[image: Balisage logo]Balisage: The Markup Conference

Saxon-JS: XSLT 3.0 in the Browser
Debbie Lockett
Saxonica

<debbie@saxonica.com>

Michael Kay
Saxonica

<mike@saxonica.com>

Balisage: The Markup Conference 2016
August 2 - 5, 2016

Copyright © 2016 Saxonica

How to cite this paper
Lockett, Debbie, and Michael Kay. "Saxon-JS: XSLT 3.0 in the Browser." Presented at: Balisage: The Markup Conference 2016, Washington, DC, August 2 - 5, 2016.  In Proceedings of Balisage: The Markup Conference 2016. 
        Balisage Series on Markup Technologies vol. 17 (2016). https://doi.org/10.4242/BalisageVol17.Lockett01.

Abstract
In this paper, we introduce Saxon-JS, an XSLT 3.0 run-time written in pure
                JavaScript. We've effectively split the Saxon product into its compile-time and
                run-time components. The compiler runs on the server, and generates an intermediate
                representation of the compiled and optimized stylesheet in a custom XML format.
                Saxon-JS, running on the browser, reads in the compiled stylesheet and executes it.
                We describe some particular features of Saxon-JS: the event-handling extensions to
                the XSLT language (as used for Saxon-CE), the way that XSLT and JavaScript can
                interwork, conformance to the W3C XSLT and XPath specifications, and some details of
                the internal implementation.



Balisage: The Markup Conference


      Saxon-JS: XSLT 3.0 in the Browser

      
         Table of Contents

         
            	Title Page

            	XSLT in the Browser: A Short History

            	The Architecture of Saxon-JS

            	Event Handling in Saxon-JS

            	XSLT interoperability with JavaScript

            	Conformance with W3C Specifications

            	Saxon-JS Implementation Notes

            	Conclusions

            	About the Authors

         

      
   Saxon-JS: XSLT 3.0 in the Browser

XSLT in the Browser: A Short History
XSLT in the browser always had promise. During the period that XSLT 1.0 was under
            development, many people thought of it as primarily a client-side technology, and for
            some people, its subsequent success as a server-side technology was a surprise. (The
            same thing can be said of Java.) The promise of XSLT in the browser has never been
            fulfilled, but the potential benefits are still there. The objectives of separating
            content from presentation, and of handling the presentation and user interface using
            declarative technologies, remain as strong as they ever were. 
XSLT 1.0 in the browser failed to take off largely because it required every browser
            to support it. It did get to the point (around 2006) where all the main desktop browsers
            had usable and interoperable XSLT 1.0 support, but at just about the same time mobile
            browsers started their journey to stardom, and XSLT was one of the first things to be
            dropped in the interests of saving memory footprint. And at the same time, the web had
            changed. (Remember "Web 2.0" and AJAX?) The old model where a web page was something
            that the software rendered and the user perused had gone: everything was interactive,
            and XSLT had failed to ride the wave. 
By the time XSLT 2.0 emerged in 2007, the browser market had fragmented. None of the
            browser vendors wanted to upgrade their XSLT processors to 2.0 because there were no
            XSLT 2.0 applications that needed it, and no-one wanted to write XSLT 2.0 applications
            until browser support was forthcoming - not just from one browser, but across the whole
            range. 
Meanwhile JavaScript was maturing. Implementations were getting faster, the language
            was getting richer, portability across browsers was improving, and frameworks like
            jQuery were starting to emerge to take some of the pain out of low-level DOM
            programming. 
Around 2011 Saxonica decided to produce a client-side XSLT 2.0 engine to break this
            logjam. It would compile to JavaScript so it could run in any browser with decent JS
            support, and it would have an event-based processing model so it could handle user
            interaction as well as static page rendering. The result was Saxon-CE (CE for "client
            edition") [Saxon-CE]. It was built by stripping down the Saxon Java
            product to its bare essentials, compiling it to JavaScript using Google's GWT
            cross-compiler, and adding extensions to the language to handle user events and other
            aspects peculiar to the browser environment. 
Saxon-CE generated a lot of interest, but there were some serious obstacles to
            adoption. From a user point of view, the size of the JavaScript (nearly 1Mb) meant that
            loading up an application was always going to take a few seconds. From Saxonica's
            perspective, the fact that we had to fork the Java product to cut the size down meant
            that ongoing development was going to be expensive; in addition, we found that testing
            new releases was a nightmare, because all the testing had to be done within the browser
            (GWT code runs in the browser only). The total dependency on GWT left us exposed (when
            something worked on one browser but failed on another there was absolutely nothing we
            could do about it). And commercially, we hit the same problem that so many other XSLT
            vendors have struggled with: how do you justify continued investment in a technology
            that is bringing in no revenue because users expect to get it for free? 
So we decided to try again, but taking a different approach. The result is Saxon-JS,
            which we describe in this paper.

