[image: Balisage logo]Balisage: The Markup Conference

The Mystical Principles of XSLT
Enlightenment through Software Visualization
Evan Lenz
President
Lenz Consulting Group, Inc.

evan@lenzconsulting.com

Balisage: The Markup Conference 2016
August 2 - 5, 2016

Copyright © 2016 by Evan Lenz

How to cite this paper
Lenz, Evan. "The Mystical Principles of XSLT." Presented at: Balisage: The Markup Conference 2016, Washington, DC, August 2 - 5, 2016. In Proceedings of Balisage: The Markup Conference 2016.
 Balisage Series on Markup Technologies vol. ERROR: volume not found (ERROR: year not found). doi: http://dx.doi.org/ERROR: doi not found.

Abstract
The mature XSLT developer has an inner seeing about how a stylesheet works that can seem almost mystical to an outsider. But demystification is possible using an XSLT visualizer, making the structure of a transformation visible. Due to its functional nature, XSLT is particularly well-suited to software visualization, because an XSLT transformation can be represented and viewed as a static dataset. A subset of XSLT visualization (using a “trace-enabled” stylesheet to generate representations of transformation relationships) was used to empower non-programming staff to predict, understand, and manipulate content enrichment rules. We would like to generalize these case-specific techniques into a general tool for XSLT. There are challenges including scalability (memory usage), what to visualize and what not to, avoiding noise for the user, and whether to store annotations externally or within the result document.

Balisage: The Markup Conference

The Mystical Principles of XSLT
Enlightenment through Software Visualization
Table of Contents
	Title Page
	Introduction
	The mystical principles of XSLT
	Case Study: Enrichment Tracer
	Conceiving a general software visualization tool for XSLT	Early results

	About the Author

The Mystical Principles of XSLT

Enlightenment through Software Visualization
Introduction
The mature XSLT developer has an inner seeing that is unavailable to the uninitiated, in
 the same way that mathematicians and users of any specialized language rely on a shared inner
 seeing. They don't need to bother externally manifesting the structures because they already
 have the inner structures (knowledge and skills) for quickly building shared inner structures
 given only the essential variables (represented in code or symbols). There is much that is
 implicit in this communication. That is why the programmer can feel like (and seem to others
 like) a wizard. Short incantations yield disproportionately large or powerful computations.
 This power can have an almost mystical quality to it.
However, one of Webster's definitions of mysticism is "a theory postulating the
 possibility of direct and intuitive acquisition of ineffable knowledge or power." In other
 words, the promise of mysticism is precisely demystification. What was ineffable now becomes
 accessible. In the context of XSLT, if we make explicitly visible the structure of a
 transformation, we can enable new users to learn XSLT more easily, everyday users to find bugs
 more quickly, and advanced users to gain a deeper understanding of what they thought they
 already understood, leading to more innovation and better design.
This general principle can be applied to any language, and is generally considered to fall
 under the discipline of software visualization. However, XSLT's functional,
 transformation-oriented nature is particularly well-suited to a conception of process
 visualization as data visualization. In other words, an XSLT transformation is not
 fundamentally a process; it is a data set. Using this principle as the foundation, we can
 escape from the bounds of time and conceive of many time-independent ways of traversing the
 data.
After laying out the "mystical principles of XSLT", i.e. what are the essential relational
 characteristics of a transformation, we will look at how to internally represent and
 externally visualize this information.
We'll look at a specific client project where a subset of software visualization for XSLT
 was employed to empower non-programmer editorial staff to predict, understand, and manipulate
 content enrichment rules. We will see how in this project, XSLT held the keys to its own
 "awakening", i.e. how using nothing other than XSLT to modify itself, a stylesheet was made
 self-aware, or "trace-enabled." The trace-enabled stylesheet then would generate an explicit
 representation of all the transformation's relationships needing to be visualized.
Finally, we'll generalize the principle of self-aware stylesheets to XSLT in general,
 where no use-case-specific lines are drawn between what should and shouldn't be visualized.
 We'll consider how the resulting challenges of scalability, both in terms of memory usage and
 of noise for the user, might be surmounted, including technical details and example
 demos.

