GameX — Event-Based
Programming with XML Technology

Version 2.0 (2014 April 20)

Marouane Sayih, Technische Universitat
Minchen <sayi h@n. t um de>

Martin Kuhn, Technische Universitat
Minchen <marti n. kuhn@ n. t um de>

Anne Briggemann-Klein, Technische
Universitat Minchen <br ueggem@ n. t um de>

Abstract

GameX, a student project at Technische Universitét Miinchen, isa“serious’ browser game that isintended

to further systemic thinking in players. Technically, GameX is nearly exclusively implemented with XML
technology, which makes the game essentially platform independent. The challengeisto implement a
quintessentially event-driven, reactive system with XML technology. We present design and implementation
of GameX, relating in particular our strategies and insights for putting the event-driven programming paradigm
into practice on an implementation platform of XML technology.

Table of Contents

0100 (1 1 o 1
The CONCEPL OF GAMEX .. iiiiiii it e e e e e e e et e e e e e e e eannas 2
The GameX graphical user iNterfaceovvvviiiiii i 2
Mechanisms and mathematical Modelccooviiiiii i, 3
The GamEX @rCHITECIUIE ... ceee i et e e e e e e e e e e et e e et e e et aeeaneeaneees 5
Development process model: V-MOdElccoviiiiiiiiii e 5
L0117 1= 1 6
Event processing in the ClIentoiii i 8
Communication between XML teChNOIOGIEScvvuiii i e 9
L O 0 I = |1 11
XQuery internal fUNCION Calloiiiiiii e e 11
XEOIMS BVEIIES ..ttt ie ettt e ettt e e e e e et e e e e e an 11
INCIreCt COMMUNICELIONivvecee e e e e e e e e e e e e e e s e e e e e eeaens 11
Conclusions and fULUFE WOTKSiiiiiii e e e e e e aaeees 12
[T o] oo =" o /S 12
Introduction

Over recent years, browser games, and particularly “ serious’, educational games, have become popular
among Web applications. As with al Web applications, players can start playing without having to
install specific software, just by loading a Web page over the Internet into a Web browser.

Our research group Engineering Publishing Technology (EPT) at Technische Universitét Miinchen
leverages XML technology for Web applications[BS08] [BM S14] [BRS12], for anumber of reasons:
First, implementing Web applications with XML technology makes them platform independent.
Second, XML technology lends itself to a development method that involves domain experts in
all phases of the development process, with the potential to build functional and usable systems.

GameX — Event-Based
Programming with XML Technology

Finally, XML technology is well-suited for generative, model-driven approaches that can be adapted
to changing requirements. Browser games provide us with new challenges. One of them is graphics.
Another one, and that is the one we are focusing on in this paper, is the fact that browser games
are quintessential event-driven, reactive systems, raising the question how to put the event-driven
programming paradigm into practice on an implementation platform of XML technology.

We demonstrate our approach with a case stude, a browser game named GameX. In the work for his
Master Thesis[K 14], one of thispaper'sauthors, Martin Kuhn, has designed and implemented GameX;
the thesis work was supervised by his two co-authors in this paper. GameX belongs the the class of
“serious’ games and is intended to further systemic thinking in players. GameX is nearly exclusively
implemented with XML technology (XML, XForms, SVG, XSLT, XQuery and XProc).

The remainder of the paper is organized as follows: In the section called “The concept of GameX”,
we introduce GameX as a game. In the section called “The GameX architecture’, we present the
architecture of GameX. In the section called “Event processing in the client”, we deal with layers of
event processing in the browser. In the section called “ Communication between XML technologies’,
we survey methods of communication between XML technologies. Finally, in the section called
“Conclusions and future works’, we draw some conclusions, discuss limitations and raise ideas for
future work.

