[image: Balisage logo]Balisage: The Markup Conference

Generating Schema-Aware XML Editors in XForms
Mustapha Maalej

Technische Universität München

<maalej@in.tum.de>

Anne Brüggemann-Klein

Technische Universität München

<brueggem@in.tum.de>

International Symposium on Native XML User Interfaces
August 5, 2013

Copyright © 2013 by the authors. Used with permission.

How to cite this paper
Maalej, Mustapha, and Anne Brüggemann-Klein. "Generating Schema-Aware XML Editors in XForms." Presented at: International Symposium on Native XML User Interfaces, Montréal, Canada, August 5, 2013. In Proceedings of the International Symposium on Native XML User Interfaces.
 Balisage Series on Markup Technologies vol. 11 (2013). https://doi.org/10.4242/BalisageVol11.Bruggemann-Klein01.

Abstract
From XForms, it is possible to provide simple user interfaces for editing XML
 documents. From an XSD schema, it is possible to see which elements and attributes
 may occur in valid documents and in which combinations. The XFGen system brings
 these together. XFGen builds an XForm from an XSD schema. That XForm can load, edit,
 and save any XML instance conforming to the schema. XFGen guarantees that every user
 interaction with the editor will preserve the validity of the instance. XForms makes
 it easy to edit structurally fixed XML-encoded forms; XFGen’s editors go beyond this
 simple case to allow arbitrary structural changes to the document.

Balisage: The Markup Conference

 Generating Schema-Aware XML Editors in XForms

 Table of Contents

 	Title Page

 	Introduction

 	Architecture

 	A tour of principles for XForms editors
 	Displaying structures, editing data values

 	Editing structures: The downwards-facing perspective

 	Editing structures: The upward-facing perspective

 	Editing mixed content

 	Implementation

 	Related work

 	Discussion, conclusions and further work

 	Acknowledgement

 	Appendix A. The purchase order example

 	About the Authors

 Generating Schema-Aware XML Editors in XForms

Introduction
In his PhD work [Maa13], the first author of this paper,
 under the second author's supervision, is designing and implementing a system called
 XFGen, that generates a schema-aware XML editor XFGen(s) for each XSD schema s. The
 key achievement of this work is that the editor XFGen(s) is an XForms document that is
 capable of creating or loading, editing and saving any XML instance that conforms to the
 schema s; each user interaction with XFGen(s) preserves validity of the XML
 instance against schema s. XFGen(s) is much more than a form editor. It goes beyond
 letting users fill out data fields for a structurally static XML document in that it
 enables editing of structure, too. Each editor XFGen(s) is indeed a fully functional
 schema-aware XML editor. Here are some crucial properties of the editors that XFGen
 generates:
	Strictly schema-aware (schema instances always in schema-conformant
 state).

	Implemented as an (extended) XForms document.

	Supporting a large part of XML Schema.

	Completely independent of XML instances, capable of loading or creating from
 scratch, editing and saving any schema-conformant document.

The generator XFGen covers nearly the complete XML Schema specification. It handles,
 most importantly:
	Elements declared as complex types

	Elements declared with simple content

	Recursive type definitions

	Mixed-content declarations

	Multiple potential top-level elements (elements declared globally)

	Identity constraints

	Attribute declarations

	Predefined simple types

	A wide range of facets in simple type restrictions

	Union of simple types

	Lists of simple type

Other parts of XML Schema are also supported, but did not require great effort, since
 their support mostly rests on standard schema validation. They are: inheritance,
 substitution groups, namespaces, inclusions, attribute and element groups. Furthermore,
 we wish to emphasize that element and attribute declarations as well as type definitions
 can all be local or global.
The remainder of this paper is organized into five sections as follows: The next
 section is about architecture; it illustrates the interplay between components and
 briefly describes the architecture of the editors that XFGen generates. The main part of
 the paper is a tour of principles that we have used with XFGen; we cover editing of data
 values, editing of non-recursive structures and editing of mixed content. After that, we
 have sections about implementation and related work, before we conclude. For further
 illustration, we provide an appendix with editor screen shots for the purchase order
 example from the XML Schema Recommendation WF04.
The complete XForms generator XFGen is ready for demo at Balisage 2013. In this paper,
 we point out some of the challenges of XForms as an implementation technology for a
 schema-aware editor and demonstrate some of the principles and techniques that make such
 editors possible. A complete description can be found in Maalej's PhD thesis [Maa13].