The mystical principles of XSLT
 A transformation is a microcosm; we can look at it as a universe unto itself. It is a
 closed system, comprised entirely of:
	"The Big Bang"
	the initial context node

	"The Engine of Creation"
	the effective behavior of an XSLT stylesheet, defined using template rules

	"Emergence/manifestation"
	the result tree, as well as other intermediate trees

 [image:]

Among these three consist a static set of relationships. Dynamism occurs only insofar as
 we use time as a mechanism to traverse them. Time is useful, since it helps us break down the
 information into digestible parts, but it won't be our only traversal mechanism.
The relationships are between source nodes, rules, and results. Let's define the
 relational participants more precisely, for purposes of reasoning about a transformation and
 visually representing their relationships.
The XSLT Recommendation defines the focus as consisting of:	the context item (.),

	the context position (position()), and

	the context size (last()).

If we slightly modify the definition of focus to mean the particular instance of a focus (tied to a particular instantiation
 of a template rule, for example), then we can also treat the shallow result chunk that the
 stylesheet generates while maintaining that focus, as a property of the focus itself, since
 they have a 1:1 relationship. In other words, each instantiation of a focus-changing sequence
 constructor can be treated as an entity, which we will call a "focus".
For example, given a single instantiation of the following template
 rule:<xsl:template match="heading">
 <title>
 <xsl:value-of select="."/>
 </title>
</xsl:template>

we might represent the instantiation like this:
 <trace:focus context-id="n1a833c7b3a005151"
 context-position="1"
 context-size="1"
 rule-id="nfa49863d62353482"
 invocation-id="bc08a736-13f7-e97b-a272-15a0a4229223">
 <title>This is the title</title>
 </trace:focus>
where each non-self-explanatory part is defined as follows:	context-id
	the generated node ID of the source document's <heading>
 element

	rule-id
	the generated node ID of the stylesheet's <xsl:template>
 element

	invocation-id
	a GUID representing the current invocation

The content of the element is the shallow result chunk that this focus generates. Note
 that the <xsl:value-of> instruction has been evaluated and its results are
 included in the result chunk.
The mystical principle represented by tying the focus to its output is this: inner seeing
 results in outer manifestation. They are not separate; they are two sides of the same coin. To
 focus on the input is to create the output, as defined by the template rule. In short,
 to see is to create.
The focus's result chunk is "shallow" in the sense that any descendant invocations (e.g.
 <xsl:apply-templates/> elements), though not present in this example, will
 not be replaced by their evaluated results but instead
 will be replaced by a stub that links to another invocation (set of n foci having a common invocation GUID and having context-position values of 1
 to n and a context-size of n).
Each invocation (represented by a GUID) always consists of one or more foci. In the case
 of our example focus, we know that it is the only focus that can belong to this invocation,
 because the context-size is 1. (When an invocation is applied to an empty sequence, no foci
 are created; for all practical purposes, the invocation did not happen and does not exist.)
 Also, by virtue of its location in the transformation's call stack, each focus is eventually
 connected to every other focus in the transformation via successive invocation-ID
 links.
Except for an initial context node, every focus has a parent focus, identified by a link
 appearing somewhere in the parent focus's result chunk to its child focus's invocation. Every
 invocation has exactly one invocation stub; in other words, there will only be one invocation
 stub for each invocation GUID. Below is an example of what the parent focus of our first
 example might look like. It shows what the "shallow" result chunk looks like; rather than
 seeing the resulting <title> element, we see a stub
 (<trace:apply-templates>) that links to the invocation ID of our first
 example focus (bc08a736-13f7-e97b-a272-15a0a4229223). That is what makes this
 focus the parent of the previous example focus:
 <trace:focus context-id="n292122aca28a94ca"
 context-position="1"
 context-size="1"
 rule-id="n8ef8c66cac078ff"
 invocation-id="4dd7580b-d44e-a0e4-714d-32fe33431fe0">
 <html>
 <head>
 <trace:apply-templates trace:invocation-id="bc08a736-13f7-e97b-a272-15a0a4229223" select="/doc/heading"/>
 </head>
 </html>
 </trace:focus>
In order to represent these relationships explicitly and visually, each source node,
 template rule, and result chunk needs to be addressable within the universe of the
 transformation; it must have a "cosmic address." That is the role played by the context-id,
 rule-id, and invocation-id properties. These allow us to begin anywhere within the world of
 the transformation and traverse to anywhere else in the world. It is all accessible and
 nothing is lost through the passage of time.
What is the relationship between the tree of foci (i.e. the call stack) and the result
 tree(s)? When we consider that, using our modified definition of "focus," a focus includes a
 shallow chunk of the result tree (and this is the only way a chunk can make its way into a
 result), then it becomes more obvious that the result tree is not only isomorphic to the XSLT
 execution tree, but it is actually an adornment of that tree. The result is what we see; the
 inner structure upholds the outer result. In other words, the visible world is a decoration of
 the invisible, a manifestation of a deeper, unseen reality.
Since mysticism is all about demystification, let's get to work manifesting XSLT's inner
 world. But first, a story.

Case Study: Enrichment Tracer
Once upon a time, I briefly considered showing a clip from Finding
 Nemo to a class I was teaching on XSLT. The "East Australian Current" was one of
 many metaphors I imagined for how XSLT's processing model can be delightfully easy to work
 with when you know what you're doing. When you "go with the flow," you can write powerful
 transformations without a lot of fuss. In contrast, if template rules are still too
 mystifying, you can end up writing a lot of verbose code to do what should be easy, and that
 feels like having to swim upstream.
Besides trying to come up with metaphors and hopefully useful
 explanations, I was becoming increasingly desirous of a tool that would make the
 inner workings of a stylesheet visible. I wanted to see for myself what I was faintly
 imagining in my head and show it to others on the theory that seeing it in action would make
 the lightbulb come on and make more people want to learn and use XSLT. I began to write
 trace-enabling stylesheets, which would turn an existing stylesheet into another one that
 adorns its output with information about how the result was created. The closest I came to
 visualizing how the result tree is built, was a slider-driven, graphical tree builder with a
 visual block representing each node. I conducted that experiment using XSLT, XAML and WPF back
 in 2009. But for the most part, I never brought the idea down to earth. It remained abstract
 and ethereal.
Enter 2016. I was rewriting a content enrichment rules engine for my client, and it came
 time to replace the tracing/debugging mechanism they had been using to diagnose enrichment
 issues. The new engine and rules were written in XSLT, and the engine used a multi-stage
 pipeline to help keep the rules as simple as possible. I wanted to make the new trace
 mechanism (which we ended up calling the "Enrichment Tracer") as enlightening as possible to
 the analysts who would be maintaining the rules and enrichment term data. I took advantage of
 the particular constraints and assumptions of this setup, including the designation of
 particular "rule modes" (as distinct from the engine-level modes), as well as the multi-stage
 pipeline, in which each stage contains a particular set of rule modes. I later recognized that
 what I implemented was a very concrete (and reportedly extremely useful to this day!) subset
 of a software visualization tool for XSLT.
The tabbed interface in the screenshot below shows the stages of the pipeline (one tab per
 stage). The horizontal slider at the top of the screen provides an alternate way to quickly
 scroll through the stages to get a fast glance of how the data evolves through the stages.
 Within each stage are shown three columns:	the "Input" column, which shows the input to the current stage and the output from
 the previous stage,

	the "Rules" column, which shows a list of all the rules (match patterns) for the
 current stage, grouped by mode name, and

	the "Output" column, which shows the output from the current stage (and what will be
 the input to the next stage, if applicable).

The colored lines were a last-minute addition that helped show exactly which input nodes
 matched which rules (using one line), and which rules created which section of the output
 document (using two lines). They are automatically redrawn whenever the user adjusts the
 screen or column size, or expands or collapses any of the three trees:
[image:]

Here's another screenshot from a later stage in the same transformation:
[image:]

Besides showing only the rules and matches that are relevant to the analyst (and hiding
 all the "engine-level" rules), I also enhanced the interface by highlighting additional,
 domain-specific nodes or values in the result, in order to draw the user's eye to the most
 relevant information. For example, the yellow highlight is applied to all the currently
 determined terms that will be used to enrich the content of the current input document. The
 above screenshot also illustrates the fact that a rule match won't always result in an output
 to the (intermediate) result tree on the right. That's because, again, we're only showing the
 information that's known to be relevant, and not every one of the enrichment rules produces a
 result in the stage's result tree.
Finally, users can inspect the XSLT code for each rule by hovering over the match pattern
 (such as "Component/term" in the above screenshot). This will show the actual code for that
 template rule, as well as which XSLT module the rule resides in. Also, if the user hovers over
 the rule mode name (such as "exclude-terms-suffixed-by" in the above screenshot), they can see
 a full description of the purpose of each mode (and each stage).
To achieve this, I employed a number of techniques, including:	using XSLT to pre-process (trace-enable) the original engine and rules XSLT,

	generating both:	inline trace data (such as <trace:match-start> and
 <trace:match-end> markers in the result tree) and

	out-of-band trace data (using xdmp:set() in
 MarkLogic)

	documenting the rules inline, so they get fed straight to the tracer
 interface,

	storing the trace data for each input document into the (MarkLogic) database for
 faster subsequent renders,

	automatically invalidating (and thus forcing re-generation of) the cached trace data
 whenever a rule or data change is detected.

Conceiving a general software visualization tool for XSLT
I want to generalize the principles and mechanisms of the specific use case above into a
 general software visualization tool for XSLT. As of the time of this writing, it is still
 emerging.
In particular, I want to preserve at least three characteristics so that the general tool still:	uses the colored lines to depict the relationships between source nodes and rules,
 and rules and result chunks

	visually represents the XML as XML (as opposed to abstract block shapes)

	includes a slider for building (and un-building) the result tree (as in my original
 experiment from 2009)

The <trace:focus> docs described in Section 2 represent
 the latest on my thinking about how to represent the trace data. Initially, it will be
 completely out-of-band, using a side-effect operation such as provided by MarkLogic's
 extension functions xdmp:set() and xdmp:document-insert(). The reasons for storing the trace data out-of-band, as
 opposed to inline in the result, are several:	Storing the trace data out-of-band will ensure that the effective behavior of the
 stylesheet will not accidentally change (or cause type errors). In the Enrichment
 Tracer, we had the luxury of babysitting the types, because the core engine itself was
 unchanging; we won't have that luxury in a general-purpose tool, which needs to handle
 arbitrary XSLT.

	Larger transformations will result in a lot of data, which may be impractical to
 visualize all at once; shredding the data gives us options for rebuilding, or lazy
 loading and unloading of batches of foci.

	The discrete <trace:focus> elements succinctly and uniformly
 represent the relationships that we want to visualize. Or, in other words, they make
 sense to me, and that's important if the rest of this project is going to be
 realized!

Disclaimer: This is just the current thinking; it's subject to change.
To illustrate what I mean by "building the tree" using a slider, consider the following
 example result document:

 <doc>
 <title>This is the title</title>
 <p>Let us begin…</p>
 <p>And now let's end.</p>
</doc>

Although there is likely to be just one slider UI widget, the tool might have multiple
 options for how to build the tree:	"Build from the past"

	"Build from the future"

	"Only the present"

	"All time"

The "all time" option would mean that the tree is already completely built (as
 in the Enrichment Tracer utility), rather than being successively built. In that case, the
 slider might only traverse the foci, drawing the lines as needed, and expanding the result
 tree as needed. The following table shows what the other three options ("Only the present",
 "Build from the past", and "Build from the future") might show in successive gradations of the
 slider, from left to right:

Table I
	 	Only the present	Build from the past	Build from the future
	1	<doc/>	<doc/>	<p>And now let's end.</p>
	2	<title>This is the title</title>	
 <doc>

 <title>This is the title</title>

 </doc>

 	
 …

 <p>And now let's end.</p>

	3	<p>Let us </p>	
 <doc>

 <title>This is the title</title>

 <p>Let us </p>

 </doc>

 	
 begin…

 <p>And now let's end.</p>

	4	begin	
 <doc>

 <title>This is the title</title>

 <p>Let us begin</p>

 </doc>

 	
 <p>Let us begin… </p>

 <p>And now let's end.</p>

	5	…	
 <doc>

 <title>This is the title</title>

 <p>Let us begin …</p>

 </doc>

 	
 <title>This is the title</title>

 <p>Let us begin…</p>

 <p>And now let's end.</p>

	6	<p>And now let's end.</p>	
 <doc>

 <title>This is the title</title>

 <p>Let us begin…</p>

 <p>And now let's end.</p>

 </doc>

 	
 <doc>

 <title>This is the title</title>

 <p>Let us begin…</p>

 <p>And now let's end.</p>

 </doc>

Major questions still include:

 	Should we visualize only template rule invocations? Or should we also include
 xsl:for-each?

	How do we represent variable values (particularly those that result in intermediate
 trees that are then fed to more template rules)?

	Where on the screen do we find a place to show all the intermediate trees, and how
 do we lay them out? (Compare the Enrichment Tracer which generates at least 13 result
 trees, but they are always limited to the known stages and so are layed out in the
 tabs.)

Tasks that I've completed include:	automatically adding built-in template rules for each mode, so they can be
 visualized as well

	partially completed: the trace-enabling stylesheet for generating all the
 <trace:focus> docs

Early results
A simple online demo is now available here: XSLT Visualizer Demo.