The concept of GameX

GameX presents players with a map of towns and fields. Players manage their own towns and the
surrounding fileds, thus determining the growth rate of atown's population and the revenue that atown
generatesfor them. Players can construct anumber of buildingsin their towns such asindustrial plants,
schools, recreational buildings or environmental facilites that affect a number of parameters such as
industrial valueand satisfaction of population and, ultimately, therevenue (gold) that atown generates.
Players can communicate with and fight against each other, to form strategic coalitions or to conquer
each other's towns. GameX challenges players to understand interdependencies and consegquences of
their actions, thus furthering their systemic thinking skills.

In the remainder of this section, we describe the user interface, the playing options and the underlying
mathematical model of GameX.

The GameX graphical user interface

At the core of the GameX graphical user interface (GUI) isatwo-dimensional partial view of theworld
that is divided into tiles. Users can choose one of two views. The World Map (Figure 1, “ Screenshot
of World Map™) and the Local Map (Figure 2, “ Screenshot of Local Map”). Tiles on the map are either
towns or fields. Towns can contain several types of building: Industry (sawmill, blacksmith or market
hall), Entertainment (inn, bathhouse or residence), Knowledge (library, town hall or laboratory) or
Environment (town park, filter or sewerage). Fields can be classified into into seven categories: water,
meadow, forest, fishery, wheat, lumberjack and mine.

The GameX GUI is built from the following components: graphical elements, information elements
and interaction elements. Information elements and interaction elements are similar in both views,
World Map and Local Map:

* Information elements: Jobslist, amount of gold and information about the owner of the townswhen
the mouse pointer moves over them.

* Interaction elements: A player can click on atile, can select items of the menu on the top left corner
of the screen (news, building table, settings) or of the menu in the top center of the screen (selected
town, change view, terraforming), or can use the windrose to navigate the map.

The graphical elements depend on the zoom level and, hence, are different for the two views, World
Map and Loca Map.

GameX — Event-Based
Programming with XML Technology

Graphical elements of World Map: Sea (blue), Free town (white), Occupied town (black), Forest
(brown), Mine (gray), Field (yellow) and Fishery (dark blue).

Graphical elementsof Local Map: fields, building within towns, towns with infobox (name and owner
of the town)

Figure 1. Screenshot of World Map

< [Grobiveen | . o Biirgermeister Xandoros 22285 .2 ‘w 4 100
>

50 Soldner erreichen ihr Dorf
Grof-Ivcen

I 07 0Std 31Min

Néchste Spielrunde®

> <> nslmemuemngm’
< 3~ -

0T 0Std 40Min

4% Bau
Markthalle Level 2 in Grof-lvcen
0T 0Std 44Min

+~#Bau
Rathaus Level 4 in Ahxahhofen
B (0T 1Std 18Min

4—#Bau
Laboratorium Level 1 in Ahxahhofen
0T 15td 28Min

=% Bau
Stadtpark Level 1 in Ahxahhofen

Biirgermeister Xandoros 6121

Avva
Xandoros

&
L fee 8

Qagjahofen

Xandoros

%
g A8

Mechanisms and mathematical model

The game option are based on three mechanisms. building, conversion of fields and interaction
between players. Construction of buildings is one of the basic mechanisms; it is only possible if the
player has got enough gold and the town has space for the building. Additionally, specific types of
fields must be in the vicinity of the building that is about to be constructed (for example, aminefield
has to be near the location of a smithy). Hence, players need to transform fields as a prerequisite for
erecting new buildings. Figure 3, “The conversion optionsfor fields” illustrates the various optionsto

GameX — Event-Based
Programming with XML Technology

convert fields from one type to the other. Finally, the third mechanism allows playersto interact with
each other by exchanging messages or by going to war to conquer towns.

Figure 3. The conversion optionsfor fields

Water < - —» Meadow —> Forest
< Fishery < Mine < Ml - < Lumberjack -

N N ~_

The concept of GameX is based on rounds. Each round occurs at discrete point in time. The game
state is updated at every round in which the values of the following parameters are cal cul ated:

* Industry, Environmental Impact, Knowledge, Population, Satisfaction, Growth Rate, Gold.