Architecture
Components and their interactions are illustrated in Figure 1.
Figure 1: Components and their interaction
[image:]

The editors (XForms documents) that XFGen produces are complex pieces of software that
 conceptually follow the Model-View-Controller (MVC) architecture. They are realized as
 extended XForms.
The data of each editor consist of the XML instance, that is to be edited and can be
 loaded, freshly created, replaced and saved on demand, and of some auxiliary state,
 comprising among others prototype structures that can be copied into the XML instance
 during editing under action control. The editor's data are contained in the data-model
 section of the form. The form's data model also holds declarative constraints for the
 editor's data, expressed as XForms bindings, and actions that will be triggered during
 the form's life, for example for editing. Conceptually, with respect to MVC, some of the
 latter are part of the controller.
The view of each editor is defined by templates of XForms widgets, that are embedded
 into a host language, most commonly HTML, but we have also tested XUL. The view is
 generated by XFGen.
The controller of each editor consists of XForms actions and custom scripts that XFGen
 inserts into XForms; they are executed by the XForms engine in the XForms client.

A tour of principles for XForms editors
What are the principles that govern how the XFGen-generated XForms editors are built?
 In this section we illustrate them incrementally by example. We show the XForms code
 that is generated and how it is executed in a browser, for a series of XSD examples. And
 we explain systematically the underlying principles.
Displaying structures, editing data values
We first present simplified editors that allow editing of purely textual element
 content, but just display the document structure, not yet enabling structural
 editing. These editors could be used as classical form editors for a
 structurally-fixed XML-encoded form. At first, we restrict ourselves to elements.
 This is not a severe restriction; it will be easy to add attributes and editing
 support for them. Furthermore, we do not allow mixed content yet. Finally, we
 exclude recursive type definitions for now; this feature of XML Schema requires
 further techniques, that fall outside the scope of this section.
The challenge of this section is to generate a static structure of XForms widgets
 that only depends on the input schema but that is able to bind to any XML instance,
 that conforms to the schema, and to display it. The key idea is to generate a
 liberal structure of XForms widgets that is capable of displaying a superset of the
 required XML instances. For example, if the schema uses a choice operator, we
 generate widgets for all alternatives. Each widget tries to bind to some element in
 the XML instance, but only some of them succeed, depending on the choice that the
 current instance realizes. We rely on the fact that "superfluous" widgets do not
 display when the referenced nodes in the current XML instance do not exist. We call
 this principle Liberal Inputs.
Let us look at the schema liberalInputsS, see Figure 2. It provides one root element, xyz, that can have one or two subsequences of one
 or two subelements a and one or two subelements b. Element a is typed as xsd:int and
 element b is typed as xsd:boolean. Now we are looking at the editor that we have
 generated, the XForms document liberalInputsF, see Figure 3: It has a repeating group of one widget refering
 to an element a and one widget refering to an element b, each of which enables
 editing of the element's text content. Finally, let us load the editor with the XML
 instance liberalInputsI in Figure 4 that conforms to the
 schema liberalInputsS. Then, the XForms element xforms:repeat iterates over all
 children of element xyz in the current XML instance, displaying the appropriate
 input widget for each element a or b that is met, as illustrated in Figure 5. This form could in principle display any
 sequence of elements a and b, even those that do not conform to the type of element
 xyz, depending on the XML instance. But we may assume that the XML instance is valid
 with respect to the schema when it is loaded; and the user interactions that we will
 later introduce, always preserve validity. Hence, it does not matter that the widget
 structure is more liberal than the schema.
Figure 2: XML Schema liberalInputsS
[image:]

Figure 3: XForms liberalInputsF
[image:]

Figure 4: XML instance liberalInputsI
[image:]

Figure 5: Editor screen shot liberalInputsB
[image:]

Some further points and easy generalizations:
	XForms processors provide some processor-specific type-aware editing
 support and complete validation for data values that are typed with
 pre-defined XML Schema simple types. Hence, the example editor
 liberalInputsF in Figure 3 supports XForms
 processor-dependent type-aware editing and complete validation of the
 contents of elements a and b out of the box, as seen in Figure 5. Custom simple types, which are defined
 using restriction, union or list, require special treatment that is
 described in Maalej's PhD thesis [Maa13].

	If a schema has several globally declared elements, each of them is
 allowed as the top-most element of a schema-conformant XML instance.
 Following the Liberal Inputs principle, we generate a set of widgets for
 each of these elements, and only one of them will display for any given XML
 instance that is loaded into the editor, because only one of them will
 successfully bind to the unique top-level element of the current XML
 instance. Consequently, we can load the editor with any schema-conformant
 document, regardless of its root element, and we can also switch to a
 different root element during an edit session without changing the
 editor.

	The same idea as in the previous item is used when a type definition
 contains the choice operator.

	What if the schema allows for deeper element hierarchies? We must ensure
 that bindings from widget elements into the XML instance can be expressed in
 XPath, without consideration for expressive features of XML Schema such as
 context-dependent element declarations. We achieve that by having the
 hierarchy of XForms widgets mirror the element hierarchy of the schema,
 following the XForms pattern Stepwise
 XPath [D2003]]. Then bindings into the XML instance are
 always defined relatively to the parent level, by element name only. There
 is a catch, though: If two top-level elements of a type definition have the
 same name but different types, then we have to generate two different widget
 structures for them and cannot bind them into the XML instance by the
 (ambiguous) element name. Fortunately, XML Schema forbids this type of
 ambiguity.

	Why did we preclude recursion in type definitions for the simple schemas
 that we can handle in this section? Recursion in a type definition would
 lead to an infinite, non-halting generation of widget structures. To stop
 recursion when generating XForms widget structures, widgets would have to
 refer to and reuse previously defined structures, a feature not provided by
 XForms. Our solution is to expand XForms with a new type of reference
 control and support it with an extension to the XForms processor. This
 principle, Reference Control, is further
 explained in Maalej's PhD thesis [Maa13].

	It is easy to extend our approach so far to attributes, by adding a set of
 input widgets to the group of each element declaration, one for each
 potential attribute. Once more, the Liberal Inputs principle applies.

	Just for purposes of display, we could also handle mixed content in
 element instances, by letting the xforms:repeat iterate not only over
 sub-elements but also over text node children. We use a different technique,
 though, for supporting insert and delete of text nodes, which we explain
 later in this paper.

We can now algorithmically describe how to generate an XForms editor that allows
 editing of text content but only displays structure [Maa13].

Editing structures: The downwards-facing perspective
One novelty of this work is that our editors support editing not only of data
 values, as demonstrated in the previous section, but also of structures. XForms
 provides some basic support for insertion and deletion of nodes in an XML instance,
 with its actions xforms:insert and xforms:delete that can
 be triggered under user control. The challenge is to make sure that editors only
 allow for schema-conformant changes of XML instances.
In this section, we take the downwards-facing perspective. We demonstrate our
 Prototype principle, which guarantees that only
 such element structures are inserted into an XML instance that by themselves conform
 to their declared type. We'll address the upward-facing perspective, how deletions
 and insertions of children nodes can be forced to respect their parent's type, in
 the next section.
If we wish to insert an element that conforms to some type into an XML instance,
 we'll insert a whole structure, with subelements and attributes as required by the
 type. We precompute in XFGen one minimal structure that conforms to the type and
 call it the element's prototype [Maa13].
The xforms:insert action cannot create new structures; rather, it can
 only clone structures that are already present somewhere in the form's model.
 Therefore, XFGen builds an auxiliary instance that holds all prototype element
 structures and attributes of the schema, which can then be cloned and inserted into
 the form's XML instance under action control.
Once a prototype has been inserted into the XML instance, the user can further
 edit it. Right now, XFGen computes some arbitrary prototype that conforms to the
 required type definition and cannot be further reduced by omitting attributes or
 subelements. The schema author can influence which prototype is generated by the
 order of choice operands in a type definition. Currently, XFGen always instantiates
 the first choice operand for a prototype.
The auxilliary instance with the prototypes for Schema liberalInputsS in Figure 2 is in Figure 6.
Figure 6: Auxilliary instance liberalInputsP
[image:]

Editing structures: The upward-facing perspective
We now address the problem how to support insertion and deletion of children nodes
 such that the result necessarily conforms to the parent node's type.
Let us consider schema editControlsS in Figure 7, that
 allows top-level element xyz to have subelements a, b and c with the following
 additional constraints: The subelements of xyz either form a nonempty sequence of a,
 followed by a nonempty sequence of b, or consist just of a single c. In compact
 regular-expression notation, that is
 (a+b+)|c.
Figure 7: Schema editControlsS
[image:]

Our goal is to offer a finite number of primitive edit operations, so that any
 schema-conformant sequence u1...um of
 children of xyz can be transformed into any other schema-conformant sequence
 v1...vn by applying a finite
 number of the primitive edit operations, one after another, in such a way that each
 intermediate step leads also to a schema-conformant intermediate sequence.
In our example, we generate the following set of primitive edit operations:
	P1: insert a

	P2: insert b

	P3: delete a

	P4: delete b

	P5: delete ab, insert c

	P6: delete c, insert ab

	P7: insert c

	P8: delete c

	P9: insert ab

	P10: delete ab

For simplicity's sake, we include "P7: insert c" in our supply of primitive edit
 operations, although it can never be used in a schema-conformant transformation. We
 can only insert a c if we also delete every a and b that might be present. And we
 can break down such a combined operation into a number of primitive edits, first
 deleting any single a and b except one, respectively, with P3 and P4, and then
 deleting the last remaining sequence ab and simultaneously inserting c with P5.
 Following the same argument, P8, P9 and P10 can also never be used in a
 schema-conformant transformation.
We cannot do without primitive P5 simulating P5 by the sequence P3 P4 P7, since
 intermediate states would not be schema-conformant.
Of course, unwise application of primitive edit operations can lead to
 non-schema-conformant states. If we apply P5 in the middle of sequence aab, between
 a and b, we erroneously get the invalid sequence ac.
Our claim is the following: For any complex type definition, we can compute a
 finite number of primitive edit operations such that we can transform any conformant
 sequence into any other conformant sequence using the primitive edit operations and
 having only conformant intermediate states. We stress once more that this is an
 "existential" claim. We do not care at this point, that our primitive edit
 operations can also generate non-conformant sequences when applied at wrong
 positions. Maalej [Maa13] has the algorithm to generate a
 sufficiently large but finite set of primitive edit operations. Further research is
 needed to investigate if one can compute a minimal such set or if a minimal set
 would be unique.
Following a principle that we call Liberal Edits,
 we include any of the primitive edit operations as one button in the editor's user
 interface at any position in the sequence of children of xyz, see
 editControlsUI.xml.
We can do this generically, without refering to a specific instance, by utilizing
 xforms:repeat, as previously. Note that we insert one set of
 buttons outside the xforms:repeat to handle the beginning of the
 sequence.
Finally, we still need to control which of the edit buttons that we have so
 liberally included in our editor are actually active and which are passive (not
 shown), to preclude illegal edits that lead to non-conformant documents.
In our example, we could do this with XPath bindings into the instance. We can,
 for example, express that P3 is only active if there is another a among the children
 of xyz, apart from the one that is to be deleted.
However, an educated guess leads us to believe that, in the general case, the
 expressive power of XPath is too weak compared to the power of regular expressions
 in XML Schema complex types. Hence, we offer a different approach that we call
 Try and Tell.
We bind to each edit button a script that experimentally performs the primitive
 edit operation on a copy of the current instance, validates the result and makes the
 button visible only if the result is in fact valid. These scripts are triggered by
 XForms refresh events that are activated after each user interaction, ensuring
 up-to-date visibility status of each edit button. The scripts are implemented in a
 scripting language for which the XForms processor provides an interface, in our case
 in XBL (see also the section on implementation below.
We illustrate the effect of Try and Tell for schema editControls in Figure 7 with a browser screenshot in Figure 8.
Figure 8: Editor screen shot editControlsB
[image:]

Editing mixed content
In XML Schema, elements that are typed to have element content can orthogonally be
 declared to be of mixed content, allowing text-node children to be interspersed at
 any position in an element's instantiation, at the beginning, the end and between
 element nodes. This is in contrast to the more powerful Relax NG, where the
 appearance of text nodes can be constrained by regular-expression rules in the same
 way as subelements. The orthogonal approach of XML Schema opens up the opportunity
 to decouple handling of text nodes in mixed content from the handling of structured
 content, in a simpler and platform-independent way.
In a first attempt, we apply our principle Liberal Inputs to elements that are
 declared to be of mixed content, iterating in the form's user interface not only
 over the elements' child elements but also the child text nodes, generating input
 widgets in the user interface for display and editing of these text nodes. This will
 display and make editable any text nodes that are present in the current document
 instance but does not handle positions in the document instance where text nodes are
 allowed but do currently not exist. For this case, we introduce a new principle,
 Automatic Text Insertion. When the document
 instance is loaded into the form, we automatically trigger a script (written in
 JavaScript) that inserts dummy empty text nodes at any position where a text node is
 allowed by the schema but none is present in the instance. Then, input widgets
 appear at any position in the user interface, where text nodes are allowed by the
 schema, displaying an empty input field for the dummy text nodes and the original
 text for text nodes that were already present in the document instance. These text
 nodes can be edited via the input widgets; they can also be "deleted" by resetting
 their content to the empty string.
Unfortunately, there is a glitch with this approch: The iteration in the form's
 user interface will also produce the set of buttons for primitive edit operations
 that would consequently also have to be managed. There is, however, a slightly
 different way to deal with text nodes without considering buttons for primitive edit
 operations: We couple the widgets for text nodes to the groups for element nodes
 within an xforms:repeat and insert a further widget for a text node
 outside the xforms:repeat, to handle the text node that appears before
 the first element. We call this principle Coupled
 Inputs and demonstrate its application with schema coupledInputsS in
 Figure 9, XForms coupledInputsF in Figure 10 and browser screen shot coupledInputsB in Figure 11.
Figure 9: Schema coupledInputsS
[image:]

Figure 10: XForms coupledInputsF
[image:]

Figure 11: Editor screen shot CoupledInputsB
[image:]

The last point to consider is how structural edit operations deal with text nodes.
 Here we modify the edit operation in such a way that empty text nodes are inserted
 as needed and that the contents of text nodes that are deleted together with a
 sequence of neighboring element nodes are copied into the remaining text node in
 front of them.
This solution for mixed content is essentially platform independent. It uses a
 custom JavaScript script that is triggered by a built-in XForms event and accesses
 the document instance through the standard DOM interface. Furthermore, it utilizes
 the capability of XForms to associate the script with the event. It is worth
 mentioning, though, that XForms makes it really hard to insert text nodes in the
 middle of a sequence of nodes, demanding to sequentially build up of the sequence
 from front to back.

Implementation
The system XFGen itself is a standard Java program. it uses Xerces to process XML
 Schema. The XForms documents that XFGen generates require extensions for some XSD
 features (recursive type definitions) or editing tasks (experimental evaluation to
 determine admissible edit operations dynamically). These extensions utilize XBL scripts
 that interact with certain data structures and methods of the XForms
 processor [Hic12]
XBL is a scripting language that was introduced by Mozilla and submitted to W3C, but
 has not been standardized by W3C. Some XForms processors, among them Orbeon Forms, offer
 interfaces for XBL scripts that can access internal data structures and functions of the
 XForms processor. These interfaces are not standardized. We have extended the Firefox
 plugin XForms processor, which incidentally is programmed in XBL itself, with XBL
 functions. Consequently, the more complex XForms documents that XFGen produces run only
 on this custom extension of the XForms Firefox plugin on old versions of Firefox. We
 refer to Dubinko's text on extending XForms [D2003].]
Some XSD features can be more fully supported with an XForms processor that allows for
 XPath 2.0. Unfortunately, the Firefox plugin XForms processor that we use only
 supports XPath 1.0, as required by XForms. Consequently, support for some XSD
 features such as identity constraints is more cumbersome to define or even more limited
 in practice than conceptually necessary.

Related work
We briefly discuss three papers that are related to our work [RRK05][SL07][WKdW04].
Despite its title and stated intent, the paper by Radha [RRK05] and others does not really contribute anything specific to
 user interfaces. It is mainly concerned with semantic interpretation of XML Schema,
 given a generic DOM representation that sees the schema just as any XML document. A Java
 Swing user interface is presented without discussion how it was generated.
Song and Lee [SL07] specifically address the XForms target
 platform. Their goal is to support user interfaces for Web Services. They also briefly
 address the task of semantic interpretation of XML Schema. As to schemas, we don't see
 that they support recursive type definitions. The editors that are generated can only
 generate new XML documents from scratch, not load existing documents. Editing of
 structures and of mixed content is supported, but only in a "one-way" approach; that is,
 edit decisions, for example for one alternative when a choice is given, cannot be
 revised. There is some support for custom simple data types, for some facets in
 restrictions and for union. The paper mentions lists but means presumably the
 enumeration facet, since only a finite number of items in the base type can be supported
 with xforms:select1.
De Wolf and others [WKdW04] discuss problems that need to
 be solved when XForms is used as an implementation platform for an XML editor. They seek
 solutions mostly in extensions to the XForms standard. Some but not all of their
 proposed extensions have in fact found their way into the XForms 1.1
 specification.
Our system XFGen supports a far greater range of XML Schema features than comparable
 systems. We delegate the semantic interpretation of XML Schema to Xerces. We have
 explicitly delineated some principles and algorithms of XFGen; further capabilities of
 XFGen are covered by Maalej in his PhD work [Maa13].

Discussion, conclusions and further work
Maalej in his PhD thesis [Maa13] covers further features of
 XML Schema:
	Recursion in type definitions.

	Custom simple types (restriction, list, union).

	Identity constraints.

In principle, the XML editors that are generated by XFGen could be platform
 independent, but currently, they are not. We would need an alternative XForms processor
 that allows the necessary extensions and also runs in current browser. One candidate
 would be xf.js [NBK13] in a more fully functional version, where
 we could use JavaScript to support the extensions.
In this paper, we have not discussed the user-interface aspects of the editors that
 XFGen generates. We follow a template approach as indicated in Figure 1. For the examples in this paper, we have defined basic
 templates with the HTML fieldset element. Obviously, more sophisticated custom templates
 that combine HTML with CSS need to be tried out.
Although XFGen handles mixed content, the generated editors presumably work better for
 data-driven XML instances than for text-driven ones. Particularly with text-driven XML
 documents, we run into the largely unsolved usability problems of general XML editors.
 Our generated editors work probably best in cases in which a classical form-based
 interface is appropriate. Investigate further.
Further documentation of this work will appear in Maalej's PhD thesis [Maa13].

Acknowledgement
The comments of the anonymous referees have been extraordinarily helpful. Thank
 you!

Appendix A. The purchase order example
For further illustration, we include the purchase order example from the XML Schema
 Recommendation WF04 with the schema in Figure 12, an instance in Figure 13
 and two browser screen shots in Figure 14.
Figure 12: Schema purchaseOrderS
[image:]

Figure 13: XML instance purchaseOrderI
[image:]

Figure 14: Editor screen shots purchaseOrderB
[image:]

Bibliography
[Boy09] John M. Boyer, XForms
 1.1, W3C Recommendation, W3C, October 2009,
 http://www.w3.org/TR/2009/REC-xforms-20091020/.

[BPM04] Paul V. Biron, Kaiser Permanente, and
 Ashok Malhotra, XML Schema Part 2: Datatypes Second Edition, W3C
 Recommendation, W3C, October 2004,
 http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/.

[Dub03] Micah Dubinko, XForms
 Essentials, O’Reilly & Associates, Inc., Sebastopol, CA, USA, 2003.
[Hic12] Ian Hickson, XBL 2.0, W3C
 Candidate Recommendation, W3C, Mai 2012, http://www.w3.org/TR/xbl/.

[Maa13] Mustapha Maalej, Generieren von
 XML-Editoren in XForms aus XML Schema, Ph.D. Thesis, TU München, 2013, In
 preparation.
[NBK13] Tobias Niedl and Anne Brüggemann-Klein,
 Processing XForms in HTML5-Enabled Browsers, Balisage 2013,
 2013. doi:https://doi.org/10.4242/BalisageVol10.Niedl01.
[RRK05] V. Radha, S. Ramakrishna, and N. Pradeep
 Kumar, Generic XML Schema Definition (XSD) to GUI Translator.,
 ICDCIT, Lecture Notes in Computer Science, vol. 3816, Springer, 2005, pp. 290–296. doi:https://doi.org/10.1007/11604655_33.
[SL07] Kisub Song and Kyong-Ho Lee, An
 Automated Generation of XForms Interfaces for Web Services, 2012 IEEE
 19th International Conference on Web Services (2007), 856–863. doi:https://doi.org/10.1109/ICWS.2007.35
[TBMM04] Henry S. Thompson, David Beech, Murray
 Maloney, and Noah Mendelsohn, XML Schema Part 1: Structures Second
 Edition, W3C Recommendation, W3C, October 2004,
 http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/.

[WF04] Priscilla Walmsley and David C. Fallside,
 XML Schema Part 0: Primer Second Edition, W3C Recommendation,
 W3C, October 2004,
 http://www.w3.org/TR/2004/REC-xmlschema-0-20041028/.

[WKdW04] Koen De Wolf, Frederik De Keukelaere,
 and Rik Van de Walle, Generic XForms-Based User Interface Generation for XML
 Schema, Proceedings of the IADIS International Conference e-Society 2004,
 7 2004, pp. 773–782.

Balisage: The Markup Conference

Generating Schema-Aware XML Editors in XForms
Mustapha Maalej

Technische Universität München

<maalej@in.tum.de>

Anne Brüggemann-Klein

Technische Universität München

<brueggem@in.tum.de>

Balisage: The Markup Conference

content/images/Bruggemann-Klein01-007.png
<?xml version="1.0" encoding="UTF-8"7>
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="xyz">
<xsd:complexType>
<xsd:choice>
<xsd:sequence>
<xsd:element name="a" type="xsd:int" minOccurs="1" maxOccurs="unbounded"/>
<xsd:element name="b" type="xsd:boolean" minOccurs="1" maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:sequence>
<xsd:element name=!
</xsd:sequence>
</xsd:choice>
</xsd:complexType>
</xsd:element>
</xsd:schema>

" type="xsd:string"/>

content/images/Bruggemann-Klein01-006.png
<?xml version="1.0" encoding=
<xforms:instance id="T" xmlns
<temporaryData>
<prototyp id="101">

<xyz>
<a>0
false
</xyz>
</prototyp>
<prototyp id="102">
false
</prototyp>
<prototyp id="103">
<a>0
</prototyp>

</temporaryData>
</xforms:instance>

content/images/Bruggemann-Klein01-009.png
<?xml version="1.0" encoding="UTF-8"7>
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element nam
<xsd:complexType mixed="true">
<xsd:sequence minOccurs="0" maxOccurs="2">
<xsd:element nam a" typ xsd:int" minOccurs="1" maxOccurs="2"/>
<xsd:element name="b" type="xsd:boolean" minOccurs="1" maxOccurs="2"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:schema>,

content/images/Bruggemann-Klein01-008.png
a 1%
Adda,b | Adda | Addb

bw
| Changela, b to[c] | Add b |

content/images/Bruggemann-Klein01-003.png
<?xml versio 1.0" encoding="UTF-8"?>
<html xmlns="htt /www.w3.0rg/1999/xhtm1l"
xmlns:xforms="http://www.w3.0rg/2002/xforms"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<head>
<xforms:model id="default" schema="1liberalInputsS.xsd">
<xforms:instance id="D" src="liberalInputsI.xml"/>
</xforms:model>
</head>
<body>
<xforms:group ref="/xyz">
<xforms:label>xyz </xforms:label>

<xforms:repeat nodeset /x>
<xforms:group ref="sel a">
<xforms:label>a </ rms : label>
<xforms:input ref="."/>

</xforms:group>

<xforms:group ref="self::b">
<xforms:label>b </xforms:label>
<xforms:input ref="."/>

</xforms:group>

</xforms:repeat>
</xforms:group>
</body>
</html>

content/images/Bruggemann-Klein01-014.png
Purchase Order

Order Date |1993-1020 v

Comment Hurry. my lawn is going\

Ship to

Name Alice Smith

Street 123 Maple Street

City Mill Valley
State CA

Zip 90952
Country U
Bill to

Name Robert Smith

Street 80akAvenue

City 0ld Town
State PA
Zip 95819
Country ~ US
Items
Item

PartNumber 872-AA

PartName: AA

ProductName Lawnmower

Quantity 8

)

USPrice 14895

Comment Confirmthis is electiic

PartNumber ~ 926-AA

PartName: AA

ProductName Baby Monitor

Quantity 58
USPrice 398

‘Add comment

ShipDate [e90521

Purchase Order

Add orderDate | [Add comment

Ship to

Name Alice Smith

Street 123 Maple Street

City Mill Valley
State CA

Zip 90952
Country U
Bill to

Name Robert Smith

Street 80akAvenue

City 0ld Town
State PA
Zip 95819
Country ~ US
Items
Item

PartNumber ~ 872-AA
Add partiName
ProductName Lawnmower

Quantity 8

)

USPrice 14895
Add comment | [Add shipDate.

ProductName Baby Monitor

Quantity 5

gt

USPrice 3998
Add comment | [Add shipDate.

ProductName Digtal camera

Quantity 3

D

USPrice 29988

Add comment | [Add shipDate.

[oa1]
Change purchaseOrder to comment

content/images/Bruggemann-Klein01-002.png
<?xml versiol 1.0" encoding="UTF-8"7>
kxsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="xyz">
<xsd:complexType>
<xsd:sequence minOccur:
<xsd:element nam
<xsd:element nam
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:schema>,

max0ccurs= >
"xsd:int" minOccurs= maxOccurs="2"/>
xsd:boolean" minOccurs="1" maxOccurs="2"/>

content/images/Bruggemann-Klein01-013.png
<?xml version="1.0" encoding="UTF-8"?>
<purchaseOrder xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalocation="PurchaseOrder.xsd"
orderDate="1999-10-20" comment="Hurry, my lawn is going wild">
<shipTo>
<name>Alice Smith</name>
<street>123 Maple Street</street>
<city>Mill Valley</city>
<state>CA</state>
<zip>90952</zip>
<country>US</country>
</shipTo>
<billTo>
<name>Robert Smith</name>
<street>8 Oak Avenue</street>
<city>0ld Town</city>
<state>PA</state>
<zip>95819</zip>
<country>US</country>
</billTo>
<items>
<item partNum="872-AA" partName="AA">
<productName>Lawnmower</productName>
<quantity>8</quantity>
<USPrice>148.95</USPrice>
<comment>Confirm this is electric</comment>
</item>
<item partNum="926-AA" partName="AA">
<productName>Baby Monitor</productName>
<quantity>5</quantity>
<USPrice>39.98</USPrice>
<shipDate>1999-05-21</shipDate>
</item>
</items>
</purchaseOrder>

content/images/Bruggemann-Klein01-005.png
Xyz

content/images/Bruggemann-Klein01-004.png
<?xml version="1.0" encoding="UTF-8"?7>
<Xyz>

i="http://www.w3.0rg/2001/XMLSchema-instance"

xsi:noNamespaceSchemalLocation="TiberalnputsS.xsd"
-=>
<a>l
<a>2
true
<a>3
true
false
</Xyz>

content/images/Bruggemann-Klein01-010.png
<xforms:group ref="self::xyz">
<xforms:group ref="./text()[1]">
<xforms:input ref=".">
<xforms:label>Text </xforms:label>
</xforms:input>
</xforms:group>
<xforms:repeat nodeset
<xforms:group ref=
<xforms:input re self::a"/>
<xforms:input re ./following-sibling
<xforms:label>Text </xforms:label>
</xforms:input>
</xforms:group>
<xforms:group ref="self::b">
<xforms:input re self::b"/>
<xforms:input re ./following-sibling
<xforms:label>Text </xforms:label>
</xforms:input>
</xforms:group>
</xforms:repeat>
</xforms:group>

WELES
elf::a">

srtext()[1]">

srtext()[1]">

content/images/Bruggemann-Klein01-001.png
o

New XML Instance

Open XML Instance

Template

XForms Generator

XForms Form

XML Instance

XML Schema

v,

XML Instance

XForms Client

content/images/Bruggemann-Klein01-012.png
<xsd:schema xmlns:xsd
<xsd:annotation>
<xsd:documentation xml:lang="en">
Purchase order schema for Example.com.
Copyright 2000 Example.com. All rights reserved.
</xsd:documentation>
</xsd:annotation>
<xsd:element name="purchaseOrder" type="PurchaseOrderType"/>
<xsd:element name="comment" type="xsd:string"/>
<xsd:complexType name="PurchaseOrderType">
<xsd:sequence>
<xsd:element name="shipTo" type="USAddress"/>
<xsd:element name="billTo" type="USAddress"/>
<xsd:element name="items" type="items"/>
</xsd:sequence>
<xsd:attribute name="orderDate" type="xsd:date"/>
<xsd:attribute name="comment" type="xsd:string"/>
</xsd:complexType>
<xsd:complexType name="USAddress">
<xsd:sequence>
<xsd:element name=
<xsd:element name=
<xsd:element nam
<xsd:element name=
<xsd:element nam
<xsd:element nam
</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="items">
<xsd:sequence>
<xsd:element name="item" minOccurs="0" maxOccurs="200">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="productName" type="xsd:string"/>
<xsd:element name="quantity" type="xsd:int"/>
<xsd:element name="USPrice" type="xsd:decimal"/>
<xsd:element ref="comment" minOccurs="0"/>

http://www.w3.0rg/2001/XMLSchema">

"name" type="xsd:string"/>

street" type="xsd:string"/>

city" type="xsd:string"/>

state" type sd:string"/>

zip" type="xsd:decimal"/>

country” type="xsd:NMTOKEN" fixed="US"/>

<xsd:element name="shipDate" type="xsd:date" minOccurs="0"/>

</xsd:sequence>
<xsd:attribute name=
<xsd:attribute name="partName" type
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:schema>

"xsd:string"/>

artNum" type="xsd:string" use="required"/>

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

content/images/Bruggemann-Klein01-011.png
“xyz

Add first a

Text text node 1

a |
Texttextnode2 |
_Addab |[Adda |[Addb

b ™
Text text node 3

Del

a

Text text node 4

Addab |[Adda |[Addb

b O
Text text node 5

Delab || Add b

:

Save

