygen’s
XML Web Author, for example. They are not,
however, casually deployed on the web at this time.

The usability challenge will be apparent to anyone who’s tried
typing markup into a text area. They will tell you that it’s an
unpleasant task. Typing markup without any form of help from an
editing tool is tedious and error prone. It’s also a problem for
applications. While applications may wish to allow users to type in
paragraphs and lists, it’s perhaps undesirable to allow users to type
in image or script elements with arbitrary URIs.
Lightweight markup languages are a much better fit for typing into
a text box. They require less typing, there are fewer opportunities
for markup errors, and the markup elements can easily be limited.
As noted above, many lightweight markup languages have been
developed. Often they become associated with a particular community,
reStructuredText in the Python community, for
example, or Org Mode in the Emacs community.
In this paper, we’ll consider three lightweight markup languages:
	Markdown, developed to allow authors “to write using an
easy-to-read, easy-to-write, plain text format” that could be
converted to structurally meaningful HTML, has been adopted by
major applications such as Github and Stack Overflow.

	AsciiDoc, developed with an eye towards making it easier
to author DocBook documents, is a natural fit for Balisage.

	Org Mode, is a feature-rich lightweight markup language
that florishes within the Emacs community.

It is not the intent of this paper to declare one of these
languages superior to the others. While we might prefer XML to JSON or
Oxygen to a textarea, lightweight markup languages are
here to stay. Just as AsciiDoc attempts to make a lightweight version
of DocBook, efforts are afoot to make lightweight versions of DITA and
JATS. You’re bound to run into them eventually, if you haven’t yet,
and this paper hopes to provide an overview of the sort of things
you’re going to encounter.
What starts simple, blank lines and asterisks, can quickly
descend into an ad hoc sea of punctuation characters, bringing some
dubiousness to the adjective “simple”. For the purposes of comparison,
this paper presents the same document (to the extent possible) encoded
in five ways: DocBook, HTML, the CommonMark flavor of Markdown, AsciiDoc,
and Org Mode.
The sample document has been contrived to demonstrate the
following features:
a document title and additional metadata,
inline links,
inline emphasis,
inline code,
inline bold,
superscripts,
paragraphs,
itemized lists,
ordered lists,
description lists,
tables,
examples,
program listings,
footnotes,
and a function synopsis.

The DocBook document, Figure 6, and
HTML document Figure 7 are presented first.
Figure 6: DocBook markup
<article xmlns="http://docbook.org/ns/docbook"
 xmlns:xlink="http://www.w3.org/1999/xlink">
<info>
 <title>Document Title</title>
 <subtitle>Subtitle</subtitle>
 <author>
 <personname>Jane Smith</personname>
 </author>
 <abstract>
 <para>The document, abstractly.</para>
 </abstract>
 <keywordset>
 <keyword>alpha</keyword>
 <keyword>beta</keyword>
 </keywordset>
 <publisher><publishername>Yoyodyne Propulsion Systems</publishername></publisher>
 <bibliomisc role="john">bigboote</bibliomisc>
</info>
<para>This is a paragraph. See also
<link xlink:href="http://docbook.org/">DocBook</link>.
</para>

<para>This is <emphasis>another</emphasis> paragraph<footnote>
<para>The examples in this document are awful, I know.</para>
</footnote>.</para>

<itemizedlist>
<listitem>
<para>The first item of a bulleted list.</para>
</listitem>
<listitem>
<para>The second item.</para>
<para>The second part of the second item.</para>
</listitem>
<listitem>
<para>The third item.</para>
</listitem>
</itemizedlist>

<para>This is a paragraph.</para>

<orderedlist>
<listitem>
<para>The first item of a numbered list.</para>
</listitem>
<listitem>
<para>The second item.</para>
<para>The second part of the second item.</para>
</listitem>
<listitem>
<para>The third item.</para>
</listitem>
</orderedlist>

<para>This paragraph contains a <code>code</code> word.</para>

<variablelist>
<varlistentry>
<term>Mercury</term>
<listitem>
<para>Burn, baby, burn.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>Venus</term>
<listitem>
<para>Where global warming ran amok.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>Earth</term>
<listitem>
<para>Where global warming is running amok.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>Mars</term>
<listitem>
<para>Future home of Elon Musk.</para>
</listitem>
</varlistentry>
</variablelist>

<para>This is a paragraph.</para>

<table xml:id="table">
<title>A powerful table</title>
<tgroup cols="3">
<thead>
 <row>
 <entry>x</entry>
 <entry>x<superscript>2</superscript></entry>
 <entry>x<superscript>3</superscript></entry>
 </row>
</thead>
<tbody>
 <row>
 <entry>1</entry>
 <entry>1</entry>
 <entry>1</entry>
 </row>
 <row>
 <entry>2</entry>
 <entry>4</entry>
 <entry>8</entry>
 </row>
 <row>
 <entry>3</entry>
 <entry>9</entry>
 <entry>27</entry>
 </row>
</tbody>
</tgroup>
</table>