The Architecture of Saxon-JS
Saxon-JS is an XSLT 3.0 run-time library written in pure JavaScript. We've effectively
            split the Saxon product into its compile-time and run-time components (see Figure 1). The compiler runs on the server, and generates an
            intermediate representation of the compiled and optimized stylesheet in a custom XML
            format. We call this the "stylesheet export file" (or "SEF" for short). It's the same
            compiler whether you want to execute in the browser or on the server. Saxon-JS, running
            on the browser, reads in the stylesheet export file and executes it.
Figure 1: Compile-time and run-time architecture
[image: ]
Architecture diagram showing server compile-time and browser run-time using
                    Saxon-JS.



Because it only handles the run-time, Saxon-JS is much smaller than Saxon-CE (while
            the Saxon-CE JavaScript file is around 900KB, Saxon-JS is less than 650KB, and minified
            it is only 220KB), and so we've been able to add a lot of the useful XSLT 3.0 features
            like support for maps, arrays, try/catch, and JSON. Being pure JavaScript, we can target
            non-browser environments like Node.js as well as the browser itself. We can modularize
            the code so that large but not-always-used features like format-date() only
            get pulled in if they are actually used. And we've got vastly more options for testing:
            all the heavyweight testing (the 10,000 W3C test cases for XSLT 3.0, and the 20,000 test
            cases for XPath 3.1) can be done on a server-side engine like Nashorn or Node.js,
            leaving only the interactive capabilities to be tested in the browser. Finally, because
            our code is now human-readable JavaScript rather than machine-generated, running it
            under the excellent debugging tools found in modern browsers becomes feasible.
In the following sections we describe some particular features of Saxon-JS that may be
            of interest. First we will look at the event-handling extensions to the XSLT language.
            Then we will examine the way that XSLT and JavaScript can interwork. We will then
            describe how Saxon-JS stacks up against the W3C XSLT and XPath specifications; and
            finally we'll point out a few interesting aspects of the internal implementation. 

Event Handling in Saxon-JS
Saxon-JS has all the same event-handling machinery as Saxon-CE, so it can be used to
            write fully interactive applications using XSLT's declarative programming model.
The essential insight here is that the rule-based programming paradigm [Rule-Based Programming], which was introduced into XSLT because it's such an effective way
            of handling semi-structured data, is essentially identical to the event-based processing
            model that has become universal in writing interactive user interfaces. It's based on
            the idea of writing a program as a set of rules each containing a condition under which
            the rule fires, and an action to be performed when the rule is triggered; rules are
            designed as far as possible to be independent of each other, and the order of execution
            is determined by the order in which events occur, not by anything hard-coded by the
            programmer.
In XSLT the "condition" part of a rule is in two parts: the match
            attribute is a pattern that describes which XML elements are eligible for processing by
            this rule, and the mode attribute names a phase of processing during which
            the rule is active. In the interactive XSLT processing model used by Saxon-CE and now
            Saxon-JS, we use these same two components: the mode attribute now
            describes a user-interface event that has occurred (for example, a mouse click), and the
                match attribute identifies the element where it occurred. So a rule
            defining what happens when a user clicks on a button might look like this:
<xsl:template mode="ixsl:onclick" match="button[@label='expand']">
    <xsl:result-document href="#detail-area">
        <xsl:apply-templates select="doc('details.xml')"/>
    </xsl:result-document>
</xsl:template>
The mode names (onlick in this example) reflect the event names in the
            JavaScript event model, and the element names in the match attribute are the names of
            HTML elements where the event occurred.
In XSLT 3.0 the fallback rules for what happens when there is no explicit rule that
            matches an input event can vary from one mode to another. For interactive events such as
                onclick, the natural rule is to "bubble" the event up to containing
            (ancestor) elements: if no onclick event has been defined for a particular
            element, but an onclick event has been defined for its immediate container,
            then we should pass the event to the parent element. This leads effectively to a default
            template rule rather like:
<xsl:template mode="ixsl:onclick" match="*">
    <xsl:apply-templates select=".." mode="#current"/>
</xsl:template>
In Saxon-CE this "bubbling" behaviour was hard-coded in the product, but in Saxon-JS
            it has been achieved by generalizing the mode-based on-no-match behaviour
            defined in the XSLT 3.0 specification [XSLT 3.0].
The processing of each input event is a separate transformation. XSLT 3.0 provides a
            much clearer processing model here. It distinguishes an initial stage of "priming" a
            stylesheet (during which, for example, global variables are evaluated and stylesheet
            parameters are supplied) followed by multiple invocations of the stylesheet, each of
            which can supply a different initial node to be processed (the "initial match
            selection") and a different initial mode. The initial node and mode correspond directly
            to the information available to a JavaScript event processor when a user interaction
            event occurs.
The result of such a transformation is typically to rewrite a portion of the HTML
            page. This is achieved using the xsl:result-document instruction. The
                href attribute of this instruction identifies the fragment of the HTML
            page to be modified, typically by giving the ID attribute. If
                xsl:result-document is not used, the result of the transformation
            resets the entire body of the HTML page.
Additional instructions (in a Saxon-defined namespace) are available to allow
            attributes and properties of HTML elements to be modified. These make it easy to
            implement common use cases where the effect of clicking a button is to change the CSS
            style of an HTML element.

