[image: Balisage logo]Balisage: The Markup Conference

Modeling overlapping structures
Graphs and serializability
Yves Marcoux
Associate professor
Université de Montréal, Canada

<yves.marcoux@umontreal.ca>

Michael Sperberg-McQueen
Senior consultant
Black Mesa
 Technologies

<cmsmcq@blackmesatech.com>

Claus Huitfeldt
Associate professor
University of Bergen, Norway

<claus.huitfeldt@uib.no>

Balisage: The Markup Conference 2013
August 6 - 9, 2013

Copyright © 2013 by the authors. Used with permission.

How to cite this paper
Marcoux, Yves, Michael Sperberg-McQueen and Claus Huitfeldt. "Modeling overlapping structures." Presented at: Balisage: The Markup Conference 2013, Montréal, Canada, August 6 - 9, 2013. In Proceedings of Balisage: The Markup Conference 2013.
 Balisage Series on Markup Technologies vol. 10 (2013). https://doi.org/10.4242/BalisageVol10.Marcoux01.

Abstract
The problem of overlapping structures has long been familiar to the
 structured document community. In a poem, for example, the verse and line
 structures overlap, and having them both available simultaneously is
 convenient, and sometimes necessary (for example for automatic analyses).
 However, only structures that embed nicely can be represented directly in
 XML. Proposals to address this problem include XML solutions (based
 essentially on a layer of semantics) and non-XML ones. Among the latter is
 TexMecs , a markup language that allows overlap
 (and many other features).
XML documents, when viewed as graphs, correspond to trees. Marcoux characterized overlap-only TexMecs documents by
 showing that they correspond exactly to completion-acyclic node-ordered directed acyclic graphs.
 In this paper, we elaborate on that result in two ways.
First, we cast it in the setting of a strictly larger class of graphs,
 child-arc-ordered directed graphs, that
 includes multi-graphs and non-acyclic graphs, and show that —
 somewhat surprisingly — it does not hold in general for graphs with
 multiple roots. Second, we formulate a stronger condition, full-completion-acyclicity, that guarantees
 correspondence with an overlap-only document, even for graphs that have
 multiple roots.
The definition of fully-completion-acyclic graph does not in itself
 suggest an efficient algorithm for checking the condition, nor for
 computing a corresponding overlap-only document when the condition is
 satisfied. We present basic polynomial-time upper bounds on the complexity
 of accomplishing those tasks.

Balisage: The Markup Conference

 Modeling overlapping structures

 Graphs and serializability

 Table of Contents

 	Title Page

 	1. Motivation and related work
 	1.1. Graphs and documents

 	1.2. The problem of serialization

 	1.3 The approach of this paper

 	2. Child-arc-ordered directed graphs

 	3. Overlap-only documents

 	4. Correspondence between a graph and a document

 	5. Main results

 	6. Checking full-completion-acyclicity

 	7. Conclusion and future work

 	Appendix A. Notation and symbols

 	About the Authors

 Modeling overlapping structures
Graphs and serializability

1. Motivation and related work
1.1. Graphs and documents
Many operations are more conveniently performed on a graph
	representation than on a linear representation of a marked up
	document, and vice versa. One of the strengths of XML is that
	XML documents in serial form are readily deserialized into
	ordered trees, which form a convenient data structure for many
	useful operations.[1]

So-called “XML trees” are directed acyclic
	graphs with single parenthood and a total ordering on leaf
	nodes. While this constitutes an intuitively natural and
	generally suitable model for the representation of the
	structure of most documents, and for most purposes, it also
	poses a challenge for the representation of complex structures
	such as overlapping, fragmented or disordered document
	elements, and multiple co-existing alternative structures,
	which allow for a more natural representation of complex
	documents in a wide range of situations.
For such purposes, a different kind of graph
	representation has been proposed, the so-called Goddag [SH2004]. Roughly, Goddags (General Ordered-Descendant Directed Acyclic
	 Graphs) are like XML trees except that they allow
	multiple parenthood and do not require a total ordering on
	leaf nodes. (Thus, XML trees constitute a subset of
	Goddags.)
Documents using different techniques for representing such
	structures in XML form (e.g., milestones, fragmentation,
	virtual elements, etc. [B1995] [SH1999] [W2005]) can be mapped onto
	Goddags, though not without application-specific mechanisms
	typically involving levels of indirection which may appear
	cumbersome. The experimental markup system TexMecs [HS2003] offers mechanisms for the representation of
	complex structures which can be mapped on to Goddags
	independently of such knowledge.
Since its introduction, the Goddag data structure has
	frequently been cited, and it is used as a reference in
	various works on overlap. (For example, Moore [M2012]
	studied Goddags in the context of access control, and
	introduced the notion of globally ordered
	 Goddag.) However, the original description of
	Goddags is rather informal, and exhibits the kinds of gaps,
	vaguenesses, and ambiguities that have, over time, given
	informality a bad name among mathematicians and others
	interested in firm results.
For example, it was conjectured that a
	linearized document which made use, in addition to the
	mechanisms of XML, only of markup for overlapping elements,
	could be represented by a Goddag with a total order on leaf
	nodes (so-called restricted
	Goddags), but no proofs were given of this fact. The paper was
	silent and its authors agnostic about the serializability of
	graphs with multiple roots, and the relationship between Goddags
	and markup in terms of serializability was not systematically
	investigated. In [HS2003], it was assumed, but
	no attempt was made to prove, that all TexMecs documents could
	be represented as Goddags, or that all Goddags could be
	serialized as TexMecs documents. The present paper is a modest
	contribution towards straightening up the situation, by way of a
	systematic study of the fine point of the complex relationship
	between markup formalisms like TexMecs and graph structures like
	Goddags.

1.2. The problem of serialization
The general problem is this: whenever a markup system (be it
	XML, TexMecs, or another system) provides more than one way to
	represent a given abstract structure,[2]
	that same abstract structure can be written out again
	(serialized) in more than one way. Can we control the
	serialization process to provide the marked-up forms we find
	easiest to work with at a given moment? Can we tell, by
	inspection of a given graph, what serialization formats are
	possible for the graph? In many cases, a marked up form using
	overlapping elements, seems to at least some observers to be the
	most natural representation of a given document;
	when can a graph be serialized using overlap alone, and when
	does it require use of the more powerful mechanisms of virtual
	or discontinuous elements?

A concrete example may help illustrate the point.