<example>
<title>How long since then?</title>
<programlisting language="xquery">xquery version "1.0-ml";
declare variable $startDate external;

let $date := $startDate cast as xs:dateTime
let $diff := current-dateTime() - $date
return
 current-dateTime() - $date</programlisting>
</example>

<para>Consider the function synopsis for the “max” function:</para>

<funcsynopsis>
<funcsynopsisinfo>
#include <varargs.h>
</funcsynopsisinfo>
<funcprototype>
 <funcdef>int <function>max</function></funcdef>
 <varargs/>
</funcprototype>
</funcsynopsis>

<para>Finally, this is the <emphasis role="bold">last</emphasis>
paragraph.</para>
</article>

The DocBook document is effectively the highest fidelity source.
The “function synopsis” is included specifically because there’s no
directly corresponding markup in any of the other flavors.
Figure 7: HTML markup
<!DOCTYPE html>
<html>
<head>
<title>Document Title</title>
<meta charset="utf-8" />
<meta name="subtitle" content="Subtitle" />
<meta name="author" content="Jane Smith" />
<meta name="abstract" content="The document, abstractly." />
<meta name="keywords" content="alpha,beta" />
<meta name="publisher" content="Yoyodine Propulsion Systems" />
<meta name="john" content="bigboote" />
</head>
<body>
<header>
<h1>Document Title</h1>
<p class="subtitle">Subtitle</p>
</header>

<p>This is a paragraph. See also HTML 5.</p>

<p>This is another paragraph.^{1}.</p>

<p>The first item of a bulleted list.</p>
<p>The second item.</p>
<p>The second part of the second item.</p>

<p>The third item.</p>

<p>This is a paragraph.</p>

<p>The first item of a numbered list.</p>
<p>The second item.</p>
<p>The second part of the second item.</p>

<p>The third item.</p>

<p>This paragraph contains a <code>code</code> word.</p>

<dl>
<dt>Mercury</dt>
<dd>Burn, baby, burn.</dd>
<dt>Venus</dt>
<dd>Where global warming ran amok.</dd>
<dt>Earth</dt>
<dd>Where global warming is running amok.</dd>
<dt>Mars</dt>
<dd>Future home of Elon Musk.</dd>
</dl>

<p>This is a paragraph.</p>

<table id="table">
<caption>A powerful table</caption>
<tr>
 <th>x</th>
 <th>x²</th>
 <th>x³</th>
</tr>
<tr>
 <td>1</td>
 <td>1</td>
 <td>1</td>
</tr>
<tr>
 <td>2</td>
 <td>4</td>
 <td>8</td>
</tr>
<tr>
 <td>3</td>
 <td>9</td>
 <td>27</td>
</tr>
</table>

<figure>
<figcaption>How long since then?</figcaption>
<pre>xquery version "1.0-ml";
declare variable $startDate external;

let $date := $startDate cast as xs:dateTime
let $diff := current-dateTime() - $date
return
 current-dateTime() - $date</pre>
</figure>

<p>Consider the function synopsis for the “max” function:</p>

<pre>#include <varargs.h>

int max(int n, ...);</pre>

<p>This is the last paragraph.</p>

<p>^{1} The examples in this document are awful, I know.</p>
</body>
</html>

There are a lot of possible HTML variations. Many authors would add
additional div elements with class attributes. This example is
intentionally somewhat minimal.
HTML doesn’t have anything that corresponds to a footnote or a
function synopsis, so those have been coded by hand.
All of the markup formats discussed in this section can be converted
to HTML (and often other formats as well). For another kind of comparison,
each has been converted to HTML and rendered. No effort has been made to
improve the appearance of the output: no special options or CSS applied.
This isn’t a question of which is the most attractive, it’s just another
way to compare the structure of the output.
The DocBook example, converted with the standard DocBook XSLT 2.0 Stylesheets
toolchain is shown in Figure 8. The HTML, simply loaded in
a browser, is shown in Figure 9.
Figure 8: DocBook rendered
[image:]

Figure 9: HTML rendered
[image:]

Many modern editing tools come with language-specific modes to
make editing lightweight markup languages easier. As a final point of
comparison, the source for each format is shown in Emacs with an
appropriate editing mode.
Figure 10: DocBook in Emacs
[image:]

Figure 11: HTML in Emacs
[image:]

Markdown / CommonMark
Markdown was explicitly designed to enable authors “to
write using an easy-to-read, easy-to-write, plain text format” that
could be converted to structurally meaningful HTML. It was somewhat
casually specified
on John Gruber’s blog.