XSLT interoperability with JavaScript
In an ideal world, applications would be written entirely in XSLT, with no need ever
            to write any JavaScript code. In practice, however, there will be functionality that the
            browser only offers via JavaScript interfaces. In addition, it is no longer possible to
            pretend that JavaScript is a second-rate programming language. Although it has its
            weaknesses, it can be incredibly powerful, and for an interpreted language, its speed is
            astounding. There are an increasing number of JavaScript libraries offering capability
            that is hard to resist.
While the type system of XSLT 1.0 was closely aligned with JavaScript, this ceased to
            be true in XSLT 2.0. Some XDM types such as xs:decimal have no equivalent
            at all in JavaScript, and others such as xs:date have subtly different
            semantics from the nearest JavaScript equivalent. This creates challenges both for
            implementing an XSLT processor in JavaScript, and for designing interfaces that allow
            XSLT code to call JavaScript and vice-versa.
Because it is impossible to obtain information about the expectations of a JavaScript
            function with respect to the arguments it accepts (even the question of how many
            arguments are expected has no answer), there can be no conversion of supplied arguments
            to an expected type as occurs in XPath function calling. If you supply a node, the
            caller will see a node, even if it was expecting a string. Compounding this problem, the
            XSLT compiler running on the server has no advance knowledge of what functions exist in
            the target execution environment. One approach would be to require users to provide
            function signatures in some kind of stylesheet declaration, but this would be very
            constricting in the flexible world of the browser, where it is commonplace to test
            dynamically whether a function exists before deciding whether to call it. (The
                function-available() function in XSLT 1.0 reflects this tradition, but
            has been undermined by the move in XSLT 2.0 towards a more statically typed language,
            where the set of available functions is expected to be fixed in the static
            context.)
Saxon-JS (like Saxon-CE before it) responds to these challenges by making the
            interaction with JavaScript as dynamic as possible. For example, there is a namespace
                http://saxonica.com/ns/globalJS for calling global JavaScript
            functions: a call of the form js:foo(x,y,z) is always accepted by Saxon at
            compile-time, and results in a run-time call of the global JavaScript function
                foo, or a dynamic error if no such function is defined. A call on
                function-available('js:foo') is never evaluated statically, but returns
            true at run-time if the global function foo actually exists.
Saxon-JS uses a third-party library, Big [Big.js], to
            implement xs:decimal and large xs:integer values (smaller
                xs:integer values are handled using the native JavaScript
                Number type). XDM strings map to JavaScript strings,
                xs:double to Number, date/time types to the JavaScript
                Date type (with additional timezone information). Other types such as
            durations and xs:QName are implemented entirely within Saxon-JS. In a few
            cases conformance has been sacrificed: for example xs:float is implemented
            as a JavaScript Number, which is technically non-conformant because the
            precision of the result of numeric calculations is too high.
When atomic values of any data type are passed to a JavaScript function, the XDM value
            is converted to the nearest JavaScript equivalent. For example xs:decimal
            values are converted to JavaScript Number objects. This means of course
            that there may be a loss of precision; but it's probably a better choice in most cases
            than passing the Big object directly.
Saxon-JS has an advantage over Saxon-CE in that the XDM data model now includes maps.
            JavaScript objects returned by an extension function, rather than being treated as alien
            objects that can only be accessed using further extension functions, can now be accessed
            directly as maps. For example, it becomes possible to add an interactive extension
            function ixsl:style() which returns all the style properties of an HTML
            element, as a map. Then, for example, ixsl:style($node)?hidden could be
            used to obtain the value of the 'hidden' style property.
Mapping XDM sequences and arrays to JavaScript arrays is not straightforward. Most
            XPath constructs work on sequences rather than arrays, but the mapping of XDM sequences
            to JavaScript arrays is imperfect, because of the equivalence in XDM of a singleton (for
            example the single xs:integer value 17) to a sequence of length 1. This
            inevitably creates an asymmetry whereby a sequence of two, three, or four integers is
            passed to a JavaScript function as an array of integers, but a sequence of a single
            integer is passed not as an array, but as a single number. The mapping of XDM arrays to
            JavaScript arrays is much closer, but this then creates a problem in deciding whether an
            array returned by a JavaScript function should be mapped to an XDM array or to an XDM
            sequence.