Here's a screenshot of the early demo:
[image:]

The code for this demo (and ongoing project) is available here: xslt-visualizer GitHub
 project.

Balisage: The Markup Conference

The Mystical Principles of XSLT
Evan Lenz
Evan Lenz has been a specialist in XML technologies since 1999, having served on the
 W3C XSL Working Group, written XML-related books and articles, and spoken at numerous
 conferences. He is also a member of the XML Guild, a consortium of top-notch independent
 XML consultants. As principal of Lenz Consulting Group, he serves clients with their XSLT,
 XQuery, and MarkLogic development and/or training needs.

President
Lenz Consulting Group, Inc.

evan@lenzconsulting.com
http://lenzconsulting.com

content/images/Lenz01-002.jpg
Enrichment Tracer - AO0538973 / S14423070752013033000000 - "Frame floor assembly - BA61.10-P-1000-01G"

‘See terms svailable for inhertance [Hide ines.

Age

E: remove-excluded

F: add-inherited

INTIAL | A getterms | B add-mertes

C: pre-fter-terms.

D: remove-subsumed

G: add-more-terms | H: fiter-terms | I remove-subsumed | J: remove-excluded

FINAL

Input Rules.

= Colapse i + Expanc 8 1D 4 getterms

<INFo-083> d [envichment-source

<Action/> .
<Component/>
<oTC/> Article

<Reference/>
<symptom/>
</1HFO-083>

LOCATOR/Component
WIRING/

FlGURE/Reference
« nFo-08)/*
BULLETIN

4] terme >
LOCATOR /Reference | LOC;

FlGURE/Reference
WIRING/Reference
WIRING/Component

v Cnmpnnen(——/

4] envichment-taxonomies

FlGURE/Reference

L term-metadata

A [extrarterm-from-sourcy

LOCATOR-FIGURE/Component

FIGURE/Component | FIGURE/DfTC

K: remove-duplicates L set-all-terms
Output
= Colapse all 4 Expand al

<INFO-0B3>

<Action>
<l--terms: By default,

</Action>

<Component>

<l--terms: By default,

By default,
</oTC>
<Reference>

<l--terms
</Reference>
<Symptom>
<--terms
</symptom>
</1NFO-083>

By default,

By default,

perform

perform

perform

perform

perform

content/images/Lenz01-001.png
P

content/images/Lenz01-004.png
—

This s the title <henl>
</headings <head>
<pars

This is the first parsgraph.
pares <titlesThis is the titlec/titles

PR s the </hesd>
<enphasis> body>
Second
</emphasis>
Pk) cusLiapply-templaotes mode="intine/> (1 of 1)
</aoes s>

»cxsLiapply-templates select="/doc/para"/> (2 of 2)
</body>

</ntnl>

N

content/images/Lenz01-003.jpg
Enrichment Tracer - AO0538973 / S14423070752013033000000 - "Frame floor assembly - BA61.10-P-1000-01G"

TR

T ssateme

sistie for mneriance

INTIAL | A: get-terms

G: add-more-terms | H: fiter-terms.

B: add-inherited

C: pre-fier-terms D: remove-subsumed

I: remove-subsumed | 3: remove-excluded

K: remove-duplicates

E: remove-excluded | F: add-inherited

Li set-all-terms | FINAL

Input
= Colapse all 4 Expand al
<INFO-0B3>
<Action/>
<Component>
<term

<term
<term
<term
<term
</Component>
<oTC/>
<Reference>
<term preferre
</Reference>
<symptom/>
</1HFO-083>

Rules
e [1 remove-subsumed

b 1] excluderterms-prefixed-by

« Component/term | DTC/term
1] exclude-terms-suffved-by

v Component/term

1] excluderterms-sppesring-sfer
« Component/termispec-tsble]

1) excludeterms-sppesring-within

Output

— Collpse a1 + Expand sl
<anFo-083>
<action/>
<Component>
<tern preferred S
<term preferred-"frane">
<spec-table/>
<mstched-phrase start
>frane /natched-phrazes
<mstched-phrase start
>franec /natched-phrze>
<excluder type
<mstch-report>
<matched-phrase star
>ta¢/matched-phraze>
<matched-phrase star
>t¢/matched-phraze>
chighlighted-node id-"nsofad:
<PTXT xrlns="http://mitche.
<enrichstext-node-id id-
Nut, front stiffening br
<range star
<query quer,
>toc/query>
e

node-|

node-|

cutoff" word-seal

30" n

83" n

0" node-i(
*cts:word

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