There are a lot of flavors of Markdown.
CommonMark is a recent effort to write a more formal specification for
Markdown. That’s the flavor used in this example.
Because transformation to HTML is explicitly the design goal of
Markdown, there is a straightfoward extension mechanism: just insert
HTML markup. We see that in Figure 12 for
footnotes, description lists, tables, and figures.
Table I
	Feature	Markup
	Document title	# title
	Additional metadata	Not available
	Inline links	[title](uri)
	Inline emphasis	_emphasis_
	Inline code	`code`
	Inline bold	*bold*
	Superscripts	HTML
	Paragraphs	Blank line
	Itemized lists	+
	Ordered lists	1.
	Description lists	HTML
	Tables	HTML
	Examples	HTML
	Program listings	``` or indent four spaces
	Footnotes	HTML
	Function synopsis	HTML

Figure 12: CommonMark markup
Document Title
<!-- There are proposed extensions for document metadata -->

This is a paragraph. See also [CommonMark](http://commonmark.org)

This is _another_ paragraph^{1}.

+ The first item of a bulleted list.
+ The second item.

 The second part of the second item.
+ The third item.

This is a paragraph.

1. The first item of a numbered list.
2. The second item.

 The second part of the second item.
3. The third item.

This paragraph contains a `code` word.

<!-- There are proposed extensions for DLs -->
<dl>
<dt>Mercury</dt>
<dd>Burn, baby, burn.</dd>
<dt>Venus</dt>
<dd>Where global warming ran amok.</dd>
<dt>Earth</dt>
<dd>Where global warming is running amok.</dd>
<dt>Mars</dt>
<dd>Future home of Elon Musk.</dd>
</dl>

This is a paragraph.

<table id="table">
<caption>A powerful table</caption>
<tr>
 <th>x</th>
 <th>x²</th>
 <th>x³</th>
</tr>
<tr>
 <td>1</td>
 <td>1</td>
 <td>1</td>
</tr>
<tr>
 <td>2</td>
 <td>4</td>
 <td>8</td>
</tr>
<tr>
 <td>3</td>
 <td>9</td>
 <td>27</td>
</tr>
</table>

<figure>
<figcaption>How long since then?</figcaption>

```xquery
xquery version "1.0-ml";
declare variable $startDate external;

let $date   := $startDate cast as xs:dateTime
let $diff   := current-dateTime() - $date
return
  current-dateTime() - $date
```

</figure>

Consider the function synopsis for the “max” function:

 #include <varargs.h>

 int max(int n, ...);

Finally, this is the *last* paragraph.

^{1} The examples in this document are awful, I know.

The focus of the CommonMark specification is the core language.
Several extensions have been proposed: extensions for document metadata
and a simpler, text syntax for description lists, for example.
The CommonMark example, converted to HTML with cmark
is shown in Figure 13.
Figure 13: CommonMark rendered
[image:]

Figure 14: CommonMark in Emacs
[image:]

AsciiDoc
AsciiDoc was designed to be an alternate syntax for DocBook.
It supports a fairly large, though not wholly complete, set of
DocBook constructs. It can also be transformed into HTML and
other XML vocabularies.
The common tools for transforming AsciiDoc into XML or HTML
provide language-specific extension mechanisms. The AsciiDoc markup
includes facilities for attribute annotations on blocks.
AsciiDoc also supports advanced features such as variable
substitution (a mechanism for doing text substutition not unlike
general entities in XML).
Table II
	Feature	Markup
	Document title	= title
	Additional metadata	:property:
	Inline links	link:uri[title]
	Inline emphasis	_emphasis_
	Inline code	`code`
	Inline bold	*bold*
	Superscripts	^superscript^
	Paragraphs	Blank lines
	Itemized lists	* with explicit continuations
	Ordered lists	1. with explicit continuations
	Description lists	term :: description
	Tables	Visual with preamble
	Examples	. title before block
	Program listings	---- with [source,language] preamble
	Footnotes	footnoteref:[id,Footnote text]
	Function synopsis	Approximate with program listing

Figure 15: AsciiDoc markup
= Document Title
:SUBTITLE: Subtitle
:AUTHOR: Jane Smith
:ABSTRACT: The document, abstractly.
:KEYWORDS: alpha, beta
:PUBLISHER: Yoyodyne Propulsion Systems
:JOHN: bigboote

This is a paragraph. See also link:http://asciidoctor.org/[Asciidoctor].

This is _another_ paragraphfootnoteref:[fn1,The examples in this document are awful, I know.].

* The first item of a bulleted list.
* The second item.
+
The second part of the second item.
* The third item.

This is a paragraph.

1. The first item of a numbered list.
2. The second item.
+
The second part of the second item.
3. The third item.

This paragraph contains a `code` word.

Mercury :: Burn, baby, burn.
Venus :: Where global warming ran amok.
Earth :: Where global warming is running amok.
Mars :: Future home of Elon Musk.

This is a paragraph.

[[table]]
.A powerful table
|======================
| x | x^2^ | x^3^
| 1 | 1 | 1
| 2 | 4 | 8
| 3 | 9 | 27
|======================

.How long since then?
[source,xquery]

xquery version "1.0-ml";
declare variable $startDate external;

let $date := $startDate cast as xs:dateTime
let $diff := current-dateTime() - $date
return
 current-dateTime() - $date

Consider the function synopsis for the “max” function:

[source,c]

#include <varargs.h>

int max(int n, ...);

Finally, this is the *last* paragraph.