Conformance with W3C Specifications
At the time of writing, XSLT 3.0 [XSLT 3.0] and XPath 3.1 [XPath 3.1] are very close to being finalized, and they offer a great deal
            of functionality that is particularly attractive in the browser environment: notably
            support for maps, arrays, and JSON. Support for these specifications has therefore been
            one of the project's objectives.
At the same time, a critical success factor is to keep the Saxon-JS executable as
            small as possible, to minimize the time taken to download and parse the code when an
            HTML page is loaded. This means we have to be selective about some of the features in
            the specification that appear to have a high overhead in relation to their
            usefulness.
The browser environment is not static, so it makes sense to defer implementation of
            features that can exploit imminent advances in the browser platform. To take an example,
            implementing the normalize-unicode() function within Saxon-JS would require
            a quite disproportionate amount of code, which becomes completely unnecessary once the
            browsers uniformly implement the JavaScript 6 function String.normalize()
            which does the same job.
A particular area where these design constraints come to a head is in the area of
            regular expression support. XPath regular expressions and JavaScript regular expressions
            have significant differences. Implementing a new regular expression engine to provide
            the XPath syntax and semantics would require a lot of code, and would probably be rather
            slow. In any case, some users would probably prefer to use JS regular expressions in
            their XPath expressions and regard the question of W3C conformance as somewhat arcane.
            But the lack of proper support for Unicode in traditional JavaScript regular expressions
            is increasingly an embarassment. JavaScript 6 promises a way forward on this [ECMAScript 6, Unicode-aware regex], but it's not yet available on all
            browsers. So what we do is a compromise. We have a flag that users can set to request
            pure JavaScript regular expressions. In the absence of this flag, we try to translate
            the XPath regular expression into a JavaScript equivalent. For many cases this isn't
            difficult; for example the character classes such as \p{Lu} or
                \p{IsGreek} can be translated into long lists of individual characters.
            A tougher challenge is that on browsers without support for the new "u" flag (which
            enables Unicode support in regular expressions), non-BMP characters (those with
            codepoints above 65535) are treated as two characters by the JavaScript engine, so they
            match ".." but not ".". For this we're simply going to wait for the new JavaScript 6
            facilities to appear, at which point the problem goes away.
With a few exceptions like those noted, Saxon-JS at its first release implements
            almost all of XPath 3.1 (notably including support for maps, arrays, and JSON). Support
            for XSLT 3.0 is more patchy: we've implemented the really useful features like
            try/catch, and compile-time features like text value templates and shadow attributes,
            but we have yet to tackle xsl:iterate or accumulators.
The optional xsl:evaluate instruction cannot be implemented in the core
            Saxon-JS product because it is a run-time engine only; it does not include an XPath
            parser. However, as a separate add-on, we are working on a solution to this: the REx
            parser generator from Gunther Rademacher [REx] allows us to generate
            an XPath parser written in XSLT or JavaScript, and with some post-processing of the
            resulting parse tree we can generate the same XML data structure that the Saxon export
            on the server produces (for the stylesheet export file), which of course we already know
            how to evaluate.
Support for optional features has been a low priority. In our first implementation
            there is no schema-awareness, no streaming, no serializer, no support for higher-order
            functions. Many of these restrictions will probably remain, in the interests of keeping
            the product small. (Higher-order functions, however, are very tempting: they have a very
            good fit with the JavaScript world. We will keep this under review.)