	In the following fragment (adapted from [D2004]), the verse elements are
	empty milestones marking the beginning and end of verses, in
	Trojan Horse style markup. A Goddag structure
	representing this fragment would have nodes for the verses,
	but those nodes do not correspond one to one with XML elements
	in this serialization:[3]

 <div xmlns="http://www.tei-c.org/ns/1.0">
 <p>
 <verse xml:id="Jer.2.1"/>
 Moreover the word of the LORD
 came to me, saying,
 <verse eID="#Jer.2.1"/>
 <q n="Q-Jer.2.2-A">
 <verse xml:id="Jer.2.2"/>
 Go and cry in the
 hearing of Jerusalem, saying,
 <q n="Q-Jer.2.2-B">
	Thus says the LORD:
	<q n="Q-Jer.2.2-C">
	 I remember you,
	 The kindness of your youth,
	 The love of your betrothal,
	 When you went after Me in the wilderness,
	 In a land not sown.
	 <verse eID="#Jer.2.2"/>
	 <verse xml:id="Jer.2.3"/>
	 Israel [was] holiness to the LORD,
	 The firstfruits of His increase.
	 All that devour him will offend;
	 Disaster will come upon them,
	</q>
	<!--True Close Q-Jer.2.2-C-->
 says the LORD.</q>
 <verse eID="#Jer.2.3"/>
 <!--* ... *-->
 </q>
 </p>
</div>

The same Goddag structure can also be serialized in an extended
	form of TexMecs notation.[4]
	<div|
 <p|
 <verse@Jer.2.1|Moreover the word
 of the LORD came to me, saying,|verse>
 <q n="Q-Jer.2.2-A"|
 <verse@Jer.2.2|
	Go and cry in the
	hearing of Jerusalem, saying,
 <~@Jer.2.2b|
 Thus says the LORD:|~>
 <~@Jer.2.2c|
	 I remember you,
	 The kindness of your youth,
	 The love of your betrothal,
	 When you went after Me in the wilderness,
	 In a land not sown.|~>
 |verse>	
 <q n="Q-Jer.2.2-B"|
 <=@Jer.2.2b=>
	 <q n="Q-Jer.2.2-C"|
 <=Jer.2.2c=>
 <~@Jer.2.3a|
	 Israel [was] holiness to the LORD,
	 The firstfruits of His increase.
	 All that devour him will offend;
	 Disaster will come upon them,
 |~>
 |q>
 |q>
 <verse@Jer.2.3|
 <=Jer.2.3a=>
 says the LORD.
 |verse>
 <* ... *>
 |q>
 |p>
|div>

	This particular Goddag structure can also be
	serialized without virtual elements, just by allowing
	the q and verse elements
	to overlap:
	<div|
 <p|
 <verse@Jer.2.1|
 Moreover the word of the LORD
 came to me, saying,
 |verse>
 <q n="Q-Jer.2.2-A"|
 <verse@Jer.2.2|
 Go and cry in the
 hearing of Jerusalem, saying,
 <q n="Q-Jer.2.2-B"|
	Thus says the LORD:
	<q n="Q-Jer.2.2-C"|
	 I remember you,
	 The kindness of your youth,
	 The love of your betrothal,
	 When you went after Me in the wilderness,
	 In a land not sown.
	 |verse>
	 <verse@Jer.2.3|
	 Israel [was] holiness to the LORD,
	 The firstfruits of His increase.
	 All that devour him will offend;
	 Disaster will come upon them,
	|q>
	 says the LORD.
	|verse>
 |q>
 <* ... etc. ... *>
 |q>
 |p>
|div>

	Intuitively, many readers find the overlap-only version of the
	document simpler and more natural than the version using
	bilocation tags. But (as demonstrated by [M2008]), not all Goddag structures can be
	written out using only overlap, without virtual elements,
	discontinuous elements, or bilocation tags.

	This leads directly and obviously to the questions
	When can graphs be serialized
	 using overlap only? And conversely, when are other
	 markup mechanisms necessary?

Marcoux [M2008] introduced the notions of
	noDAG and overlap-only
	 (oo) TexMecs as a first step towards answering these
	questions.
	A noDAG is a node-ordered directed acyclic graph,
	i.e., a slight variation on the Goddag, where there is a strict partial
	ordering on nodes. As a markup language, oo-TexMecs is the subset of TexMecs that
	allows multiple roots and overlapping elements, but not virtual or interrupted
	elements. Marcoux established that a noDAG is serializable if and only if it is
	completion-acyclic, and that
	“round-tripping” is possible, in that there is essentially a
	bijective correspondence between noDAGs and oo-TexMecs documents.

1.3 The approach of this paper
In order to investigate whether and how the results of
	[M2008]	apply to other classes
	of graphs, we introduce here the more general notion of a child-arc-ordered directed graph (CODG), and
	demonstrate that the results from [M2008] hold also for CODGs,
	with the somewhat surprising exception of some CODGs with multiple roots. By defining the stronger
	notion of “fully completion-acyclic” graphs, we succeed in
	identifying this subset: the oo-serializable CODGs are exactly the
	fully-completion-acyclic ones. We also give basic polynomial-time upper bounds
	on the complexity of checking full-completion-acyclicity and of actually
	computing an oo-serialization of fully-completion-acyclic
	CODGs.

2. Child-arc-ordered directed graphs
2.1 Definition A child-arc-ordered directed graph (CODG for short) G = (V, ch) is a
 directed graph over a
 finite
 non-empty set of vertices (or nodes) V, where ch (for children) is a total mapping from V to finite (and possibly
 empty) sequences of nodes from V. The set of arcs (or edges) of G, noted
 E(G), comprises exactly those ordered pairs (v, w) for which
(∃n ∈ N)[ch(v, n) = w],

where N represents the set of non-negative integers. The notation
 ch(v, n) is used as a shorthand for (ch(v))(n), that is, for the element with
 index n in the sequence ch(v). We use 0-origin indexing; thus, for all v
 ∈ V, ch(v, 0) denotes the first child of v (or is undefined, if v has no child).
Note: Throughout this paper, the
 “parent” relation must be understood to be the exact inverse of
 the “child” relation (we bother to make this explicit because it
 is not the case in some other models, such as
 the XPath 1.0 data model).
It is possible for the same child to show up at more than one place
 in a sequence of children; that is, ch(v, n) = ch(v, m) with m ≠ n is
 possible. Loops are allowed; that is, ch(v, n) = v for a given n is possible.
Note that (v, w) ∈ E(G) for given v and w tells only part of the story: There
 could be many distinct values of n for which ch(v, n) = w. Also note that the
 length of ch(v), i.e., the smallest value of n (≥ 0) for which ch(v, n) is undefined,
 is greater than or equal to the number of distinct children of v (if v has no child,
 ch(v) = ∅, which, as a sequence, is of length 0).
CODGs are very loose structures: they can be
 “multi-graphs,” in that more than one arc can link any given
 pair of nodes. They can have cycles and loops (i.e., cycles of length one).
 There can be both a direct (length one) and indirect path between any two given
 nodes.
The rationale for the adjective child-arc-ordered is that for all
 v ∈ V, ch(v) can be seen as inducing an ordering on the arcs going out of v (the
 child-arcs of v).
Examples We present examples of
 CODGs illustrating some of their features.
[image:]Example 2.1

Example 2.1 illustrates that CODGs can be disconnected, and that, in a
 CODG:
	A node can have more than one parent (here most simply
	 node d, with parents a and c, but also node b [with
	 parents a and b]). This is a significant departure from
	 the rule of single parenthood in XML.

	There can be cycles and loops (cycles of length 1); here
	 the only example is the loop on node b.

	The same node can occur more than once as a child of
	 some parent (here node c, which is both second and fourth
	 among the children of node a).

	There can be both direct and indirect paths between two
	 nodes (here node a dominates node d both directly and
	 via node c).

Note that the order of the
 outgoing arcs is usually not shown explicitly in the visual representation of a CODG.
 We adopt the convention of drawing
 the arcs going out of any node in order from left to right (even if
 the arcs must cross each other further down, in order to reach
 the child node they point to). So the leftmost arc leaving any
 parent is pointing to that parent's first child, and the
 rightmost arc points to that parent's last child.[5]
 Thus, in Example 1, ch(a) = (b, c, d, c).
On the rare occasions that this convention is not practical, we use
 explicit green arrows between the outgoing
 arcs to indicate their order, as in the next example.

[image:]Example 2.2

In Example 2.2, ch(a) = (b, c) and ch(d) = (e, c). Right-pointing
 arrows, though superfluous, are sometimes shown as a reminder of the implicit
 convention.
Sibling precedence For all v, ch(v)
 induces a sibling-precedence relation sp(v) among
 the children of v, defined by:
 sp(v) =def { (w, x) ∈ V × V
 | (∃m, n ∈ N)[m < n & ch(v, m) = w & ch(v, n) = x]
 }.

 This relation may or may not be a strict order relation. When it is, we say that v
 orders its children.
[image:]Example 2.3

Example 2.3 illustrates that parents may order the same nodes
 differently as children. Thus, note that ch(a) = (b, c), which induces the
 strict order relation b
 < c, and ch(d) = (c, b), which induces the strict order relation c < b.
In examples in which no pair of nodes is ordered differently by different
 parents, we will usually place the green arrows between nodes, rather than between
 arcs:
[image:]Example 2.4

Auxiliary concepts We now define a
 number of auxiliary concepts useful in discussions of CODGs. All
 of them are secondary concepts in the sense that they are entirely and uniquely
 determined by the set of vertices and the sequences of children of the
 graph.
2.2 Definition Let G = (V, ch) be a
 CODG. Then:
	⇒G denotes the (positive)
 transitive closure of E(G).
Note that ⇒G is not necessarily
 antireflexive, as E(G) may contain cycles.

	⇒*G
 denotes the reflexive transitive closure of E(G), that is:
⇒G ∪ { (v, v) | v ∈
 V }.

	sp(G) =def { (v, w, x) ∈ V × V × V
 | (∃m, n ∈ N)[m < n & ch(v, m) = w & ch(v, n) = x]
 }.
The name “sp” stands for “sibling
 precedence.” Note that, iff w occurs more than once in the sequence of
 children of v, then (v, w, w) ∈ sp(G). Note also that it is entirely
 possible for both (v, w, x) and and (v, x, w) to be members of sp(G).
 Finally note that sp(G) is the union over all v ∈ V of ({v} × sp(v)),
 where sp(v) is the sibling-precedence relation induced by ch(v), as defined above
 at Sibling precedence.

	gsp(G) =def { (w, x) ∈ V × V |
 (∃v ∈ V)[(v, w, x) ∈ sp(G)] }.
The name “gsp” stands for “global sibling
 precedence.” It is the projection of sp(G) onto the last two components.
 It follows from the observations in the preceding point that there can be loops
 and cycles in gsp(G).

2.3 Notation Let G = (V, ch) be a CODG.
 Unless otherwise stated:
	V can also be denoted by V(G),

	E denotes E(G),

	⇒ denotes ⇒G,

	⇒* denotes
 ⇒*G,

	sp denotes sp(G),

	gsp denotes gsp(G).

3. Overlap-only documents
The phenomenon we wish to study in this paper is how the structural
 properties of a CODG relate to the fact that it mimics the containment and
 precedence relationships among elements in some marked-up document. More
 specifically, we want to consider documents expressed in markup languages that
 allow overlapping elements, such as TexMecs [HS2003]. Thus, we
 need to define a model for such documents.
TexMecs allows many more constructs than element embedding and
 overlap. However, in this paper, we concentrate on those two, ignoring the
 others, such as virtual elements, interrupted elements, empty elements,
 attribute specifications, entity references, generic identifier co-indexing
 (for handling self-overlap), unordered contents, and comments. This is why we
 speak of “overlap-only” (or “oo”) documents. When
 the structure of a CODG corresponds to the containment and precedence
 relationships of some oo-document (to be defined precisely in a moment), we say
 the CODG is “oo-serializable,” because the oo-document can be
 viewed as a serialization (a representation in
 serial form) of the CODG.
Instead of defining documents as character strings with syntactic
 constraints, we use a more abstract approach that avoids some complications and
 leads to results that are simpler to formulate. More constraints on the
 definition of document could later be added to suit specific markup languages
 if and when desired.
Intuitively, we adopt a tokenized view of the document, where tokens
 are tags and leaves. Tokens are represented by their (integer) position in the
 sequence of tokens that make up the document.
The tags in our model of oo-documents correspond, in the XML
 world, to start- and end-tags for non-empty elements.
The leaves in our model of oo-documents correspond, in the
 XML world, to text nodes (#PCDATA) and empty elements. Note that
 our model abstracts away from the actual textual content of
 elements and documents, and also ignores the differences among
 different element types. We claim, however, that our abstraction
 captures the essential structural aspects of marked-up documents
 with possible element overlap.
3.1 Definition An oo-document is a finite set of pairs of
 the form (x, y), where x, y ∈ N (the set of non-negative
 natural numbers) and x ≤ y, additionally satisfying a number of
 “well-formedness” constraints (stated below).
The pairs in a document are called ranges. If r = (x, y) is a
 range, then r1 and r2 denote
 respectively x and y.
Intuitively, a range gives the position of a start-tag and of the
 corresponding end-tag, or the position of a leaf, in which case, x =
 y. Formally, if D is an oo-document:
	leaves(D) =def { x ∈ N | (x, x)
 ∈ D },

	stags(D) =def domain(D) -
 leaves(D),

	etags(D) =def image(D) -
 leaves(D).

Note that, as usual:
	domain(D) =def { x ∈ N | (∃ y ∈ N | (x,
 y) ∈ D) }, and

	image(D) =def { y ∈ N | (∃ x ∈ N | (x,
 y) ∈ D) }, and

Oo-documents are subject to the following well-formedness
 constraints.
For all oo-document D:
	D is a partial function over N, i.e., for all x ∈ N,
 there is at most one y such that (x, y) ∈ D.

	D-1 (that is, the inverse
	 of D) is also a partial function over N, i.e., for all y
	 ∈ N, there is at most one x such that (x, y)
	 ∈ D.

	stags(D) ∩ etags(D) = ∅.
Put less formally: No token is both a start-tag and an
 end-tag.

It must also be remembered that (as stated at the beginning of the
 definition) for all range r, r1 ≤
 r2, which corresponds to the normal
 rule of syntax that start-tag must precede its matching end-tag.
Note that we do not require the numbering of token positions to be
 gap-free, nor do we forbid consecutive leaves without intervening
 tags. There is also no requirement of an element spanning the whole
 document: this is of course crucial for oo-documents to be able to
 correspond to graphs with multiple roots.
3.2 Definition Let D be an oo-document,
 and r, s ∈ D:
	r is said to contain s iff
 (r1 < s1 and
 s2 < r2).

	r is said to precede s iff
 (r1 < s1 and
 r2 < s2).

Note that in the latter case, r and s may or may not overlap. Also
 note that r cannot both contain and precede
 s.

4. Correspondence between a graph and a document
Intuitively, a CODG and an oo-document correspond to each other when the nodes of the graph and
 the ranges of the document can be put in correspondence in such a way that node
 reachability corresponds to range containment, and gsp corresponds to range
 precedence.
4.1 Definition A CODG G and an
 oo-document D correspond to each other iff
 there exists a bijective mapping g from V(G) to D, such that all of the
 following conditions hold:
	(∀ b, c ∈ V(G)) [(b ⇒ c) iff g(b) contains
 g(c)]

	(∀ b, c ∈ V(G)) [if (b, c) ∈ gsp(G), then
 g(b) precedes g(c)]

We then say that G and D correspond to each other
 through g.
4.2 Definition A CODG G is said to
 be oo-serializable iff there exists an
 oo-document that corresponds to G.
It is clear that every oo-document has a corresponding CODG: use
 ranges as nodes, and the transitive reduction of range containment as
 parent-child relation. Then, order all sets of siblings in range precedence
 order.
It is also clear that some CODGs are
 not oo-serializable: for example, a CODG with cycles would imply (by
 transitivity) a range containing itself, which is impossible. But are all
 acyclic CODGs oo-serializable? The following examples, inspired from
 [M2008], show that the question is at best not trivial:
[image:]Example 4

 [image:]Example 5

Both graphs are acyclic and they differ by just the presence/absence
 of one arc. Yet, only the first one is oo-serializable [M2008].[6]

In [M2008], Marcoux defined noDAGs, or
 node-ordered DAGs, as (essentially) directed
 acyclic graphs (DAGs) in which the nodes are partially ordered in such a way
 that siblings (children of a common parent), as well as
 distinct roots, are totally ordered. He then defined the property of
 completion-acyclicity for noDAGs, and showed
 that oo-serializable noDAGs are exactly the completion-acyclic ones.
In order to investigate whether the same is true of CODGs, we must
 define an analogous property for CODGs. The following definition is the natural
 adaptation of completion-acyclicity to CODGs.
4.3 Definition Let G = (V, ch) be a
 CODG. Then:
	ssba(G) =def { (w, x) ∈ V × V |
 (∃v ∈ V)[v ⇒ w & (v, x) ∈ gsp & x
 ⇏ w] }.
The name “ssba” stands for
 “should-start-before additions.”

	ssb(G) denotes the transitive closure of (E ∪ gsp ∪
 ssba).
The relation “ssb” is called the
 “should-start-before completion” of G.

	seaa(G) =def { (w, x) ∈ V × V |
 (∃v ∈ V)[v ⇒ w & (v, x) ∈
 gsp-1 & x ⇏ w
] }.
The name “seaa” stands for “should-end-after
 additions.” The relation gsp-1 is
	the inverse of relation gsp.

	sea(G) denotes the transitive closure of (E ∪
 gsp-1 ∪ seaa).
The relation “sea” is called the
 “should-end-after completion” of G.

4.4 Notation Let G = (V, ch) be a CODG.
 Unless otherwise stated:
	ssba denotes ssba(G),

	ssb denotes ssb(G),

	seaa denotes seaa(G),

	sea denotes sea(G).

The relations ssb and sea can be understood as meaning:
 “should <something>
 in any oo-serialization of the
 CODG,” for example “should
 end after in any oo-serialization of the
 CODG.” Thus, “(v, w) ∈ ssb” can be read out as:
 “v should start before w in any oo-serialization of the CODG.” In
 other words, ssb (respectively, sea) represents the start- (respectively, end-)
 tag-precedence relations that can be deduced from the topology of the CODG,
 supposing parent-child relations are interpreted as element containment, and
 sibling-precedence relations as start- and end-tag-precedence.
The relations ssba and seaa represent the “additional”
 arcs (over and above those in E and gsp or gsp-1)
 that must be considered to compute all the
 possible ssb and sea pairs that can be deduced from the CODG topology.
4.5 Definition A CODG G = (V, ch) is
 said to be completion-acyclic (CA) iff each of
 ssb(G) and sea(G) is acyclic.

5. Main results
Things are not as simple with CODGs as with noDAGs. There
 are, it turns out, CODGs that are completion-acyclic, yet not oo-serializable. Our
 first result is to show that Example 2.2 above, as well as the following CODG,
 are in that situation:
[image:]Example 6

Since the number of structurally distinct documents that can
 possibly correspond to a 5-node graph is finite, we could
 exhaustively enumerate them and verify that none of them correspond
 to either Example 2.2 or to
 Example 6.
 However, that would not be very
 insightful.[7]
We will thus rather proceed by way of a lemma (5.9) that
 provides a general characterization of oo-serializable CODGs, and
 will be useful for our second main result.
5.1 Definition Let G = (V, ch) be a
 CODG. The ancestral precedence relation of G,
 denoted ap(G), is defined as:
ap(G) =def { (v, w) ∈ V × V | (v
 ⇒ w) & (w ⇏ v) }.

It is easy to show that ap(G) is always a strict partial-order on V.
 Informally, we could say that ap(G) gets rid of the cycles in G by contracting
 its (maximal) strongly-connected components, then re-expanding them to an equal
 number of disconnected
 vertices.

5.2 Definition Let G = (V, ch) be a
 CODG. A root in G is a vertex r ∈ V for
 which:
(∄w ∈ V)[(w, r) ∈ ap(G)].

5.3 Notation Let G = (V, ch) be a CODG.
 Unless otherwise stated, ap denotes ap(G).
The next result establishes that for any distinct roots v and w,
 either v and w are in the same strongly-connected component, or else v and w
 are unordered in each of ssb and sea.
5.4 Lemma Let G = (V, ch) be a CODG,
 and v and w two distinct roots in G. Then, either:
(v ⇒ w) & (w ⇒ v)

or
{ (v, w), (w, v) } ∩ ((ssb ∪ sea) − ⇒) = ∅.

Note: For space consideration, most
 proofs are omitted.
Thus, an important difference between noDAGs and CODGs is that the
 latter can have unordered root pairs, whereas noDAGs have (by definition) their
 roots totally-ordered.
5.5 Definition A CODG G = (V, ch) is
 said to be sp-consistent iff gsp is an acyclic
 relation, i.e., iff:
(∀v ∈ V)[(v, v) ∉ transitive-closure(gsp)].

Note that if G is truly a multi-graph, i.e., if some node occurs more
 than once as a child of the same parent, then G is certainly
 not sp-consistent. However, G could fail to be
 sp-consistent without being a true multi-graph, for example if two siblings are
 ordered differently by two distinct parents.
5.6 Definition A CODG G = (V, ch) is
 said to be reduced iff no node is both
 directly and indirectly reachable from some other node, i.e., iff:
(∄v, w, x ∈ V)[{(v, w), (v, x)} ⊆ E(G) &
 w ⇒ x].

Note that if there is a cycle in G, then it is not reduced.
5.7 Lemma If a CODG is
 sp-consistent, is reduced, and has a single root, then it is isomorphic to a
 noDAG; thus, by [M2008], it is oo-serializable iff it is
 completion-acyclic.
5.8 Definition Let G be a CODG. A
 single-rooted extension (sre) of a G, is
 identical to G with an added root that has as children the roots of the
 original CODG, in some ordering, without
 repetition.
Note that, in general, a CODG has more than one sre (in effect, n!,
 where n is the number of roots in the original CODG, i.e., one for each
 possible ordering of the original roots).
5.9 Lemma A CODG is oo-serializable
 iff it has an sre that is oo-serializable.
Proof sketch. (←): Let G be a
 CODG, and H an oo-serializable sre of G. Let D be any serialization of H.
 Because H has only one root, and D corresponds to H, there must be a range in D
 that contains all the others. Thus, the first and last tag of H must be
 matching tags. By “removing” those tags from D, we obtain an
 oo-serialization of G.
(→): Let G be an oo-serializable CODG, and D any serialization
 of G. By “adding” a start-tag and a matching end- tag at
 (respectively) the beginning and end of D, we obtain a document that can be
 shown to correspond to some sre of G.
We are now ready to state our first main result:
5.10 Theorem There exist CODGs that
 are completion-acyclic but not oo-serializable.
Proof sketch. The theorem follows
 from the observations that:
	Each of Examples 2.2 and 6 is completion-acyclic.

	Each of Examples 2.2 and 6 has exactly two sres, each of which is
 sp-consistent, reduced, and (by definition of sre) has a single root.

	Each sre of each of Examples 2.2 and 6 is completion-cyclic.

By Lemma 5.7, none of Examples 2.2 and 6 has an sre that is
 oo-serializable. Thus, by Lemma 5.9, none of Examples 2.2 and 6 is
 oo-serializable.
Our second main result is easiest seen as a corollary to the proof of
 the preceding theorem. First, we define:
5.11 Definition A CODG is said to be
 fully-completion-acyclic (FCA) iff it has an sre
 that is completion-acyclic.
5.12 Theorem A CODG is
 oo-serializable iff it is fully-completion-acyclic.
Proof sketch. The theorem follows
 from the proof of the preceding theorem and the following lemma:
5.13 Lemma If a CODG is not
 sp-consistent or is not reduced, then it is not completion-acyclic.

6. Checking full-completion-acyclicity
An obvious way to check whether a CODG is fully-completion-acyclic is to try
 out all possible sres and see if at least one is completion-acyclic. From a
 completion-acyclic sre, it would be easy to derive an oo-serialization
 of the CODG. However, since there are n! different sres to check (where n is
 the number of roots in the CODG), this can be very inefficient. It would be
 nice to be able to check whether a CODG is fully-completion-acyclic without
 having to generate all possible sres.
It turns out it suffices to check each pair of roots for a particular
 condition which is verifiable in polynomial time. Since there are n × (n - 1)
 / 2 root-pairs and checking the condition can be done in polynomial time, it
 follows that full-completion-acyclicity can in fact be checked in polynomial
 time.
The condition to be checked is as follows.
6.1 Definition Let r and s be two roots of
 some CODG G = (V, ch) that are unordered with respect to ssb(G). We say that r
 must precede s, noted r ↝ s, iff there
 exist vertices x and y standing in either (or both) of the following configurations with
 respect to r and s:

 [image:]Root-pair configuration 1

 [image:]Root-pair configuration 2

Here, the double-arrows represent the reachability (⇒) relation, not just
 parent-child relationships. The red double-arrow (with a stroke through it)
 means the complement of ⇒ (thus, in Configuration 1, s ⇏ x). It does not
 matter whether or not r ⇒ y (resp. s ⇒ x) in Configuration 1 (resp.
 Configuration 2). In other words, at least one of r
 ⇏ y and s ⇏ x must be the case. The dotted green arrow means that (x, y) ∈
 (ssb − ⇒), in other words, that x precedes y without being an ancestor of
 it.
An instance of at least one of those configurations is found in each of the following
 CODGs:
[image:]Example 7

 [image:]Example 8

 [image:]Example 9

6.2 Lemma Let G be a CODG, and r and s be
 two roots in G such that r ↝ s. Then, for each H that is a CA sre of G, (r, s)
 ∈ gsp(H).
Proof sketch. If there exists no CA sre of G, or if
 there are no two roots r and s in G such that r ↝ s, then the lemma is
 vacuously verified. Let thus H be any CA sre of G and, for the sake of
 contradiction, suppose r and s are two G-roots such that r ↝ s and such that
 (r, s) ∉ gsp(H). Suppose x and y are two vertices as in Configuration 1
 above (we prove only the case of Configuration 1; that of
 Configuration 2 is proved similarly).
By the definition of sre, if (r, s) ∉ gsp(H), then it must be the case that
 (s, r) ∈ gsp(H), and thus, by construction of ssb(H) (Definition 4.3-2),
 that (s, r) ∈ ssb(H). Hence, it follows by Lemma 4 of [M2008] and the fact that r and s do not stand in
 ancestor-descendant relationship (being both G-roots, they are
 ⇒-incomparable), that (r, s) ∈ sea(H). Similarly, from (x, y) ∈ ssb(H) and x ⇏
 y, and y ⇏ x (because (x, y) ∈ ssb(H)), we conclude that (y, x) ∈
 sea(H).
Now, by construction of sea(H) (Definition 4.3-4), and from the facts
 that r ⇒ x, that (r, s) ∈ gsp-1(H), and that s ⇏ x,
 we conclude that (x, s) ∈ sea(H). So, we have (y, x) ∈ sea(H) (established
 earlier), and (x, s) ∈ sea(H), and (s, y) ∈ sea(H) (because s ⇒ y). Thus,
 sea(H) is cyclic, contrary to our hypothesis that H is CA, and so we must
 reject the hypothesis that (r, s) ∉ gsp(H), and conclude that (r, s) ∈
 gsp(H).
QED
6.3 Theorem A CODG is FCA iff it is CA and
 it does not have any two roots r and s such that r ↝ s and s ↝ r.
Proof sketch.
(⇒) Any FCA CODG is CA. If a CODG had roots r and s such that r ↝ s and s ↝
 r, then by Lemma 6.2, it would have a cycle in ssb, and thus could not be
 CA.
(⇐) Let G be a CA CODG in which no two roots r and s are such that r ↝ s and
 s ↝ r. Note that by Lemma 5.13 and the fact that G is CA, we know that G
 is sp-consistent and reduced, and will thus take this for granted.
We give an algorithm for constructing an ordering of the roots of G that can
 be used as the root-order in a sre H of G which will be shown to be FCA. In
 the algorithm, ssb(G, ROR) denotes the result of building ssb as per
 Definitions 4.3-1 and 4.3-2, but using gsp(G) ∪ ROR instead of
 gsp(G)
Algorithm:
 	Let ROR = { (r, s) | r and s are roots in G and r ↝ s }.

	Let SSB = ssb(G, ROR).

	WHILE (∃ x, y ∈ V)[ch(x) = ch(y) & {(x, y), (y, x)} ∩ SSB =
 ∅] 	Pick any x and y satisfying the WHILE clause, and
 let X = x, and Y = y.

	Let ROR = ROR ∪ {(r, s) | r and s are roots in G,
 and r ⇒* X, and s
 ⇒* Y}.

	Let SSB = ssb(G, ROR).

 When the algorithm stops, ROR is the root-order to be used for
 constructing H.
The intuition behind the algorithm is best conveyed with examples.
 Essentially, the algorithm goes like this: start with the root-orderings that
 are imposed by the topology of the CODG, i.e., those pairs of roots (r, s) for
 which r ↝ s. Then, for the other root-pairs, they can basically be ordered
 randomly, as long as no silly decision is taken.
To see what silly decisions would be, consider
 Example 10. A silly decision would be to stick root r between s and t. To
 avoid such decisions, the root-ordering must be built gradually, considering
 one by one (the order does not matter) the unordered pairs of parents of the
 same children. For each such pair (x, y), decide of an arbitrary order, then,
 make sure all roots reachable upwards from x come before all those reachable
 upwards from y (there can be no root reachable both ways, otherwise, x and y
 would have been ordered to start with).
Each time such root-orderings are added, the consequences on the global ordering
 of the CODG are recomputed and propagated down from the roots.
Example 11 provides a more intricate example, in which eight possible
 pairs of unordered parents of the same children exist: (u, w), (u, x), (v, w),
 and (v, x), and their inverse. Whichever pair is chosen, it will result in roots r and s
 being ordered at step 3b, and then, in all eight pairs being ordered at
 step 3c.
Examples 12 and 13 show that the addition of a leaf can cause some
 root-pairs to be ordered from the start: (r ↝ s) and (r ↝ t) in
 Example 12; (r ↝ s) in Example 13.

 [image:]Example 10

 [image:]Example 11

 [image:]Example 12

 [image:]Example 13

Proof sketch of termination: At each turn, at least one
 pair of the kind sought for in (3) is ordered. Indeed, it can be shown that
 the chosen pair (x, y) causes arcs to be added to ROR that will necessarily
 order the pair (x, y) itself. Thus, eventually, no pair satisfying the WHILE
 clause will remain.
Proof sketch that ROR orders all pairs of roots: The
 existence of an unordered root-pair
 implies that there is a pair satisfying the WHILE clause. Thus, when no more
 such pair exists, all the roots
 have been ordered.

Proof sketch that ssb(G, ROR) is acyclic: Any condition
 that might cause a cycle would also cause a cycle in { (r, s) | r and s are
 roots in G and r ↝ s }, a contradiction.
A rough analysis of the algorithm shows that its running time is polynomial
 (probably with degree at most 3 or 4). Obviously, it could be used to actually
 build a CA sre of any FCA CODG, and thus an oo-serialization of the CODG. This
 establishes a polynomial upper-bound on the task of verifying
 full-completion-acyclicity and of generating an oo-serialization of a FCA
 CODG. While interesting, we do not believe these upper-bounds to be tight, and
 hence consider the exact complexity of these tasks to be open
 questions.

7. Conclusion and future work
In this paper, we defined a class of graphs, child-arc-ordered directed graphs (CODGs), that includes
 multi-graphs and non-acyclic graphs, and investigated the conditions under
 which a CODG is “oo-serializable”, i.e., has a structure which
 corresponds to that of an overlap-only marked-up document. We found that the
 property of completion-acyclicity does not
 guarantee oo-serializability in general for CODGs, by showing that there exist
 completion-acyclic CODGs that are not oo-serializable. By contrast, Marcoux
 has shown that for the less general class of node-ordered-DAGs (noDAGs), completion-acyclicity does
 guarantee oo-serializability [M2008].
We then defined a condition strictly stronger than
 completion-acyclicity, full-completion-acyclicity, and showed that it does
 guarantee oo-serializability for all CODGs.
Finally, we presented polynomial-time algorithms for checking
 full-completion-acyclicity and for computing an oo-serialization of
 fully-completion-acyclic CODGs. However, we do not believe these algorithms to
 be optimal. Thus, open questions include determining the exact complexity of
 — and finding optimal algorithms for — checking
 completion-acyclicity, full-completion-acyclicity, and of actually computing
 an oo-serialization of a CODG once it is found to be serializable.
Another area of research we hope to pursue in the near future is
 investigating whether and how some forms of interrupted and virtual elements,
 as found in TexMecs, can be characterized in terms of graphs.

Appendix A. Notation and symbols
For the convenience of readers who find the notation used
 here unfamiliar, we list here the symbols and conventional
 variable names used in this paper.
	↝
	the must-precede relation on roots of a graph
	 G: r ↝ s if and only if there exist vertices x and y standing in some
	 specific configurations with respect to r and s (see Definition 6.1).
	

	⇒G
	the positive transitive closure of
	 E(G), for any graph G; sometimes known as the
	 reachability relation of G; often abbreviated
	 to ⇒ when the identity of G is understood.
	

	⇒*G
	the reflexive transitive closure of
	 E(G), for any graph G; often abbreviated
	 to ⇒* when
	 the identity of G is understood.
	

	∈
	is an element of. So x ∈
	 y means that x is an element in the
	 set y.
	

	∪
	set union. So x ∪ y
	 denotes the set of all elements which are members either
	 of set x or of set y or both.
	

	∩
	set intersection. So x ∩ y
	 denotes the set of all elements which are members of
	 both set x and set y.
	

	ap(G)
	the ancestral-precedence relation of a graph G;
	 abbreviated ap when G is understood. This is a binary
	 relation consisting of all node pairs (v, w) for which
	 (informally) v is an ancestor of w and not vice-versa.
	

	ch
	(core meaning) a unary function that maps each
	 node of a graph to a sequence of nodes of that
	 graph.
(secondary meaning) a two-argument function that
	 maps from a pair (v, n) (where v is a node and n is
	 an integer) to at most one node among the children of v.
	

	ch(v)
	for any node v in a graph G,
	 ch(v) denotes a sequence of nodes in
	 G.
Note that sequences are typically modeled as
	 sets of pairs (n, e) where n is a number and e an
	 element of the sequence. The set of pairs
	 denoted by ch(v) can thus be treated as a function
	 from non-negative integers to nodes in the graph:
	 for any node v and any suitable integer
	 n, ch(v)(n) denotes the nth child of v;
	 ch(v)(0) denotes the first child, ch(v)(1) denotes
	 the second, etc. To reduce the need for parentheses,
	 ch(v)(n) is normally written in the
	 simpler form ch(v,n).
	

	ch(v, n)
	denotes the nth child (counting from 0)
	 of node v. This is a short-hand form for the
	 expression ch(v)(n).
	

	E(G)
	the set of arcs in a graph G

	G
	the conventional variable for a graph (here
	invariably a CODG)

	gsp
	a shorthand form of gsp(G) when the identity of
	 the graph G is understood.
	

	gsp(G)
	the global sibling-precedence relation of a graph G;
	 written as sp when G is understood.
	 This is (speaking informally) a relation consisting of all
	 node pairs (v, w) which share a parent, and for which v
	 precedes w among the children of that parent. Note that
	 the same pair of children may share more than one parent,
	 occurring in one order for one parent and in the other
	 order for the other parent. So gsp(Example 2.3)
	 includes both (b, c) and (c, b).
	

	N
	the natural numbers (0, 1, 2, ...)

	n, m
	conventional variables used to represent
	 individual natural numbers

	r
	conventional variable used to denote an
	 arbitrary range.

	r1
	for a given range r,
	 r1 denotes the first
	 element of r.

	r2
	for a given range r,
	 r2 denotes the second
	 element of r.

	r, s
	conventional variables used to denote two
	 roots of a CODG.

	sea(G)
	the should-end-after relation
	 of a graph G; abbreviated sea when G is
	 understood

	seaa(G)
	the should-end-after additions
	 relation of a graph G; abbreviated seaa
	 when G is understood

	sp
	a shorthand form of sp(G) when the identity of
	 the graph G is understood.
	

	sp(G)
	the sibling-precedence relation of a graph G; this is
	 a ternary relation consisting of all node triples (v, w,
	 x) for which (informally) w precedes x among the children
	 of v; note that if w occurs more than once among the
	 children of v, then the triple (v, w, w) appears in
	 sp. If some node x occurs between the two occurrences of
	 w, then (v, w, x) and (v, x, w) are both in sp.

	sre
	single-rooted extension of some graph G. Note that
	 any multi-rooted graph G has many single-rooted extensions
	 (one for each possible ordering of the roots of G).
	

	ssb(G)
	the should-start-before
	 relation of a graph G; abbreviated ssb when
	 G is understood

	ssba(G)
	the should-start-before
	 additions relation of a graph G; abbreviated
	 ssba when G is understood

	V
	the set of nodes (or vertices) in a graph;
	 a short-hand for V(G)

	V(G)
	the set of vertices in a graph G

	V × V
	the Cartesian product of V, the set of nodes;
	 that is, the set of pairs (v, w) where v ∈ V and w
	 ∈ V

	V × V × V
	the set of triples (v, w, x) where v, w and x
	are all ∈ V.

	v, w, x, u
	variables conventionally used
	 for individual nodes in a graph (by convention, all of
	 v, w, x, u ∈ V)

References
[B1995] David Barnard, Lou Burnard, Jean-Pierre
 Gaspart, Lynne A. Price, C. M. Sperberg-McQueen, and Giovanni Battista Varile.
 “Hierarchical Encoding of Text: Technical Problems and SGML
 Solutions”, in Computers and the
 Humanities, 29/3 1995, pp. 211-231.
 http://www.springerlink.com/content/p7775247276v88h3/, http://xml.coverpages.org/barnardHier-ps.gz. doi:https://doi.org/10.1007/BF01830617
[D2004] Steven DeRose. “Markup Overlap: A
 Review and a Horse”. Paper delivered at Extreme Markup
 Languages, 2004, Montréal.
 http://conferences.idealliance.org/extreme/html/2004/DeRose01/EML2004DeRose01.html

[HS2003] Claus Huitfeldt and C. M. Sperberg-McQueen.
 TexMECS: An experimental markup meta-language for complex
 documents. University of Bergen, January 2001, rev. October 2003.
 http://mlcd.blackmesatech.com/mlcd/2003/Papers/texmecs.html
[M2008] Yves Marcoux. Graph
 characterization of overlap-only TexMECS and other overlapping markup
 formalisms. Proceedings of the Balisage
 2008 conference, 12-15 august 2008, Montréal (Canada).
 doi:https://doi.org/10.4242/BalisageVol1.Marcoux01
[M2012] Moore, Neil. Multihierarchical documents
 and fine-grained access control (2012). Theses and
 Dissertations--Computer Science. Paper 6. http://uknowledge.uky.edu/cs_etds/6
[SH2004] C. M. Sperberg-McQueen and Claus Huitfeldt.
 GODDAG: A Data Structure for Overlapping
 Hierarchies. Springer-Verlag (2004).
 Preprint at
 http://cmsmcq.com/2000/poddp2000.html

[SH1999] C. M. Sperberg-McQueen and Claus Huitfeldt:
 “Concurrent Document Hierarchies in MECS and SGML”, in
 Literary and Linguistic Computing, 14 1999,
 pp. 29-42.
 http://llc.oxfordjournals.org/cgi/content/abstract/14/1/29. doi:https://doi.org/10.1093/llc/14.1.29
[W2005] Andreas Witt. “Multiple Hierarchies: New
 Aspects of an Old Solution”, in: Stefanie Dipper, Michael Götze, and
 Manfred Stede (eds.), Heterogeneity in Focus: Creating
 and Using Linguistic Databases, vol. 2 of Interdisciplinary
 Studies on Information Structure (ISIS), Working Papers of the SFB 632.
 University of Potsdam, Germany, 2005. (Corrected reprint of an Extreme Markup
 2004 paper.)
 http://www.sfb632.uni-potsdam.de/publications/isis02_4witt.pdf

[1] The authors thank Deborah A. Lapeyre and several
	 anonymous Balisage peer reviewers for their extensive
	 help in improving the presentation of this paper.
	
[2] We focus here exclusively on graphs as the abstract
	 structures conveyed by marked up documents.
[3] A number of other equivalent encodings are of
	 course possible. The q elements can be fragmented
	 in TEI style to signal that multiple XML elements together
	 make up a single logical unit. In a Goddag structure built
	 from this example, one would expect to find one node in the
	 graph for each logical q element, rather one for
	 each q element in the XML.
	
 <div xmlns="http://www.tei-c.org/ns/1.0">
 <p>
 <verse n="Jer.2.1">Moreover the word
 of the LORD came to me, saying,</verse>
 <verse n="Jer.2.2">
 <q xml:id="Q-Jer.2.2-A" part="I">
	Go and cry in the hearing of
	Jerusalem, saying,
 <q xml:id="Q-Jer.2.2-B" part="I">
	 Thus says the LORD:
 <q xml:id="Q-Jer.2.2-C" part="I">
	 I remember you,
 The kindness of your youth,
	 The love of your betrothal,
	 When you went after Me in the wilderness,
	 In a land not sown.
	 </q>
 </q>
 </q>
 </verse>
 <verse n="Jer.2.3">
 <q part="M" prev="#Q-Jer.2.2-A">
 <q part="F" prev="#Q-Jer.2.2-B">
 <q part="F" prev="#Q-Jer.2.2-C">
	 Israel [was] holiness to the LORD,
	 The firstfruits of His increase.
	 All that devour him will offend;
	 Disaster will come upon them,
	 </q>
	 says the LORD.
	</q>
 </q>
 </verse>
 </p>
</div>

Or the verse elements can be fragmented.
	 Or TEI virtual elements can be used to represent parts of
	 the document structure that do not fit neatly into a
	 hierarchy.

[4] Readers who have not recently reviewed the definition
	 of TexMecs may need to be reminded of some basics of
	 TexMecs notation. The conventions used here are these;
	 most are adopted from [HS2003] but
	 bilocation tags are new; they are introduced in order to
	 allow the serialization of a larger class of graphs.
	 	Start-, end-, and sole-tags for an element
		 of type e take the
		 forms <e|, |e>
		 <e>.

	Elements may overlap.

	A unique identifier may be assigned to an
		 element by following its generic identifier immediately
		 with @ and an ID value. These IDs are
		 recognized and handled at the TexMecs level; they do
		 not require declaration or application-level
		 semantics.
		

	The generic identifier may be omitted from
		 start- and end-tags, in which case they mark a
		 pseduo-element: an arbitrary portion of the
		 document, typically marked this way in order to
		 assign an identifier to that segment of the text.
		 In the examples in this paper, we assume a
		 convention that wrapping a text node in such an
		 anonymous element does not create a
		 new node but merely gives an identifier for the text
		 node. (This is not stated normatively in the
		 definition of TexMecs.)
		

	
		 The notation <^e^xyz> marks a
		 virtual element, whose type is
		 e and whose children are those of the element
		 whose ID is xyz. Virtual elements thus
		 serve as additional parents to nodes already
		 present with other parents.
		

		 The analogous notation <^^xyz> is
		 used to refer to the pseudo-element whose ID is
		 xyz.
		

	
		 The notation <=xyz=> is a
		 bilocation tag, used to signal
		 that the element whose ID is xyz
		 appears as a child of the immediately open
		 elements, at the location indicated.

		 Bilocation tags are not defined in [HS2003]; they are defined here in order
		 to have a convenient notation for the graphs in this
		 paper. When a bilocation tag appears in a TexMecs
		 document, all the same parent-child arcs are created
		 in the document graph as would be created were there
		 a sole-tag at that location. But the target of the
		 parent-child arcs is not a new element represented
		 by a sole tag, but the element whose ID appears in
		 the bilocation tag.
		

	 The example given here could be represented without
	 bilocation tags, by adopting the convention that neither
	 pseudo-elements nor virtual-element references to
	 pseudo-elements create new nodes during parsing. Verse 3
	 would look like this using this convention.
	 <verse@Jer.2.3|
 <^^Jer.2.3a>
 says the LORD.
 |verse>

[5] This
	 may sound like a fragile or error-prone convention, but it
	 turns out to work well most of the time, and it makes the
	 diagrams easier to read than attaching numbers to the arcs
	 and drawing them with fewer crossings but out of order.
[6] Example 4 is oo-serializable in the TexMecs form
	 <poem| <verse| <quote~1| leaves <quote~2| fall |verse>
	 |quote~1> |quote~2> |poem>.Example 5 is not oo-serializable, in brief, because
	 its EA (ends-after) relation has a cycle among the first
	 quote element, the verse element,
	 and the text node containing the word fall.
	 Let us refer to them as q1, v, and f for short.
	 	q1 follows v among the children of the
		poem element, and thus q1 must end
		after v.
	

	v dominates f, and thus v must end after
		f.
	

	f is not dominated by q1, but it
		is dominated by a following
		sibling of q1 (namely, the second quote
		element), and thus f must end after q1.
	

	 It is the third constraint, not present in Example 4,
	 which makes the difference between the oo-serializability
	 of the two examples.
	

[7] The curious reader may, however, be interested in the
	 enumeration. We cannot give it in full, but we can sketch
	 it here.In Example 6, nodes a and e are non-terminals
	 (which means they must correspond to elements in TexMecs)
	 and nodes b, c and d are childless (which means they may
	 correspond either to empty elements or to spans of character
	 data in TexMecs, that is, to leaf nodes).
	 One way to begin the enumeration is to
	 observe that in overlap-only TexMecs the elements a and
	 e will each have one start- and one end-tag. There are
	 six possible orders for these four tags:
	 	<a| <e| |a> |e>

	<a| <e| |e> |a>

	<a| |a> <e| |e>

	<e| <a| |a> |e>

	<e| <a| |e> |a>

	<e| |e> <a| |a>

	 Note that the possible number of orderings for any n items is
	 n! (n factorial), so the total number of orderings for
	 the four tags involved here is 24 (= 4!). Of those 24, half
	 are ill-formed because in them the end-tag for a
	 precedes its end-tag; of the remaining 12, half are
	 ill-formed because the end-tag of e precedes the start-tag.
	
To each of these six patterns for the representation of
	 nodes a and e there correspond 210 possible TexMecs
	 documents with nodes b, c, and d interleaved among the
	 tags for a and e. (Node b can be situated in any of
	 five locations: before the first tag, after the first tag,
	 after the second, after the third, after the fourth. The
	 tag for node c can be placed in any of six locations
	 (before or after any of the four start- and end-tags and
	 node b); the
	 tag for node d can be placed in any of seven locations.
	 210 = 5 × 6 × 7.) The beginning of the
	 enumeration might look like this:	d c b <a| <e| |a> |e>

	c d b <a| <e| |a> |e>

	c b d <a| <e| |a> |e>

	c b <a| d <e| |a> |e>

	c b <a| <e| d |a> |e>

	c b <a| <e| |a> d |e>

	c b <a| <e| |a> |e> d

	d b c <a| <e| |a> |e>

	b d c <a| <e| |a> |e>

	b c d <a| <e| |a> |e>

	b c <a| d <e| |a> |e>

	 …

	d b <a| c <e| |a> |e>

	b d <a| c <e| |a> |e>

	b <a| d c <e| |a> |e>

	b <a| c d <e| |a> |e>

	b <a| c <e| d |a> |e>

	 …

	
To each of these 210 interleavings of b, c, and d
	into the four start- and end-tags for a and e, there
	correspond eight TexMecs documents. Each of nodes b, c,
	and d may be either a text node or an empty element, so
	there are eight (two to the third power) combinations. The
	first pattern in the preceding list corresponds to the
	following eight TexMecs documents, and each of the other 210
	 expands similarly.	d c b <a| <e| |a> |e>

	<d> c b <a| <e| |a> |e>

	d <c> b <a| <e| |a> |e>

	<d> <c> b <a| <e| |a> |e>

	d c <a| <e| |a> |e>

	<d> c <a| <e| |a> |e>

	d <c> <a| <e| |a> |e>

	<d> <c> <a| <e| |a> |e>

	
In total, then, there are 6 patterns for the start- and
	 end-tags of a and e, 210 ways to interleave b, c,
	 and d into those patterns, and 8 ways to realize each
	 interleaving, for 10,080 (6 × 210 × 8)
	 structurally possible oo-TexMecs documents for this
	 configuration of five nodes. Since each of the five nodes
	 can be either a leaf node or a non-terminal, there are 32
	 possible configurations. These vary in their number of
	 possible realizations, but we hope it is now clear why
	 enumerating the distinct documents for five-node graphs
	 seems unlikely to be a helpful approach.
	

Balisage: The Markup Conference

Modeling overlapping structures
Graphs and serializability
Yves Marcoux
Associate professor
Université de Montréal, Canada

<yves.marcoux@umontreal.ca>

Michael Sperberg-McQueen
Senior consultant
Black Mesa
 Technologies

<cmsmcq@blackmesatech.com>

Claus Huitfeldt
Associate professor
University of Bergen, Norway

<claus.huitfeldt@uib.no>

Balisage: The Markup Conference

content/images/Marcoux01-009.png

content/images/Marcoux01-010.png

content/images/Marcoux01-011.png

content/images/Marcoux01-005.png

content/images/Marcoux01-016.png

content/images/Marcoux01-006.png

content/images/Marcoux01-007.png

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

content/images/Marcoux01-008.png

content/images/Marcoux01-001.png
e\
O—0

content/images/Marcoux01-012.png

content/images/Marcoux01-002.png

content/images/Marcoux01-013.png

content/images/Marcoux01-003.png

content/images/Marcoux01-014.png

content/images/Marcoux01-004.png

content/images/Marcoux01-015.png