The AsciiDoc example, converted to HTML5 with asciidoctor
is shown in Figure 16.
Figure 16: AsciiDoc rendered
[image:]

Unlike the other conversions, the “default” conversion for AsciiDoc includes
CSS to improve the appearance.
Figure 17: AsciiDoc in Emacs
[image:]

Org Mode
Org Mode grew organically out of an earlier outline mode
on Emacs. It boasts a very rich integration with Emacs including
features like inline execution of code samples and a literate
programming facility. Like AsciiDoc, it supports many different
back ends.
Table III
	Feature	Markup
	Document title	#+TITLE: title
	Additional metadata	#+PROPERTY: or :PROPERTIES: “drawer”
	Inline links	[[uri]][title]
	Inline emphasis	/emphasis/
	Inline code	~code~
	Inline bold	*bold*
	Superscripts	^superscript
	Paragraphs	Blank lines
	Itemized lists	*, +, or -
	Ordered lists	1.
	Description lists	+ term :: description
	Tables	Visual with property preamble
	Examples	#+BEGIN_EXAMPLE with property preamble
	Program listings	#+BEGIN_SRC with arguments
	Footnotes	[fn:1]
	Function synopsis	Approximate with program listing

Figure 18: Org Mode markup
#+TITLE: Document Title
:PROPERTIES:
:subtitle: Subtitle
:author: Jane Smith
:abstract: The document, abstractly.
:keywords: alpha, beta
:publisher: Yoyodyne Propulsion Systems
:john: bigboote
:END:

This is a paragraph. See also [[http://orgmode.org/][Org-Mode]].

This is /another/ paragraph[fn:1].

+ The first item of a bulleted list.
+ The second item.

 The second part of the second item.
+ The third item.

This is a paragraph.

1. The first item of a numbered list.
2. The second item.

 The second part of the second item.
3. The third item.

This paragraph contains a ~code~ word.

+ Mercury :: Burn, baby, burn.
+ Venus :: Where global warming ran amok.
+ Earth :: Where global warming is running amok.
+ Mars :: Future home of Elon Musk.

This is a paragraph.

#+CAPTION: A powerful table
#+NAME: table
|---+-----+-----|
| x | x^2 | x^3 |
|---+-----+-----|
1	1	1
2	4	8
3	9	27
---+-----+-----		

#+CAPTION: How long since then?
#+BEGIN_EXAMPLE
#+BEGIN_SRC ml-xquery :var startDate="1967-06-16T18:24:00-07:00"
xquery version "1.0-ml";
declare variable $startDate external;

let $date := $startDate cast as xs:dateTime
let $diff := current-dateTime() - $date
return
 current-dateTime() - $date
#+END_SRC
#+END_EXAMPLE

Consider the function synopsis for the “max” function:

#+BEGIN_SRC c
#include <varargs.h>

int max(int n, ...);
#+END_SRC

Finally, this is the *last* paragraph.

[fn:1] The examples in this document are awful, I know.

The Org Mode example, converted to HTML within Emacs
is shown in Figure 19.
Figure 19: Org Mode rendered
[image:]

Figure 20: Org Mode in Emacs
[image:]

The road not taken
Or, stupid SGML tricks
Unique among the approaches described in this paper, SGML included a
standard mechanism for making quite substantial changes to the behavior of the parser.
SGML documents require both an SGML Declaration and a DTD. Let’s return to the
earlier example, Figure 4, and provide an SGML DTD for it.

Figure 21: SGML document
<!DOCTYPE f29 [
<!ELEMENT f29 - - (r|#PCDATA)*>
<!ELEMENT r - - (#PCDATA)>
]>
<f29>"I believe so," <r>Alice</r> replied thoughtfully. "They have
their tails in their mouths-and they're all over
crumbs."</f29>

We also need an SGML Declaration. XML was designed so that it
was possible to process XML documents using an SGML parser, with the
appropriate XML SGML Declaration. We’ll just use that one. If you
run Figure 21 through an SGML parser
and look at the ESIS output, you’ll get something
like Figure 22. What’s an ESIS, you ask? ESIS stands
for Element Structure Information Set. It’s a standard way to
represent the output from an SGML parser.
Figure 22: ESIS for SGML document
(F29
-"I believe so,"
(R
-Alice
)R
- replied thoughtfully. "They have\ntheir tails in their mouths-and they're all over\ncrumbs."
)F29
C