Saxon-JS Implementation Notes
In this section we highlight a few points that we hope will be of interest concerning
            the internal implementation of Saxon-JS.
First, it's useful to understand something about the stylesheet export file (SEF)
            produced on the server by the XSLT compiler. This is essentially a decorated expression
            tree. Its format is XML, though we have been considering JSON as an alternative since
            this might be faster to load and navigate. The nature of this tree is probably best
            illustrated by an example.
Here's a stylesheet function in source XSLT:
<xsl:function name="tour:place-knight" as="xs:integer*">

    <!-- This function places a knight on the board at a given square. The returned value is
    the supplied board, modified to indicate that the knight reached a given square at a given
    move -->

    <xsl:param name="move" as="xs:integer"/>
    <xsl:param name="board" as="xs:integer*"/>
    <xsl:param name="square" as="xs:integer"/>
    <!-- integer in range 0..63 -->
    <xsl:sequence
        select="
            for $i in 1 to 64 return
            if ($i = $square + 1) then $move else $board[$i]"/>

</xsl:function>
And here's the corresponding part of the SEF, slightly redacted for brevity:
<function name="Q{http://www.wrox.com/5067/tour}place-knight" line="74" module=".../tour.xsl" 
        eval="3" flags="pU" as="xs:integer*" slots="5">
  <arg name="move" as="xs:integer"/>
  <arg name="board" as="xs:integer*"/>
  <arg name="square" as="xs:integer"/>
  <let role="body" vn="20" baseUri="file:/Users/example/tour.xsl" 
    ns="** list of namespaces **" line="87" var="vv:loc325333723" as="xs:integer" slot="3" eval="7">
    <arith op="+" calc="i+i">
      <varRef name="square" slot="2"/>
      <int val="1"/>
    </arith>
    <for var="i" as="xs:integer" slot="4">
      <range role="in" from="1" to="64"/>
      <choose role="return">
        <vc op="eq" onEmpty="0" comp="CAVC">
          <varRef name="i" slot="4"/>
          <varRef name="vv:loc325333723" slot="3"/>
        </vc>
        <varRef name="move" slot="0"/>
        <true/>
        <subscript>
          <varRef name="board" slot="1"/>
          <varRef name="i" slot="4"/>
        </subscript>
      </choose>
    </for>
  </let>
</function>
Hopefully much of this is self-explanatory. The element names (let, arith, for, range,
            vc [= value comparison]) represent different types of expression, in most cases fairly
            directly related to expressions in the source. There is no distinction between XPath
            expressions and XSLT instructions. The children of an expression in the tree are the
            operands of the expression, distinguished either positionally, or by a role
            attribute.
The additional attributes on the tree represent information determined by the compiler
            and available to the run-time. This includes information for diagnostics when dynamic
            errors occur (module, line), slot numbers allocated on the run-time stack to hold local
            variables, evaluation strategies (eval=7 represents eager evaluation of an
            expression that returns a single item; but the run-time is free to ignore this), and
            type information (calc="i+i" indicates addition of two integers).
In a more complex example, the expression tree will not always have such a close
            relationship to the source. The compiler goes through two processes to generate the
            tree: type-checking and optimization. Type-checking typically adds nodes to the tree
            representing operations such as atomization, checking of items types and cardinalities,
            and conversion of untyped atomic values to some target type.
To demonstate type-checking in an expression tree, here's an example of the beginnings
            of a template rule from an XSLT stylesheet (with most of the content removed):
<xsl:template match="section" mode="check-text">
    <xsl:param name="search"/>
    <xsl:param name="path" as="xs:string" select="''"/>
        
    ...
        