Theimpact of these parameters on each other is described as follows and as shown in Figure 4, “The
interdependencies of parameters’:

» The Environmental Impact parameter is affected by the Industry parameter.

» The Satisfaction parameter is influenced by the Environmental Impact and the Knowledge
parameters.

e The Satisfacion parameter decides the Growth Rate parameter, which in turn determines the
population parameter.

 Finally, the Gold parameter depends on the population and the industry parameters.

Figure 4, “ The interdependencies of parameters’ demonstrates how parameters influence each other.

Figure 4. Theinterdependencies of parameters

Industry

v

Environmental
Impact
|

Knowledge
|

v
Satisfaction

v

Growth
Rate

¢ \ 4

Population —+ Gold

We have experimented with nonlinear formulasto model parameter dependenciesto avoid trivial game
scenarios, asillustrated in the following figure:

GameX — Event-Based
Programming with XML Technology

Figure 5. Modeling parameter dependencies

Industry vs. Environmental Impact Knowledge vs. Satisfaction
5 g
o
£
g 2
2 5 4
5 1 2
= %2
g 3
0 i o | i i i i i
0 2 4 6 8 10 0 2 4 6 8 10
Industry Knowledge
Environmental Impact vs. Satisfaction Satisfaction vs. Growth Rate
0
2
-5
0
s a
.% -10 &
o ‘E —2
Wi
B —15 B
o =
bt [C]
20 4
-25 6
o 2 &+ 6 8 10 0 5 10 15 20
Environmental Impact Satisfaction

The GameX architecture

In this section, we present the architecture of GameX. First, we briefly outline the development
process. Then we describe the components of GameX and discuss how the model-view-controller
architecture maps to these components.

Development process model: V-Model

In the development of GameX, it is important to consider all requirements necessary for software
development and specially the usability as well as the adaptability and extensibility. For this reason
our decision isto use the V-Model.

The V-Model isone of theimportant software development life cycle models. We can distinguish the
four stages of the V-Model based on the level of abstraction. The Requirements Analysisis the first
phase of the development cycle where the game was analyzed and specified at the beginning of the
development. In the next two stages (i.e. Architecture Design and Module Design), the systemishbeing
abstracted as amodel consisting of modules. The lowest level of abstraction is the source code layer
where the modules areimplemented. Regarding the testing phase, we used three levels of testing: unit,
system and acceptance testing. Figure 6, “ Development process model” illustrates the different stages
used in the development model of GameX.

To better enable extensibility and maintenance, modifications of earlier phases are still possible and
taken into consideration. because these modificationsare only changesin the configuration parameters
or they are extensionswhich are already enabled by design or they concern extensionsthat are enabled
by the design of GameX. We provide in GameX the possibility to change and modify parameters
of individual elements of the game. For this purpose, the game elements such as buildings, fields
or units are dynamically integrated. To illustrate this, we consider the example of element Building.
Both cost and construction time are level dependent, and thus, a base value of these parameters are

GameX — Event-Based
Programming with XML Technology

specified in attributes. To calculate the actual value in a specific level, the base value is multiplied by

the level multiplier. Furthermore, the effects of constructing a building on town parameters are stored
as absolute values in element attributes.

In case of an air filter the element looks like the following:

<filter time="60" tineperlevel ="1"
cost =*100" costperl evel =“1. 2"
i ndust ry="0“ environnment="11"
anmusenent =* 0" know edge="0“>

<nane>air filter</nane>

<descri pti on>
An air filter is a systemused to enhance the quality
of air released fromindustrial and conmmrercial processes
by collecting particles fromair and to neutralize
t he environnental inpact of industry.
</ descri ption>
</filter>

Figure 6. Development process model

Requirement . configure parameters for balancing
Analysis

. r ’."; /
. Architecture 59'!.:,—,‘,&_ . oystem 4
. . r '
\ 4 Design 7% Testing 4
1 \"-k_ r .-"Ir
"_“- X F
) h r .l_.l'
L 1'-_‘ r y

% Module Unit
. Design Testing

et

Components

We employ a modular approach based on separation of concerns to define the components used by
the project. We use the standard three-tiers architecture for web applications consisting of aclient, a
server and a backend database combined with an additional module for user management.