It’s a line-oriented format. For our purposes, it’s sufficient
to note that “(tag” represents a start tag, “)tag” represents an end
tag, “-” represents text and a terminal “C” indicates that parsing was
successful.
Now let’s have a little bit of fun. SGML dates back, as we’ve observed,
thirty years to 1986. It’s antecedants, including GML, go back even further.
If you go back that far, you return to an era where input was often done with
80 column punched cards (or, at least, virtual ones in the case of IBM) and
memory was at a premium.
It was also an era when data entry was a specialized task. Operators
could be expected to follow detailed data entry instructions.
SGML developed features like tag minimization, SHORTTAG, and SHORTREF
to encode markup text in fewer characters. The DTD could define
a state machine to define how these characters were to be interpreted.
For instance:
Figure 23: SGML document with SHORTREF
<!DOCTYPE f29 [
<!ENTITY q-start "<q>">
<!ENTITY q-end "</q>">
<!SHORTREF start-q '"' q-start>
<!SHORTREF end-q '"' q-end>
<!USEMAP start-q f29>
<!USEMAP end-q q>
<!ELEMENT f29 - - (r|q|#PCDATA)*>
<!ELEMENT r - - (#PCDATA)>
<!ELEMENT q - - (#PCDATA)>
]>
<f29>"I believe so," <r>Alice</r> replied thoughtfully. "They have
their tails in their mouths-and they're all over
crumbs."</f29>

The ESIS for this document reveals something dramatically different.
Figure 24: ESIS for SGML document with SHORTREF
(F29
(Q
-I believe so,
)Q
-
(R
-Alice
)R
- replied thoughtfully.
(Q
-They have\ntheir tails in their mouths-and they're all over\ncrumbs.
)Q
)F29
C

Using that DTD, our document is equivalent to this document:

Figure 25: SGML document with quotes
<!DOCTYPE f29 [
<!ELEMENT f29 - - (r|q|#PCDATA)*>
<!ELEMENT r - - (#PCDATA)>
<!ELEMENT q - - (#PCDATA)>
]>
<f29><q>I believe so,</q> <r>Alice</r> replied thoughtfully. <q>They have
their tails in their mouths-and they're all over
crumbs.</q></f29>

A fact that we can demonstrate by comparing the ESIS output, if we wish.

So what is going on?
	<!USEMAP start-q f29> says that in the context of the
f29 element, the start-q SHORTREF is in effect.

	<!SHORTREF start-q '"' q-start> says that a single double
quote character should be replaced by the value of the q-start entity.
(In SGML, markup in entities is emphatically not required to
be well-formed within the entity replacement text).

	<!ENTITY q-start "<q>"> defines the q-start
entity such that it inserts a q start tag.

	As soon as a q start tag has been inserted, we’re in a different
context. <!USEMAP end-q q> says that in the context of a
q element, the end-q SHORTREF is in effect.
Which, by the same general steps as above, will cause a single double quote
character to insert a q end tag, which will change the context
back, etc.

This DTD effectively makes properly paired occurrences of double quotes
into start- and end-q tags.
It is possible to take this mechanism quite a bit further than may at
first be obvious. Consider this document:
Figure 26: Another SHORTREF document
<!DOCTYPE doc [
<!ENTITY object-open "<object>">
<!ENTITY object-close "</object>">
<!ENTITY key-open "<pair><key>">
<!ENTITY key-close "</key>">
<!ENTITY value-open "<value>">
<!ENTITY value-close "</value></pair>">
<!ENTITY array-open "<array>">
<!ENTITY array-close "</array>">
<!ENTITY entry-open "<entry>">
<!ENTITY entry-close "</entry>">
<!ENTITY string-open "<string>">
<!ENTITY string-close "</string>">

<!SHORTREF start-map '{' object-open
 '[' array-open
 '"' string-open>

<!SHORTREF object-map '"' key-open
 '}' object-close
 ':' value-open>

<!SHORTREF value-map '"' string-open
 ',' value-close
 '{' object-open
 '[' array-open
 ']' array-close
 '}' object-close>

<!SHORTREF array-map '"' string-open
 '{' object-open
 ',' entry-open
 '[' array-open
 ']' array-close
 '}' object-close>

<!SHORTREF key-map '"' key-close>
<!SHORTREF string-map '"' string-close>

<!USEMAP start-map doc>
<!USEMAP object-map object>
<!USEMAP key-map key>
<!USEMAP value-map value>
<!USEMAP string-map string>
<!USEMAP array-map array>

<!ELEMENT doc - - (object|array)+>
<!ELEMENT pair O O (key,value)>
<!ELEMENT object - - (pair)+>
<!ELEMENT key - - (#PCDATA)*>
<!ELEMENT value - O (object|array|string)*>
<!ELEMENT string - - (#PCDATA)*>
<!ELEMENT array - - (entry)+>
<!ELEMENT entry O O (object|string)>
]>
<doc>
{
 "object": {
 "key": "value",
 "key2": "value2",
 "array": [
 "a",
 "b",
 "c"
]
 }
}
</doc>

It produces a quite long and complicated ESIS:
Figure 27: ESIS for another SHORTREF document
(DOC
(OBJECT
(PAIR
(KEY
-object
)KEY
(VALUE
(OBJECT
(PAIR
(KEY
-key
)KEY
(VALUE
(STRING
-value
)STRING
)VALUE
)PAIR
(PAIR
(KEY
-key2
)KEY
(VALUE
(STRING
-value2
)STRING
)VALUE
)PAIR
(PAIR
(KEY
-array
)KEY
(VALUE
(ARRAY
(ENTRY
(STRING
-a
)STRING
)ENTRY
(ENTRY
(STRING
-b
)STRING
)ENTRY
(ENTRY
(STRING
-c
)STRING
)ENTRY
)ARRAY
)VALUE
)PAIR
)OBJECT
)VALUE
)PAIR
)OBJECT
)DOC
C

Which, with some effort, you can work out means that it
is equivalent to this document:
Figure 28: Another document with markup
<!DOCTYPE doc
<!ELEMENT doc - - (object|array)+>
<!ELEMENT pair O O (key,value)>
<!ELEMENT object - - (pair)+>
<!ELEMENT key - - (#PCDATA)*>
<!ELEMENT value - O (object|array|string)*>
<!ELEMENT string - - (#PCDATA)*>
<!ELEMENT array - - (entry)+>
<!ELEMENT entry O O (object|string)>
]>
<doc>
<object>
<key>object</key>
<value>
<object>
<key>key</key>
<value>
<string>value</string>
</value>
<pair>
<key>key2</key>
<value>
<string>value2</string>
</value>
</pair>
<pair>
<key>array</key>
<value>
<array>
<entry>
<string>a</string>
</entry>
<entry>
<string>b</string>
</entry>
<entry>
<string>c</string>
</entry>
</array>
</value>
</pair>
</object>
</value>
</object>
</doc>

Or, with whitespace for legibility, this one:
Figure 29: Prettyprinted markup
<doc>
 <object>
 <key>object</key>
 <value>
 <object>
 <key>key</key>
 <value>
 <string>value</string>
 </value>
 <pair>
 <key>key2</key>
 <value>
 <string>value2</string>
 </value>
 </pair>
 <pair>
 <key>array</key>
 <value>
 <array>
 <entry>
 <string>a</string>
 </entry>
 <entry>
 <string>b</string>
 </entry>
 <entry>
 <string>c</string>
 </entry>
 </array>
 </value>
 </pair>
 </object>
 </value>
 </object>
</doc>

Concluding remarks
The tension between richness and simplicity isn’t going to go away.
It’s easy to dismiss lightweight markup languages as lacking the sophistication
necessary to capture the full richness of a text. But each offers mechanisms
for capturing some of the richness. Some is often better
than none.
Whether efforts to develop lightweight markup formats capable of
usefully capturing the semantics of DITA or JATS will succeed remains
to be seen, but widespread adoption of Markdown and other lightweight
markup formats on websites demonstrates that they are sufficient for
many applications.
Have you considered where they might be appropriate in your workflow?

Balisage: The Markup Conference

Marking up and marking down
Norman Walsh
Norman Walsh is a Lead Engineer at MarkLogic Corporation where he
helps to develop APIs and tools for the world's leading enterprise
NoSQL database. Norm has also been an active participant in a number of
standards efforts worldwide: he was chair of the XML Processing Model
Working Group at the W3C where he was also co-chair of the XML Core
Working Group. At OASIS, he was chair of the DocBook Technical
Committee for many years.
With two decades of industry experience, Norm is well known for his
work on DocBook and a wide range of open source projects. He is the
author of DocBook: The Definitive Guide.

Balisage: The Markup Conference

content/images/Walsh01-009.png
Document Title

This is a paragraph. See also Org-Mode.
This is anotherparagraph!.

« The firstitem of a bulleted list.
« The second item.

The second part of the second item.
« The third item.
This is a paragraph.

1. The firstitem of a numbered list.
2. The second item.

The second part of the second item.
3. The third item.
This paragraph contains a code word.

Mercury
Burn, baby, bun.
Venus

Where global warming ran amok.
Earth

Where global warming is running amok.
Mars

Future home of Elon Musk.

This is a paragraph.

Table 1:A
powerful
table
x x2 X3
11
2 48

3 927

#+BEGIN_SRC ml-xquery :var startDate~"1967-06-16T18:24:00-07:00"
xquery version "1.0-mi";
declare variable $startDate external;

let $date 3= $startDate cast as xs:dateTime

let $aiff = current-dateTime() - $aate
retum

curtent-gateTime() - $aate
#+END_SRC

Consider the function synopsis for the “max” function:

#include <varargs.h>

Int max(int n, .):
Finally, this is the last paragraph.
Footnotes:

1 The examples in this document are awful, | know.

Author: Norman Walsh

Created: 2016-07-15 Fri 21:21
Emacs 24.5.1 (Org mode 8.2.10)
Validate

content/images/Walsh01-007.png
Document Title

Jane Smith

This is a paragraph. See also Asciidoctor.
This is another paragraphl!l,

o The first item of a bulleted list.
o The second item.
The second part of the second item.

o The third item.
This is a paragraph.

1. The first item of a numbered list.
2. The second item.
The second part of the second item.

3. The third item.
This paragraph contains a code word.

Mercury
Burn, baby, burn.

Venus

Where global warming ran amok.

Earth

Where global warming is running amok.

Mars

Future home of Elon Musk.
This is a paragraph.

Table 1. A powerful table

X X
1 1 1
2 4 8
3 9 27

How long since then?

xquery version "1.0-ml";
declare variable $startDate external;

let sdate $startDate cast as xs:dateTime
let $diff current-dateTime() - Sdate
return

current-dateTime() - $date

Consider the function synopsis for the “max” function:

#include <varargs.h>

int max(int n, .

Finally, this is the last paragraph.

1. The examples in this document are awful, I know.

content/images/Walsh01-008.png
1Document Title

BTITLE: Subtitle

:AUTHOR: Jane smith

STRACT: The document, abstractly.
YwoRDs: alpha, beta

:PUBLISHER: Yoyodyne Propulsion Systems
J0HN: bigboote

This is a paragraph. see also |

http://asci;

oo oo Asciidoctor .

This is anothen paragraphfootnoteref:(fnl,The examples in this document are awful, T know.l.

The first item of a bulleted list.
The second item.

The second part of the second item.
f The third item.

This is a paragraph.

The first item of a numbered list.
The second item.

The second part of the second item.
Bl The third item.

This paragraph contains a gode word.

Mercury [Burn, baby, burn.
Venus [Where global warming ran amok.
Earth

Mars Future home of Elon Musk.

This is a paragraph.

[[table]]
‘A powerful table

‘How long since then?
[source, xquery]

Where global warming is running amok.

[asciidoc.adoc B

L1

[(adoc Wg

(*) Projectile[examples] yas Ty

Mark set

content/images/Walsh01-001.png
Document Title
Subtitle

Jane Smith
The document, abstractly.
This is a paragraph. See also DocBook.
This is another paragraphl.
« The firstitem of a bulleted list.
« The second item.
The second part of the second item.
« The third item.
This is a paragraph.
1. The first item of a numbered list.
2. The second item.
The second part of the second item.
3. The third item.
This paragraph contains a code word.
Mercury
Bumn, baby, bum.
Venus
Where global warming ran amok.
Earth
Where global warming is running amok.
Mars
Future home of Elon Musk.

This is a paragraph.

Table 1. A powerful table

2[y3

X [x
11
2 |4 |8
3 |9 |27

s

Example 1. How long since then?

1 | xquery version "1.6-nl"
declare variable Sstartbate external;

4 | let sdate

= $startDate cast as xs:dateTime
o | let $diff := current-dateTime() - Sdate
return

7 current-dateTime() - Sdate

Consider the function synopsis for the “max” function:

#include <varargs.h>
int max(..);

Finally, this is the last paragraph.

(1] The examples in this document are awful, | know.

content/images/Walsh01-002.png
Document Title

Subtitle
This is a paragraph. See also HTML 5.

This is another paragraph.L.
« The firstitem of a bulleted list.
« The second item.
The second part of the second item.
« The third item.
This is a paragraph.
1. The first tem of a numbered list.
2. The second item.
The second part of the second item.
3. The third item.
This paragraph contains a code word.

Mercury
Burn, baby, bun.
Venus
Where global warming ran amok.
Earth
Where global warming is running amok.
Mars
Future home of Elon Musk.

This is a paragraph.

A
powerful
table

xx2 x3
111
248
39 27
How long since then?

xquery version "1.0-mi";
declare variable $startDate external;

let $ate := $startDate cast as xs:dateTime
let $aiff = current-dateTime() - $aate
retum
current-dateTime() - $date
Consider the function synopsis for the “max” function:
#include <varargs.h>

int max(int n, ...);

This is the last paragraph.

1 The examples in this document are awful, | know.

content/images/Walsh01-010.png
B+ritLe: Document Title

ROPERTIES :

:subtitle: subtitle

uthor: Jane smith

bstract: The document, abstractly.
:keywords: alpha, beta

ublisher: Yoyodyne Propulsion Systems
ohn: bigboote

END:

This is a paragraph. See also Org-Mode.
This is /anothen/ paragraph[£n:1].

+ The first item of a bulleted list.
+ The second item.

The second part of the second item.
+ The third item.

This is a paragraph.

1. The first item of a numbered list.
2. The second item.

The second part of the second item.
3. The third item.

This paragraph contains a ~code~ word.

+ Mercury :: Burn, baby, burn.
+ Venus :: Where global warming ran amok.

+ Earth :: Where global warming is running amok.
+

Mars Future home of Elon Musk.

This is a paragraph.

#+CAPTION: A powen§ul table
tabee

o=t

#+CAPTION: How ong since then?

[H org-mode.org W L1 [(oxg

(*) Projectile[examples] yas Helnm Go|

Mark set

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

content/images/Walsh01-005.png
Document Title

This is a paragraph. See also CommonMark

This is anotherparagraph!.
« The firstitem of a bulleted list.
« The second item.
The second part of the second item.
« The third item.
This is a paragraph.
1. The first tem of a numbered list.
2. The second item.
The second part of the second item.
3. The third item.
This paragraph contains a code word.

Mercury
Burn, baby, bun.
Venus
Where global warming ran amok.
Earth
Where global warming is running amok.
Mars
Future home of Elon Musk.

This is a paragraph.

A
powerful
table

xx2 x3
111
248
39 27
How long since then?

xquery version "1.0-mi";
declare variable $startDate external;

let $ate := $startDate cast as xs:dateTime
let $aiff = current-dateTime() - $aate
retum
current-dateTime() - $date
Consider the function synopsis for the “max” function:
#include <varargs.h>

int max(int n, ..;

Finally, this is the /ast paragraph.

1 The examples in this document are awful, | know.

content/images/Walsh01-006.png
Document Title
<I-- Thene ane pnoposed extensions §on document metadata -->

This is a paragraph. See also [CommonMark](http://commonmark.org)

This is _anothen_ paragraph^{1}.

+ The first item of a bulleted list.
+ The second item.

The second part of the second item.
+ The third item.

This is a paragraph.

1. The first item of a numbered list.
2. The second item.

The second part of the second item.
3. The third item.

This paragraph contains a “code” word.

<I-- Thene ane pnoposed extensions §ox DLs -->
<d1>

<dt>Mercury</dt>

<dd>Burn, baby, burn.</dd>

<dt>Venus</dt>

<dd>Where global warming ran amok.</dd>
<dt>Earth</dt>

<dd>Where global warming is running amok.</dd>
<dt>Mars</dt>

<dd>Future home of Elon Musk.</dd>

</d1>

This is a paragraph.

<table id="table">
<caption>A powerful table</caption>
<tr>
<th>x</th>
<th>x²</th>
<th>x³</th>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>

commonmark.md {B L1 [(Markdown (*) Projectile[examples] yas H

Mark set

content/images/Walsh01-003.png
File Edit Options Buffers Tools UniChar XML Text YASnippet Help
rticle xmlns="http://docbook.org/ns/docbook"
xmlns:x1link="http://www.w3.0rg/1999/x1ink">

<info>
<title>Document Title</title>
<subtitle>subtitle</subtitle>
<author>
<personname>Jane smith</personname>
</author>
<abstract>
<para>The document, abstractly.</para>
</abstract>
<keywordset>
<keyword>alpha</keyword>
<keyword>beta</keyword>
</keywordset>
<publisher><publishername>Yoyodyne Propulsion Systems</publishername></publisher>
<bibliomisc role="john">bigboote</bibliomisc>
</info>
<para>This is a paragraph. See also
<link xlink:href="http://docbook.org/">DocBook</link>.
</para>

<para>This is <emphasis>another</emphasis> paragraph<footnote>
<para>The examples in this document are awful, I know.</para>
</footnote>.</para>

<itemizedlist>

<listitem>

<para>The first item of a bulleted list.</para>
</listitem>

<listitem>

<para>The second item.</para>

<para>The second part of the second item.</para>
</listitem>

<listitem>

<para>The third item.</para>

</listitem>

</itemizedlist>

<para>This is a paragraph.</para>

<orderedlist>

<listitem>

<para>The first item of a numbered list.</para>

</listitem>

<listitem>

<para>The second item.</para>

<para>The second part of the second item.</para>

</listitem>

&U:--- docbook.xml B [E] [(nXML valid Wg Rbow (*) Projectile[examp
Mark set

content/images/Walsh01-004.png
Edit Options Buffers Tools UniChar XML Text YASnippet Help

BroocTYPE html>

<html>

<head>

<title>Document Title</title>
<meta t="utf-8" />

<meta
<meta
<meta
<meta

subtitle” content="subtitle" />

authoxr" content="Jane smith" />

abstract” content="The document, abstractly.” />
keywords" content="alpha,beta” />

<meta publisher” content="Yoyodine Propulsion Systems" />
<meta name="john" content="bigboote" />

</head>

<body>

<header>

<hi>Document Title</hi>
<p class="subtitle">subtitle</p>
</header>

<p>This is a paragraph. See also HTHL 5.</p>

£nim" hre:

<p>This is another paragraph.^{<a i #£n1">1}.</p>

<1i><p>The first item of a bulleted list.</p></1i>

<1i>¢<p>The second item.</p>

<p>The second part of the second item.</p>

</1i>

<1i>¢p>The third item.</p></1i>

<p>This is a paragraph.</p>

<1i><p>The first item of a numbered list.</p></1i>
<1i>¢<p>The second item.</p>

<p>The second part of the second item.</p>

</1i>

<1i>¢p>The third item.</p></1i>

<p>This paragraph contains a <code>code</code> word.</p>

<d1>

<dt>Mercury</dt>

<dd>Burn, baby, burn.</dd>

<dt>Venus</dt>

<dd>Where global warming ran amok.</dd>

<dt>Earth</dt>

<dd>Where global warming is running amok.</dd>

&U:--- html.html 2 [E] [(nXML Invalid Wg Rbow (*) Projectile[exa

Mark set