</xsl:template>
And here's the corresponding part of the SEF (again redacted):
<templateRule prec="1" prio="0.0" seq="3" rank="1" minImp="1" slots="3" flags="os" 
            line="145" module=".../findtext.xsl">
  <p.nodeTest role="match" test="element(Q{}section)"
    jsTest="var q=SaxonJS.U.nameOfNode(item); return SaxonJS.U.isNode(item) &amp;&amp; 
    item.nodeType==1 &amp;&amp; q.uri==''&amp;&amp;q.local=='section';"/>
    
    <sequence role="action" vn="31" baseUri="file:/Users/example/findtext.xsl" ns="** list of namespaces **" line="145">
      <param name="search" slot="0">
        <str role="select" val=""/>
        <supplied role="conversion" line="146" slot="0"/>
      </param>
     
      <param name="path" slot="1" as="xs:string">
        <str role="select" val=""/>
        <check role="conversion" line="147" card="1">
          <treat as="xs:string" jsTest="return SaxonJS.U.Atomic.string.matches(item);">
            <cvUntyped to="xs:string">
              <data>
                <supplied slot="1"/>
              </data>
            </cvUntyped>
          </treat>
        </check>
      </param>
     
      ...
Notice the content of the param element with attribute
                name="path" halfway down the above sample. This shows an example of the
            type-checking process. First the supplied value is obtained, from a slot, by the
            'supplied' operation; this is then atomized by the 'data' operation. If this value is
            untyped, then it is converted to the target type xs:string by 'cvUntyped'.
            Then the value is checked against the required type in the 'treat' operation, using the
            type test supplied in its jsTest attribute. The content of this attribute
            has been generated at compile-time, to simplify the SEF when we know the run-time will
            be using JavaScript: "return SaxonJS.U.Atomic.string.matches(item);". It
            supplies the content for a function with argument 'item' used as the type test, in this
            case checking it is an XDM string.
Another example of a test generated at compile-time, and inserted into the SEF, can be
            seen in the jsTest attribute of the p.nodeTest element. This
            provides the content for a function to be used as a node test: "var
                q=SaxonJS.U.nameOfNode(item); return SaxonJS.U.isNode(item) &amp;&amp;
                item.nodeType==1 &amp;&amp; q.uri==''&amp;&amp;q.local=='section';". This
            is used for the match pattern for the template rule.
Optimization may produce much more radical re-arrangements of the tree, for example
            creation of new local or global variables bound to expressions that have been lifted out
            of loops to prevent repeated evaluation, or inlining of variables and functions.
All this work has been done before Saxon-JS springs into action; it is work that
            Saxon-JS does not need to do, because it has already been done. All that Saxon-JS needs
            to do is to interpret the expressions on the tree.
As one might expect, Saxon-JS therefore contains a big switch expression that does
            different things depending on the expression type (that is, the element name). For
            example, here's the branch that handles an "and" expression:
and: function (expr, context) {
    return Iter.oneBoolean(ebv(evalChild1(expr, context)) && ebv(evalChild2(expr, context)))
}
The code for and expressions is a function that takes as input the node
            in the expression tree (expr) and the dynamic context
            (context). It makes use of a number of internal functions: 
	ebv: computes the effective boolean value of an expression

	evalChild1, evalChild2: evaluates the first or
                    second operand (subexpression)

	Iter.oneBoolean: converts the JavaScript boolean returned by
                        ebv() to an XdmBoolean object representing an XDM atomic value,
                    and constructs an iterator over this single item.


In every case the result of evaluating an expression is an iterator over the resulting
            value. This enables short-circuit evaluation of expressions such as
                following-sibling::x[1] where the result of the expression can be
            evaluated without evaluating all its subexpressions to completion.
The conciseness of the implementation of an and expression is not at all
            untypical. The coding style is generally terse, designed to keep the overall size of the
            product as small as possible. Some more complex expressions (such as
                xsl:apply-templates) inevitably involve rather more code than this, but
            anyone familiar with the source code of the Java Saxon product will be surprised how
            much can be achieved in very few lines of code.