Client

Theclient representsthe graphical view of the game and offersinteraction methods. The user interface
is designed to support several tasks, including navigating around the map, opening the game settings

GameX — Event-Based
Programming with XML Technology

and features that represent the town building progress. We use the XHTML and XForms Standards to
implement the GUI components such as navigation menu and the SV G to describe graphical elements.
The CSSisused in formatting.

Database

The database is designed to support several tasks, such as the management of user data, user settings,
jobs, position and state of towns. In the development of the proof of concept system, the eXist-db
technologies were used. The eXist-db offers several advantages such as the platform independence
and primarily the compatibility with the XQuery and XSLT standards.

Asshown in Figure 7, “The structure of the database”, the structure of the database can be described
asfollows: Multiple servers can exist. Players are registered and can participate in rounds of different
maps. The map provides an overview of al contained objects, such as towns, tiles, armies and orders
which can be divided into three classes: OrderTerraform convertsafield to adifferent type. OrderSend
sendstroops from one place to another and OrderBuild givesan order to build with referenceto atown
not a player, so the building orders will persist after transfer.

Figure 7. The structure of the database

Gameserver
XMLGameData| -servers [-description : String & N -users
< ; -maps : Map 1
. -users : User User 1
1 -settings
-name
1 1
-gold
T -material
-maps .
«enumeration» P -landlord -iron
TileType -corn
+Forest Map
+Field 1 -description : Single
+Industry -tiles : Tile . "
+Mud 1 -orders : Order players
+Mine -players : User *
+Water -towns : Town > -orders
1 \
Order
- -tiles -readyln : Date
«enumeration» -totoalTime : Date
BuildingType Til
ile
+forge 1
+market -x : Integer A A
+sawmill -y : Integer
+pub R -type : TileType
+bath * OrderTerraform
:h::(se -landlord : User
+§ewer -tiles * — -tile : Tile .
Town _ti s Ti
filter . : ‘ tileType : TileType
+library -inhabitants : Integer .
+townhall X : Integer 1
+lab -y : Integer
-tiles : Tile 1
-buildings : Building OrderSend
-troops
-unit : Unit
N -landlord : User
4’ -townl: Town
1 1 -town2 : Town I
1
* -buildings * -troops
Building Unit * OrderBuild
%
-level : Integer -count : Integer -town : Town
-type : BuildingType -type -building : BuildingType
-level : Integer

In previous work [BSTO07][PB09][BRS12], we have shown how the constraints of a UML class
diagram can be transformed into XML Schema; we use the same technique here.

GameX — Event-Based
Programming with XML Technology

Server

The server provides several modules in order to enable access to the database. It is also responsible
for performing game changes according to user actions. We use Cron in the updates synchronization
and XProc summarizing transformation steps.

User management

The user management provides several tasks such as registration of new users, modifying or deleting
accounts and the rights assignments. eXist-db always has an internal user administration, which can
be expanded using XForms in order to meet the requirements of GameX.

Model-View-Controller architecture

Theclient component holdsthe view, displaying information and offering controlsfor user interaction.
It also passes these raw interface events on to the controller. The controller lives partly on the client
and partly on the server. The client part of the controller transforms the raw interface events into
higher-level domain events, selects appropriate handlers, computestheir input data and then del egates
the actual handling to its server part in the form of HTTP requests. The server part of the controller
executes handlers, querying and updating the database as needed, and returns new client data to the
cient part of the controller in the form of HTTP responses. The client part of the controller, in turn,
initiates a refresh of the view. Hence, GameX is basically a one-page Web application with a thin
client.

Event processing in the client

The GameX client component runs in a Web browser and, conceptually, consists of an HTML page
with embedded SV G graphics for the map and X Forms components for menues and event processing.
The client component runs the GameX user interface and a part of the controller (see above).

We divide event processing in the client into three layers: First, the physical or sensor event layer;
second, the domain event layer; third, the domain action layer.

The physical event layer is part of the user interface. Physical events mostly originate from user
interaction with the game. Those come in two forms: Interaction via XForms controls or via raising
DOM events by clicking tiles on amap. Another type of physical event originates from atimer, who
fires periodically to initiate updates in the progress bars for current jobs.

Our main ideafor the client part of the controller is that it should be run by the XForms processor in
the browser, controlled by a mapping from higher-level events, that make sense at the domain level,
to higher-level actions, that also make sense at the domain level. We call thisthe domain action layer.

Thisentailsthat at |east those physical eventsthat are not already X Forms events must be transformed
into XForms events, which will be of custom type. We are using two mechanisms for this domain
event layer, that both involve atiny bit of JavaScript:

First, in the case of the timer, we are setting up periodic firing of an event with the JavaScript
function set Ti meout (). For the firing of the event itself, we use the JavaScript function
Xsl t For ms_xm event s. di spat ch() thatis provided by the XForms processor XSLTForms.
XForms 2.0 is expected to provide a timer component that can replace this bit of JavaScript; hence,
in the future the solution can be solely based on XML technology and will be independent on the
XForms processor.

Second, in the case of DOM eventsthat arefired by clicking on amap, a JavaScript handler transforms
the DOM event into an XForms event by calling Xsl t For ns_xm event s. di spatch(), as
explained in the previous case. Why did we resort to DOM eventsin thefirst placeto handle clicks on
the map? The SV G code for amap copiestilesfrom arepository and geometrically transformsthem to
their correct coordinates. Such atransformation can only concern graphics, not XForms controls. So
we looked for a method to position XForms controls on top of the tiles and have them raise XForms

GameX — Event-Based
Programming with XML Technology

events. Conceptually, we could have used XSLT processing in the browser with SAXON-CE, but
in practice we could not sort out conflicts in event handling between the two simultaneously active
JavaScript programs for XSLT and XFormes.

Communication between XML technologies

In this section, we introduce the several communication methods between XML technologies.

At first, we present an example use case “building order” using sequence diagram that illustrates the
interaction between several XML-Technologies, as shown in Figure 8, “Use case “Build Order””. A
building order is started, when the player clicks the button “build”. The XForms prepares an order
element and transfers it to the XQuery order_build.xquery and then a query is called, which checks
the order and storesit in the database. If the order completed successfully without error, then X Forms
loads thejob list.

Figure 8. Use case “Build Order”

‘ User H XForms SVG ‘ XPROC ‘ XSLT ‘ ‘ XQuery ‘ Server DB
1 I I I I I
| I I I I I
L I I I I I
Click | i | | |
I I I I I
I I I I
i | i i
! orderBuild | i
I I I I
| | |
I I I
! ! ! | build
i i i order
| | |
I I I
,,,,,,,,,, e U S |
| | | i
Refre‘sh/Error getSchedule i i
I I I I
1 1 T
i | |
I I I
Kemmmmmmm oo mmmmm e mmmmm oo oo Ammmmmoo Lk o]
i | | | i
I I I I I
I I I I I
I I I I I
I I I I I

=
1
1
1
|
|

As we see from the presented use case, the order management is divided into 3 categories: order
placement, order processing and order representation.

Order placement:

If it is ordered to construct a building, to send troops or to convert a field to a different type, the
XForms-Trigger sends a POST request to the corresponding X Query with its related job parameters.
Then a function of the Module gameProcedures is called. This module contains all functions that
are important for the management of game procedures. Within the called function, the order data is
checked for correctness and if there are unfulfilled conditions (e.g. insufficient Gold), it returns an
error which is displayed as a message using XForms. If no error occurs, an order element is added in
the database which contains the appropriate information depending on the job/order type. In case of
abuilding order, the following information is stored (order type, building type, required construction
time, remaining time, the building level, the field-1D).

An example of thisbuilding element is as follows:

<order type=“build* col or="209">
<r eadyl n>PTOHLOM/ r eady! n>
<t ot al Ti me>PT2H20M</ t ot al Ti me>
<t | D>3750</t | D>
<bui | di ng>mar ket </ bui | di ng>
<l evel >5</| evel >

</ order >

GameX — Event-Based
Programming with XML Technology

In this element, a market hall of level 5 will be built in the town with the ID 3750. The construction
takes atotal of 2 hoursand 20 minutes and it lastsin 10 minutes. The TID is used as both field ID and
town ID, astowns get the ID of the field on which they are built.

Order processing:

The next step isprocessing of orders. The server updates remaining times of all orders every minute. If
the total time of the order is reached, the corresponding action is executed (e.g. send troops, building
order etc.).

The eXist-db contains besides a database and a user management modules a scheduler module which
used to organize timming among asynchronous jobs. The following example describes a user job that
uses the attributes delay and period which specify the time of the first run and time period between
runs respectively. In this case, every 60 seconds the XQuery .../serverUpdate.xquery runs.

<j ob type=“user*
cl ass="/db/ apps/ ganeserver/server/server Updat e. xquery"“
peri od="*60000" del ay="60000"/>

Order representation:

When there are modifications in an order, they are forwarded using XForms to the relevant places
in the GUI. Thisis also realized sometimes using Events which are taken place by XForms internal
communications. In addition, the forwarding of the modification from the update function to the user
can be considered as indirect commuication.

Figure 9, “Communication between modules’ illustrates the structure of the GameX-Project and the
used communication methods.

Figure 9. Communication between modules

it :::}.' J generateGlobalMap.xpr
|| getTilesLocal xqery

< 0-; generateMapSVG.xsl

| A

]
o
.| Userl.xml |
<@>|| userzxml |
Update.xquery —

ij 2 -

|

10

GameX — Event-Based
Programming with XML Technology

We distinguish between the following communication methods:

POST request

The POST method is a standard request type in HTML and can be used in XHTML and XForms
as well. As an example, the method of POST-request is used in (step 1, Figure 9, “Communication
between modules’). We use only the URL and parameters in the Post-request. The following code
example explains how an external document (XQuery-file, named order_build.xquery) is requested
using XForms.

<xf:subni ssion id="sbuil d* nmethod="post“ action="server/order_buil d. xquery*
repl ace="i nstance" instance="iresponse">

XQuery internal function call

Modules within the XQuery language can be integrated and used across files. In case building order
example, individual parameters are extracted in the first XQuery from the XML data and then they
are transferred to afunction of the module.

XForms events

The built in eventsin XForms are useful, in communi cation with Javascript or when separate X Forms
modul es communicate together. Events can be exchanged between different X Formselements. Thisis
also possible if they arein different instances (step 3, Figure 9, “ Communication between modules’).
To trigger an XForms event, use the following Dispatch:

<xf:di spatch ev:event ="xfornms-subnit-done"
nane="r ef reshschedul eevent“ targetid="master"/>

Indirect communication

Indirect communication is particularly interesting in that the values are not directly transferred, but
they are stored in the database, and then the changes will occur.

In the example build order, the order has been transferred, processed and saved in the database
successfully. In case of error, a string is returned containing the error message (step 4, Figure 9,
“Communication between modules”). Thismessageis stored and displayed in the instancei-response.
If the transmission is successful, the s-refresh-data triggers the loading of the database.

If no error occurs, the XForms loads its database, and represent the new orders directly to the order
list. The XForms submission error handling is as follows:

<xf: subni ssion id="sbuil d* nethod="post*“
action="server/order_build. xquery“ replace="i nstance"
i nstance="iresponse"“>
<xf: message ev:event ="xfornssubni t done”
i f="not(instance(’iresponse’)//nsg = ""')"“><xf:output
val ue="instance(’'iresponse’)// nmeg"/></xf: message>
<xf: nmessageev: event =“ xf or nssubm terror“>Fehl er bei m
Submit! (<xf:output
val ue="event (' responsest at uscode’) “/ >) </ xf : message>
<xf:send ev:event ="xfornssubni tdone“
subm ssi on="srefreshdata“/>

</ xf: submi ssi on>

11

GameX — Event-Based
Programming with XML Technology

Conclusions and future works

Conclusion: Minimal use of non-XML technology (JavaScript in the browser). This will no longer
be necessary once XForms processors and XSLT processors can technically coexist in browsers and
XForms processors support new X Forms features such as the timer.

Conclusion: Minimal dependency on XForms processor (handling of subforms).
Limitation: We have addressed some timing aspects, but no hard real-time requirements.

Further work: Explore modeling of event-driven reactive systems: Harel's state charts are a classical
tool, which are currently given an XML representation by W3C under the heading “ State Chart XML".
Thisopensthevistaof representing and executing modelswith XML technology. Weintend to explore
thisfurther, in lieu of Abstract State Machines (ASMs). Thank you to James Fuller for the hint!

Further references; XForms, X Forms processors, XML databases, State Chart XML, Domain-Driven Design.

[BS08] Anne Briggemann-Klein, Lorenz Singer Hypertext Links and Relationships in XML Databases,
Balisage 2008, 2008. available from http://mmw.balisage.net/Proceedings/vol 1/html/Bruggemann-
Klein0l/BalisageVol 1-Bruggemann-Klein01.html. doi: 10.4242/BalisageVol 1.Bruggemann-Klein01.

[BMS14] Anne Briggemann-Klein, Mustapha Maalej, Marouane Sayih XML Schema Identity Constraints
Revisited, XML Prague 2014, 2014. available from http://mww.xml prague.cz/sessions2014/#xsd.

[BRS12] Briggemann-Klein, Anne, Jose Tomas Robles Hahn and Marouane Sayih Leveraging XML
Technology for Web Applications, Balisage 2012, 2012. available from http://www.balisage.net/
Proceedings/vol 8/html/Bruggemann-Klein01/BalisageVol 8-Bruggemann-KleinOl.html. doi;10.4242/
BalisageVol 8.Bruggemann-Klein01.

[BSTO7] A. Briuggemann-Klein, Th. Schopf, K. Toni Principles, Patterns and Procedures of XML Schema
Design — Reporting from the XBlog Project, Extreme Markup Languages 2007. available from http://
conferences.idealliance.org/extreme/.

[K14] Martin Kuhn, Lerning Systemic Thinking: Design and Implementation of a Browser Game based on XML
Technology, Master Thesis, TU Minchen, 2014.

[PB0O9] Pagano, Dennis, and Anne Briggemann-Klein Engineering Document Applications — From UML
Models to XML Schemas, Balisage 2009, 2009. available from http://mww.balisage.net/Proceedingy.
doi:10.4242/BalisageVol 3.Bruggemann-Klein01.

12

	GameX — Event-Based Programming with XML Technology
	Table of Contents
	Introduction
	The concept of GameX
	The GameX graphical user interface
	Mechanisms and mathematical model

	The GameX architecture
	Development process model: V-Model
	Components
	Client
	Database
	Server
	User management
	Model-View-Controller architecture

	Event processing in the client
	Communication between XML technologies
	POST request
	XQuery internal function call
	XForms events
	Indirect communication

	Conclusions and future works
	Bibliography

