THE

and workflows

Framing the Problem by Wendell Piez
Balisage 2016
North Bethesda, Maryland

Wednesday August 3, 2016




Problem statement #1

So ... what kind of critter “semantic publishing”
are these exactly?

(sometimes proprietary, shh!)

“Literate programming”

Editorial Schematron

Office Open XML (DOCX / XSLX) extraction
“Chunking” and content (re) allocation
Data conversion pipelines

XML QA frameworks
Publishing applications

Editorial / publication pipelines and support applications
Metadata crosswalks

Expense accounting application

(coordinates my accounting)

Digital Humanities Quarterly

(open-access journal) I MESHEET: homemade time logging application
(drives my billing)

My home-grown slide development thing ...

Balisage Proceedings

(makes old. shior | PDFs 1 SVG, authored in XMI1.)

[he-thing-that-has-nc

4L




Problem statement #2

A business view

What is the unit of production?

The application artifact? the application?

or both together: the application in operation?

What is the unit of analysis?

A “solution” is a solution to what (sort of) problem?

What is the value offering?

Context

XML tools continue to improve and mature

XML-based systems have demonstrated strengths

Yet some problems just don't have generic solutions

. . . . Antique sewing machine in a London shop window, 2010
“Tailoring” is still necessary to get the best results (Phoctlo by the aguthor_) P

Is there a market for tailors?




This thing is only )

1t 1 1 When it's not in use, it may be dismantled, or fall apart.
what it 1S, when in use e L i S ey Sl
e p are in a process and procedure;

T so the shape of the installation reflects the shape of the task.

=

“Installation”, “application”, “setup”, “system”
What they all have in common is they all work with actual and particular data sets.

And while they or their interfaces may be provided with formal descriptions,

these will never be complete (there is always “history”).
Typically, this thing exists at all only because it answers some actual need, serves a purpose.

A reproduction Gutenberg press in a museum display (Gutenberg Museum Mainz). Photo by the author.




Increase and evolution

Batch and shell scripts calling DSSSL or XSLT processor
GNU make
Shell utilities called from a text editor
XSLT+serializer writing shell scripts

Apache Ant calling XSLT etc.

Apache Cocoon + XSLT (+ shell utils)

Developments in
Scale / speed / throughput XQUQTY + XSLT + XML database

General capability (scope of applicability)

Front end / back end XProc pr@@@gg@r
Ease of use / accessibility

Portability .
Sophistication / complexity XML IDE / environment

running CSS, XSLT, XProc etc.

(More to come)




Continuities and convergences

e —ad TWO distinct'Streams of development

[ ot von oo s o T i D
Drzuﬁmﬁ\v,\?ﬂ'é ly «»(8/2 /=R

SoftQuad XMetal is a nice |F-—4| have converged into one

=| XML editor for this kind of work

File Edit Find Project Options Tools TEIP4 Doc
C V QRG &€

XPath 2.0 - [B- e - ® A

2 Y- | & T -5 -|ED Styles - B 7 U|S§ T
“amsel.scholiaxml X * amsel-instant.css

TEL2 text body div div p
. Die Amsel E> EXES) Die beiden Manner, deren ich
The editor keeps track TT) mention €T
g BS. erwahnen b G mus = um drei Kleine Geschichten zu
of permissible tags in the EFT in whose case, it matters

Insert Element window erzahlen, bei denen es darauf ankommt, wer sie berichtet
waren Jugendfreunde; nennen wir sie Aeinsund

=P sigal
€ _m~v ce m}v;m: men | have to mention =

nn im Grunds

o. €I G B
lerbarer, je alter man wird. €30S

ez . 4 - BT
e [E o | pe] MMI — e ng. the o '+ € € B ETTD Man Endertsich im e i
2 EFD from crown to sote €1

vom Scheitel bis zur Sohle
[EFTD the heirs on the sion €T

Structured XML editing environments e e

Verhleni zueinander bleibt merkwiirdigerweise

are already mature and successfully deployed. = O e gt und indert dch e vie i

o die jeder einzelne Mensch zu den verschiedenen

(Here: XMetaL showing a 2002 demo.) g e imes

sequence €11 [sign ¥9X sign ED
mit Ich anspricht

Out of reach for many (due to up front costs). B 2

ul | U+006C

und von

Or: you build a homemade pipeline An XML IDE like oXygen XML Editor combines
Stitching together calls to the system the functionalities of the structured editor with
With ad-hoc patched-together code including an open-toolkit approach to extensibility.
build utilities (e.g. Apache Ant) More functionality for significantly lower cost.
XSLT + extensions (BTW, yes, oXygen “cheats” by wiring in
shell utilities a commodity toolkit.)
(This lineage leads eventually to xmlsh, XProc etc.)
Cheap and agile, but has its down sides Also: noteworthy “free” advances in speed,
including long-term maintenance risks - size, power, back end technology ...
(these systems are stable until the day they are not)




Commonalities across generations

source resul t

XSLT entered very early

and is still central

®®

(I do not believe this is entirely an accident of perspective. amD
Working systems that do not have XSLT, have something like it.)

transfornation

Components have proven to be long-lived
because specifications have been published
(standardized more or less formally)

and industry-leading implementations
have tended to be rigorous.

The web is a critical enabler of this work
HTML and CSS (including CSS as applied to XML) are invaluable

Even when we aren't “publishing”




Transformations, pipelines,
and ... “framework”

Is there such a thing as a working collection

of pipelines and transformations? r I g

Partly designed, partly configured out of available components.
Working together with ends in view, in a workflow of some kind.

(What we are looking at when we look at our flowcharts.) L aS S e n I b | y "

pi pel i ne

source X5 1G] X5 resul t R
D QI D
* ’ sou
W, o, o, o source Pravavir)
...."-----“"" ..."---.-""" .'."--..--"“‘ ..""----"“"
Sourcel transformtion ! ! R
") aD ! !
H
%,
*
«,....

" \‘ resul t

R result

I liked this idea in part because of its fractal quality:

the logic of the whole applies also to its parts.
And because it corresponds to what I see in the real world.




Cost of transformation

A transformation should tend to pay for itself over more runs ...

(Leveraging the application of the logic of the type, to the instance)

... but external as well as intrinsic factors determine when and how soon this happens ...
Formula also applies to pipelines and higher-level assemblies.

D = development cost

S = (first time) setup cost

count = piece count (runs, discrete results, or other)

ave = (average) operations and “materials” per piece
(i.e. total operations / count)

(average) cost / count:
(D +S)/count) + ave

Note: D can sometimes be applied (to an executing pipeline) to bring ave down.
(Composability of transformations.)

Transformation is more cost effective when piece count is high
and “materials + operations” (per piece) is low (if not near zero).

Or, when development and setup are inexpensive or already paid for,
and the results are worth the per-piece (operations) costs.




Exploring this model

D = development cost

S = (first time) setup cost

count = piece count (runs, discrete results, or other)
ave = (average) operations and “materials” per piece

cost / count:
((D +S)/count) + ave

Hidden costs
Cost of development includes cost of specifications
i.e. defining mappings from source(s) to target(s)
or risks when they are unstated or incorrect.
Plus: costs of developing your developers!
Operations costs (per piece or aggregate) may include the cost of checking results
of any transformations that you do not trust (and all that may follow)
Also these costs say nothing about the quality of the results,
only about what it takes to produce them.

Secrets of Success

Lower D by relying on standards and standards-conformant toolkits

Lower S by investing (however modestly) in an environment catering to users

Lower operations and “task overhead” (ave) to zero whenever possible
This may imply improvements in quality of inputs

Distinguish automatable from non-automatable and do not burden operators with the former
This may require refactoring a problem

First, get the scope and requirements right

Then focus on quality and operations, not count




What iS I‘.Ot b | rig ... what is not a boat ...?

A design for a boat
Sailing, boat building or naval science

Standards Boat parts, components or fittings
) . Its cargo, passengers, sailors or shipping line
Libraries
Schemas and validation regimes (including “frameworks”)
Applications, tools and toolkits (including “frameworks”)

“One size fits all” 80% solutions

(such as several of my projects on github)

APIs, markup languages or other interfaces

Rather, these constitute components and (when generally shared)
the intellectual and technological commons:
A shared resource enriched by the contributions of everyone

and lowering Development, Setup and Operations for everyone.

Interestingly, these effects are felt the most when count is low

(“the little guy”?) even as they benefit everyone.




How to recognize a XXXXX when you see one

Update - this is no longer always true!

“Framework” in the sense of “patchwork of routines”

has merged with framework as structured editing environment.

So, oXygen and similar applications combine what was done 15 years ago
in both XMetaL and Emacs together, for a fraction of the cost.

Entire, well-integrated environments can be designed,
assembled, and packaged for tasks both specific and general.

) Plus, bells and whistles!
Embarrassing glue code

Sits onsome embarrassing external dependency
Two or mere languages
Little (or big) parts notdimplemented yet
(yet the whole thing still works) Self-Operating Napkin
Sometimes, Rube‘oldberg complexity
(this is not aggoal'but it is sometimes tolerated)|

Somehow thejob gets'done

Users view it with mixture of admiration

and(skepticism, pride andfear
Sometimes, elegance in surprising places




Paradoxes of working systems

Since focus will not be on the system as such,

We can focus attention on actual

but on the work it supports,
not just hypothetical problems PP

a successful solution disappears into the background.
and data sets.

(Like typography, it is working best when not noticed.)

We achieve success when we get the job done LiisialaysicaSyMAlaskoyaUIRUSETS

— and we actually know when that is. U T eI TS

In designing and building such workflows and environments, what considerations
regarding user needs, end products, interim work states, validation needs, and .

Architecture
constraints on the system need to be taken into account?

How can we best take advantage of existing libraries, tools, specifications, and platforms?

Environment
And how can we achieve and communicate a clear understanding

of the framework we are constructing, as distinct from the tools, tool libraries,

platforms and specifications which support it and help realize it?

Outlook

(Planning)




Contrary Impulses
The perennial question

Devil Angel

We do what we must. Let's not get into trouble.

We can learn as we go! Figure out the right way, then do it!

Tomorrow is another day. Doing it wrong is worse than not doing it at all.




.

In designing and building such workflows and environments, what considerations

regarding cultivate a tolerance for “organic” solutions.
constraiy gnow the difference between “up” and “down” and why it matters.

Look for opportunities at the edges of the system (design matters).

%
. N\

| Consider impacts of environment on Setup, Development and Operations. ‘ _k
Support standards by using them, in public if possible. Environment
Cultivate local technical knowhow esp “commons”-based.

If you pick your escalator correctly you can get off on any floor.
And how can we achieve and communicate a clear understanding \

of the framework we are constructing, as distinct from the tools, tool libraries,

Outlook

Look to the goal! Love your data. ' (Planmng) \
The framework you need is the framework that “ ‘ \

Framing the Problem by Wendell Piez

takes good care of it. N Balitige 2006

Help to frame your solution by giving it a name. North Bethesda, Maryland

Friday August 5, 2016