Conclusions
Saxon-JS is the latest attempt to meet the challenge of implementing XSLT in the
            browser. 
The first wave of processors, which were native implementations in the browser,
            suffered from the "critical mass" problem whereby browser vendors were reluctant to
            invest in the technology in the absence of applications, and web developers were
            reluctant to use the technology until it was available (in interoperable form) in all
            browsers; this effect was particularly damaging when it came to investing in XSLT 2.0
            support, and the lack of investment in turn meant that XSLT in the browser remained
            entrenched in the "Web 1.0" era of static content.
The next attempt was Saxon-CE. This demonstrated the feasibility of creating a
            cross-browser XSLT processor relying only on the browsers' support for JavaScript, and
            it also showed how XSLT could be extended into a "Web 2.0" environment with support for
            fully interactive applications. But it suffered because of the limitations of the GWT
            technology used to build it.
Saxon-JS can be seen as a re-implementation of Saxon-CE using more appropriate
            technology. Many of its concepts have been pioneered by Saxon-CE and are much liked by
            the small but enthusiastic band of Saxon-CE users. The main innovation in Saxon-JS is
            the fact that the heavy work of stylesheet compilation is done in advance, on the
            server, allowing the client-side code to be much more lightweight, and giving room for
            implementation of attractive new features in the W3C specifications such as maps and
            arrays. The re-architecting has numerous spin-off benefits such as easier testing and
            debugging of the XSLT engine; in addition it is a much more integral part of the Saxon
            product line, which will hopefully have commercial benefits and create a revenue stream
            to provide for ongoing development, without which so many otherwise-excellent XSLT
            implementations have foundered.

References
[Saxon-CE] Delpratt, O'Neil and Kay, Michael.
                Multi-user interaction using client-side XSLT. [online] XML Prague
            2013 proceedings, pp1–22. http://archive.xmlprague.cz/2013/files/xmlprague-2013-proceedings.pdf
        
[XPath 3.1] Robie, Jonathan, Dyck, Michael and
            Spiegel, Josh, Editors. XML Path Language (XPath) 3.1. World Wide Web
            Consortium, 17 December 2015. [online] http://www.w3.org/TR/xpath-31/
        
[XSLT 3.0] Kay, Michael, Editor. XSL
                Transformations (XSLT) Version 3.0. World Wide Web Consortium, 19 November
            2015. [online] http://www.w3.org/TR/xslt-30/
        
[ECMAScript 6] Ecma International. ECMAScript
                2015 Language Specification. June 2015. [online] http://www.ecma-international.org/ecma-262/6.0/
        
[REx] Rademacher, Gunther. REx Parser
                Generator. [online] http://www.bottlecaps.de/rex/
        
[Big.js] Mclaughlin, Michael. Big.js
                library. 2014. [online] https://mikemcl.github.io/big.js/
        
[Rule-Based Programming] UC Berkeley. Rule-Based
                Programming. [online] https://inst.eecs.berkeley.edu/~selfpace/studyguide/3S.rdngs/rule-based.prog.pdf
        
[Unicode-aware regex] Bynens, Mathias.
                Unicode-aware regular expressions in ECMAScript 6. 26 August 2014.
            [online] https://mathiasbynens.be/notes/es6-unicode-regex
        

Balisage: The Markup Conference

Saxon-JS: XSLT 3.0 in the Browser
Debbie Lockett
Saxonica

<debbie@saxonica.com>
Debbie Lockett joined the Saxonica development team in 2014 following
                    post-doctoral research in Pure Mathematics at the University of Leeds. Her Ph.D
                    and further research generally involved symmetries of infinite relational
                    structures. Since moving into the "real" world of software development at
                    Saxonica, Debbie has worked on performance benchmarking, developing the tools
                    for creating Saxonica's product documentation, and the implementation of XQuery
                    3.1 features, as well as the development of Saxon-JS.


Michael Kay
Saxonica

<mike@saxonica.com>
Michael Kay has been developing the Saxon product since 1998, initially as a
                    spare-time activity at ICL and then Software AG, but since 2004 within the
                    Saxonica company which he founded. He holds a Ph.D from the University of
                    Cambridge where he studied databases under the late Maurice Wilkes, and spent 24
                    years with ICL, mainly working on the development of database software. He is
                    the editor of the W3C XSLT specification.



Balisage: The Markup Conference

content/images/Lockett01-001.svg
          Source XSLT [Not supported by viewer]       Source JSON [Not supported by viewer]       Source XML [Not supported by viewer]       Saxon-EE [Not supported by viewer]       Saxon-JS [Not supported by viewer]       Stylesheet Export File (SEF) [Not supported by viewer]       HTML page [Not supported by viewer]          Server / Developer's workstation Server / Developer's workstation     Browser Browser               XSLT compiler [Not supported by viewer]



content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies





