[image: Balisage logo]Balisage: The Markup Conference

An extensible API for documents with multiple annotation layers
Nils Diewald
Universität Bielefeld

Institut für Deutsche Sprache (IDS) Mannheim

<nils.diewald@uni-bielefeld.de>

Maik Stührenberg
Universität Bielefeld

<maik.stuehrenberg@uni-bielefeld.de>

Balisage: The Markup Conference 2013
August 6 - 9, 2013

Copyright © 2013 by the authors. Used with permission.

How to cite this paper
Diewald, Nils, and Maik Stührenberg. "An extensible API for documents with multiple annotation layers." Presented at: Balisage: The Markup Conference 2013, Montréal, Canada, August 6 - 9, 2013. In Proceedings of Balisage: The Markup Conference 2013.
 Balisage Series on Markup Technologies vol. 10 (2013). https://doi.org/10.4242/BalisageVol10.Diewald01.

Abstract
Both XML namespaces and standoff annotation are promising approaches to tackle possibly
 overlapping multiple annotation layers in XML instances. The creation and processing of
 standoff instances can be cumbersome – especially when the underlying textual primary data
 is allowed to be modified after the annotation has been added. In this paper we present a
 powerful API that is capable of dealing with these tasks by providing an extension mechanism
 that allows for the easy creation of modules corresponding to a certain namespace (and
 therefore markup language). We use XStandoff as a working example since it is a standoff
 format that highly depends on XML namespaces for different annotation layers.

Balisage: The Markup Conference

 An extensible API for documents with multiple annotation layers

 Table of Contents

 	Title Page

 	Multiple annotated documents

 	Creating an extensible API

 	XStandoff as an example application

 	Creating and processing XStandoff instances using XML::Loy

 	Conclusion and future work

 	Acknowledgements

 	About the Authors

 An extensible API for documents with multiple annotation layers

Multiple annotated documents
Markup languages are often defined for structuring the information of a specific text
 type, such as web pages (HTML), technical articles or books (DocBook), or a set of information
 items, such as vector graphics (SVG) or protocol information (SOAP). Therefore, their
 structure is (in limits) determined by a document grammar that allows for specific elements
 and attributes. In addition, the different XML-based document grammar formalisms allow to a
 certain degree the combination of elements (and attributes) from different markup languages –
 usually by means of XML namespaces (Bray et al., 2009). In practice, one host
 language can include islands of foreign markup (guest languages). There are different examples
 for the combination of host and guest markup languages (apart from the already mentioned
 SOAP). A certain XHTML driver (Ishikawa, 2002) allows for the combination of
 XHTML (as a host language), MathML and SVG (as guest languages), and the Atom Syndication
 Format (Nottingham and Sayre, 2005) can be used in conjunction with a wide range of
 extensions (e.g. for Threading, see Snell, 2006, or Activity Streams, see
 Atkins et al., 2011) while it is also meant to be embedded in parts in the RSS
 format (Winer, 2009).
Although XML namespaces support the combination of elements derived from different
 markup languages, they do not change XML's formal model that prohibits overlapping markup.
 However, standoff markup (instead of inline annotation) may be used to circumvent this
 problem. The meta markup language XStandoff (Stührenberg and Jettka, 2009) embeds
 (slightly transformed) islands of guest languages (with respective XML namespaces) in
 combination with a standardized standoff approach as key feature for the storage of multiple
 (and possibly overlapping) hierarchies.
Typical problems when dealing with multiple and/or standoff annotations are related to the
 production and processing of instances. Although usually each markup language involved is
 defined by a document grammar on its own, it can often be cumbersome to validate an instance
 combining elements from a large variety of document grammars (although XStandoff is capable of
 validating these instances, adapted XML schema files have to be present for each guest
 language). This behaviour can be controlled by means of the document grammar formalism. For
 example, XML Schema allows different values of its processContents attribute
 which may occur on the any element. The value lax provided in Figure 1 (taken from XStandoff's layer element) instructs an XML processor to validate the element content on
 a can-do basis: It will validate elements and attributes for which it can obtain schema
 information, but it will not signal errors for those it cannot obtain any schema
 information, Section 5.5, Any Element, Any Attribute.
Figure 1: Controlling validation of foreign namespace elements
<xs:element name="layer">
 <xs:complexType>
 <xs:sequence>
 <!-- [...] -->
 <xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded" processContents="lax"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

In addition, the namespace attribute may be used to control the allowed
 namespaces. While XSD 1.0 allows the values ##any, ##other or a list
 of namespaces only (including the preserved values ##targetNamespace and
 ##local, see Thompson et al., 2004), RELAX NG supports the exclusion
 of namespaces (by using the except pattern in combination with
 nsName). XSD 1.1 (Gao et al., 2012) introduced the
 notNamespace and notQName attributes.
The production of multiple annotated documents is typically the result of the combination
 of formerly stand-alone documents (or their parts), such as the inclusion of externally
 created SVG graphics in an XHTML host document, or the outcome of a mostly automated process
 (see Stührenberg and Jettka, 2009 for a discussion on the production of XStandoff
 instances). What is still lacking is an API (Application Programming Interface)
 that is flexible enough to support the production
 and processing of multiple annotated instances, even if annotations are referring to the same
 primary data by means of standoff annotation. We will demonstrate such an API in the reminder
 of this article.

Creating an extensible API
XML::Loy (Diewald, 2011) is a Perl library, that
 provides a simple programming interface for the creation of XML documents with multiple
 namespaces. It is based on Mojo::DOM, an HTML/XML DOM parser that is part
 of the Mojolicious framework (Riedel, 2008).
 Mojo::DOM povides CSS selector based methods for DOM traversal (van Kesteren and Hunt, 2013), similar to Javascript's querySelector() and
 querySelectorAll() methods.
The basic methods for the manipulation of the XML Document Object Model provided by
 XML::Loy are add() and set(). By applying
 these methods new nodes can be introduced as children to every node in the document. While
 add() always appends additional nodes to the document, set() only
 appends nodes in case no child of the given type exists. Both methods are invoked by a chosen
 node in the document tree (acting as the parent node of the newly introduced node). They
 accept the element name as a string parameter, followed by an optional hash reference
 containing attributes and a string containing optional textual content of the element. A final
 string can be used to put a comment in front of the element.
Figure 2: Using XML::Loy to create a document
use XML::Loy;

my $doc = XML::Loy->new('document');
$doc->set(title => 'My Title');
$doc->set(title => 'My New Title');
$doc->add(paragraph => { id => 'p-1' } => 'First Paragraph');
$doc->add(paragraph => { id => 'p-2' } => 'Second Paragraph');

print $doc->to_pretty_xml;

In the example presented in Figure 2 a new XML::Loy
 document instance is created with a root element document. Applying the
 set() method, a new title element is introduced as a child of the
 root element. The second call of set() overwrites the content of the
 title element. By using the add() method we insert multiple
 paragraph elements without overwriting existing ones. These elements are
 defined with both an id attribute and textual content.
 By applying the to_pretty_xml() method, the result can be printed as XML.
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<document>
 <title>My New Title</title>
 <paragraph id="p-1">First Paragraph</paragraph>
 <paragraph id="p-2">Second Paragraph</paragraph>
</document>
The strength of this simple approach for document manipulation is the ability to pass
 these methods to new extension modules that can represent APIs for specific XML namespaces, as
 both host and guest languages. The example given in Figure 3 is
 meant to illustrate these capabilities by creating a simple XML::Loy extension
 for morpheme annotations.
Figure 3: Creating XML::Loy extensions
package XML::Loy::Example::Morphemes;
use XML::Loy with => (
 namespace => 'http://www.xstandoff.net/morphemes',
 prefix => 'morph'
);

Add morphemes root
sub morphemes {
 my $self = shift;
 return $self->add(morphemes => @_);
};

Add morphemes
sub morpheme {
 my $self = shift;
 return unless $self->type =~ /^(?:morph:)?morphemes$/;
 return $self->add(morpheme => @_);
};

The class inherits all XML creation methods from XML::Loy and thus
 all XML traversal methods from Mojo::DOM. When defining the base class,
 an optional namespace http://www.xstandoff.net/morphemes is bound to the
 morph prefix, which means, all invocations of set() and
 add() from this class will be bound to the morph namespace. The
 newly created morphemes() method appends a morphemes element bound
 to the given namespace as a child of the invoking node.
To implement simple grammar rules to the API the methods can check the invoking context, for
 example by constraining the introduction of morpheme elements to
 morphemes parent nodes only (see the regular expression check
 /^(?:morph:)?morphemes$/).
This newly created API for the http://www.xstandoff.net/morphemes namespace
 can now be used to create new document instances (see Figure 4
 and the output shown in Figure 5).
Figure 4: Creating a document by using XML::Loy::Example::Morphemes
use XML::Loy::Example::Morphemes;

my $doc = XML::Loy::Example::Morphemes->new('document');

my $m = $doc->morphemes;

$m->morpheme('The');
$m->morpheme('sun');
$m->morpheme('shine');
$m->morpheme('s');
$m->morpheme('bright');
$m->morpheme('er');

print $doc->to_pretty_xml;

Figure 5: The output instance created with
 XML::Loy::Example::Morphemes
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<document xmlns="http://www.xstandoff.net/morphemes">
 <morphemes>
 <morpheme>The</morpheme>
 <morpheme>sun</morpheme>
 <morpheme>shine</morpheme>
 <morpheme>s</morpheme>
 <morpheme>bright</morpheme>
 <morpheme>er</morpheme>
 </morphemes>
</document>

By using the generic methods add() and set() provided by
 XML::Loy, the class can easily be used for extending an existing
 XML::Loy based class (i.e. as a guest language inside another host
 language). In the example shown in Figure 6 a simplified HTML
 instance is read and instantiated. Elements from the
 http://www.xstandoff.net/morphemes namespace are appended using the API
 described above (the output is shown in Figure 7).
Figure 6: Using extensions with XML::Loy
use XML::Loy;

my $doc = XML::Loy->new(<<'XML');
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<html>
 <head><title>The sun</title></head>
 <body />
</html>
XML

$doc->extension(-Example::Morphemes);
my $p = $doc->at('body')->add('p' => 'The sun shines');
my $m = $p->morphemes;
$m->morpheme('bright');
$m->morpheme('er');

print $doc->to_pretty_xml;

Figure 7: The output instance created with XML::Loy and the
 XML::Loy::Example::Morphemes extension
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<html xmlns:morph="http://www.xstandoff.net/morphemes">
 <head>
 <title>The sun</title>
 </head>
 <body>
 <p>The sun shines
 <morph:morphemes>
 <morph:morpheme>bright</morph:morpheme>
 <morph:morpheme>er</morph:morpheme>
 </morph:morphemes>
 </p>
 </body>
</html>

By extending the XML::Loy base object with the newly created class using
 the extension()[1] method, all method calls from the extension class are available for namespace aware
 traversal and manipulation. In general, using such an extensible API provides at least some
 functionality usually made available by document grammars (the nesting of elements for
 example) and adds methods to create and manipulate the respective class of instances.

XStandoff as an example application
XStandoff's predecessor SGF (Sekimo Generic Format) was developed in 2008 (see Stührenberg and Goecke, 2008) as a meta format for storing and analyzing multiple annotated
 instances as part of a linguistic corpus. In 2009 the format was generalized and enhanced.
 Since then, XStandoff combines standoff notation with the formal model of General
 Ordered-Descendant Directed Acyclic Graphs (GODDAG, introduced in Sperberg-McQueen and Huitfeldt, 2004; see Sperberg-McQueen and Huitfeldt, 2008 for a more
 recent discussion). The format as such is capable of representing multiple hierarchies and
 specifically challenging structures such as overlaps, discontinuous elements and virtual
 elements. The basic structure of an XStandoff instance consists of the root element
 corpusData underneath which the child elements meta (optional),
 resources (optional), primaryData (optional in the proposed
 release 2.0, see Stührenberg, 2013), segmentation and
 annotation are subsumed. Figure 8 shows an example
 XStandoff document.[2]
Figure 8: XStandoff instance
<?xml version="1.0" encoding="UTF-8"?>
<xsf:corpusData xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.xstandoff.net/2009/xstandoff/1.1 xsf2_1.1.xsd"
 xmlns="http://www.xstandoff.net/2009/xstandoff/1.1"
 xmlns:xsf="http://www.xstandoff.net/2009/xstandoff/1.1" xml:id="c1" xsfVersion="2.0">
 <xsf:primaryData start="0" end="24" xml:lang="en" xml:space="preserve" unit="chars">
 <textualContent>The sun shines brighter.</textualContent>
 </xsf:primaryData>
 <xsf:segmentation>
 <xsf:segment xml:id="seg1" type="char" start="0" end="24"/>
 <xsf:segment xml:id="seg2" type="char" start="0" end="3"/>
 <xsf:segment xml:id="seg3" type="char" start="4" end="7"/>
 <xsf:segment xml:id="seg4" type="char" start="8" end="14"/>
 <xsf:segment xml:id="seg5" type="char" start="8" end="13"/>
 <xsf:segment xml:id="seg6" type="char" start="13" end="14"/>
 <xsf:segment xml:id="seg7" type="char" start="15" end="21"/>
 <xsf:segment xml:id="seg8" type="char" start="15" end="20"/>
 <xsf:segment xml:id="seg9" type="char" start="20" end="23"/>
 <xsf:segment xml:id="seg10" type="char" start="21" end="23"/>
 </xsf:segmentation>
 <xsf:annotation>
 <xsf:level xml:id="l_morph">
 <xsf:layer xmlns:morph="http://www.xstandoff.net/morphemes"
 xsi:schemaLocation="http://www.xstandoff.net/morphemes morphemes.xsd">
 <morph:morphemes xsf:segment="seg1">
 <morph:morpheme xsf:segment="seg2"/>
 <morph:morpheme xsf:segment="seg3"/>
 <morph:morpheme xsf:segment="seg5"/>
 <morph:morpheme xsf:segment="seg6"/>
 <morph:morpheme xsf:segment="seg7"/>
 <morph:morpheme xsf:segment="seg10"/>
 </morph:morphemes>
 </xsf:layer>
 </xsf:level>
 <xsf:level xml:id="l_syll">
 <xsf:layer xmlns:syll="http://www.xstandoff.net/syllables"
 xsi:schemaLocation="http://www.xstandoff.net/syllables syllables.xsd">
 <syll:syllables xsf:segment="seg1">
 <syll:syllable xsf:segment="seg2"/>
 <syll:syllable xsf:segment="seg3"/>
 <syll:syllable xsf:segment="seg4"/>
 <syll:syllable xsf:segment="seg8"/>
 <syll:syllable xsf:segment="seg9"/>
 </syll:syllables>
 </xsf:layer>
 </xsf:level>
 </xsf:annotation>
</xsf:corpusData>

In this example, the sentence The sun shines brighter. is annotated with
 two linguistic levels (and respective layers): morphemes and syllables. We cannot combine both
 annotation layers in an inline annotation, since there is an overlap between the two syllables
 brigh and ter and the two morphemes bright and
 er (see Figure 9 for a visualization of the
 overlap).
Figure 9: Graphical representation of overlapping hierarchies
[image:]

Each annotation is encapsulated underneath a layer element (which in turn is
 a child element of a level element, since it is possible to have more than one
 serialization, that is, layer, for a conceptual level).[3] The xsf:segment attribute is used to link the annotation with the
 respective part of the primary data. Similar to other standoff approaches, XStandoff uses
 character positions for defining segments over textual primary data. Changes of the input text
 result in an out-of-sync situation between primary data and annotation. Processing XStandoff
 instances requires dealing with at least n+1 XML namespaces: one for
 XStandoff itself and one for each of the n annotation layers.
Up to now, these instances are created by transforming inline annotations via a set of
 XSLT 2.0 stylesheets (see Stührenberg and Jettka, 2009 for a detailed discussion). We
 will outline an example API for XStandoff based on XML::Loy that makes it
 easy to deal with the dynamic creation of multi-layered annotations in the following section[4].

Creating and processing XStandoff instances using XML::Loy
As presented in the previous section, XStandoff associates annotations to primary data by
 defining segment spans[5] to which the annotations are linked to via XML ID/IDREF integrity features. There
 are multiple ways to cope with standoff annotation: Compared to the XStandoff-Toolkit
 discussed in Stührenberg and Jettka, 2009, our API will provide an additional
 way to access and manipulate both annotations and primary data directly.
Figure 10: Creating XStandoff instances with XML::Loy::XStandoff
use XML::Loy::XStandoff;

Create new corpusData
my $cd = XML::Loy::XStandoff->new('corpusData');

Set textual content embedded
$cd->textual_content('The sun shines brighter.');

Create segmentation
my $seg = $cd->segmentation;

Create segments manually
my $seg1 = $seg->segment(0,24);
my $seg2 = $seg->segment(0, 3);
my $seg3 = $seg->segment(4, 7);
my $seg4 = $seg->segment(8, 13);
my $seg5 = $seg->segment(13, 14);
my $seg6 = $seg->segment(15, 21);
my $seg7 = $seg->segment(21, 23);

print $cd->to_pretty_xml;

In Figure 10 a new corpusData element is created.
 Next, a textualContent element is added
 (below an automatically introduced primaryData element with a unique xml:id).
 Seven manually defined
 segment elements are appended for selecting spans over the textual primary data
 aligned to the words and the sentence as a whole. Figure 11 shows
 the output.
Figure 11: The XStandoff instance created with XML::Loy::XStandoff
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<corpusData xmlns="http://www.xstandoff.net/2009/xstandoff/1.1"
 xmlns:xsf="http://www.xstandoff.net/2009/xstandoff/1.1">
 <primaryData start="0" end="24" xml:id="pd-2531FE9A-...">
 <textualContent>The sun shines brighter.</textualContent>
 </primaryData>
 <segmentation>
 <segment start="0" end="24" type="char" xml:id="seg-2532C88E-..." />
 <segment start="0" end="3" type="char" xml:id="seg-25330ACE-..." />
 <segment start="4" end="7" type="char" xml:id="seg-25334E9E-..." />
 <segment start="8" end="13" type="char" xml:id="seg-2533949E-..." />
 <segment start="13" end="14" type="char" xml:id="seg-2533DFE4-..." />
 <segment start="15" end="21" type="char" xml:id="seg-25343052-..." />
 <segment start="21" end="23" type="char" xml:id="seg-25348368-..." />
 </segmentation>
</corpusData>

The document creation is simple, as most elements such as corpusData,
 textualContent and segment have corresponding API methods for
 finding, appending, updating and removing elements of the document. Segments are appended by
 defining their scope.
The manipulation of the primary data is possible by applying the
 segment_content() method, that associates primary data with segment spans (see
 Figure 12).
Figure 12: Using the XML::Loy::XStandoff API
Get segment content
say $seg->segment($seg3)->segment_content;
'sun'

Replace segment content
$seg->segment($seg3)->segment_content('moon');

Interactively replace segment content
$seg->segment($seg7)->segment_content(sub {
 my $t = shift;
 # Remove a sequence of 'er' from the string
 $t =~ s/er//;
 return $t;
});

Show updated textual content
say $cd->textual_content;
The moon shines bright.

Segment positions are updated automatically
for ($seg->segment($seg6)) {
 say $_->attrs('start'); # 16
 say $_->attrs('end'); # 22
};

The textual content virtually delimited by a segment can be retrieved, replaced and
 manipulated, while all other segments stay intact and update their according start and end
 position values by calculating the new offsets in case they change.
 This addresses one of the key problems
 with standoff annotation: Usually, if one alters the primary data without updating the
 corresponding segments, association of annotations and corresponding primary data will break.
 Due to the dynamic access of primary data information provided by this API,
 work with standoff annotations can
 be nearly as flexible as with inline annotations, without the limitations these annotation
 formats have, for example to represent overlapping (see Figure 9).
The morpheme extension created in section “Creating an extensible API” can be simply adopted
 to represent an annotation layer with overlapping segment spans with an annotation of
 syllables (see Figure 13).
Figure 13: Extending XML::Loy::XStandoff
use XML::Loy::XStandoff;

Create new corpusData
my $cd = XML::Loy::XStandoff->new('corpusData');

Load extensions for Morphemes and Syllables
$cd->extension(-Example::Morphemes, -Example::Syllables);

Set textual content embedded
$cd->textual_content('The sun shines brighter.');

Start segmentation
my $seg = $cd->segmentation;
my $all = $seg->segment(0, 24);

Create new annotation layer for morphemes
my $m = $cd->layer->morphemes;

Create and associate all necessary segments for all morphemes
$m->seg($all);
foreach ([0,3], [4,7], [8,13], [13,14], [15,21], [21,23]) {
 $m->morpheme->seg($seg->segment($_->[0], $_->[1]));
};

Create new annotation layer for syllables
my $s = $cd->layer->syllables;

Create and associate all necessary segments for all syllables
independently, so overlaps are supported
$s->seg($all);
foreach ([0,3], [4,7], [8,14], [15,20], [20,23]) {
 $s->syllable->seg($seg->segment($_->[0], $_->[1]));
};

Change the primary data of the second morpheme 'sun' to 'moon'
$cd->find('morpheme')->[1]->segment_content('moon');

The resulting document is similar to listing Figure 8 but with a modified
 primary data of The moon shines brighter. and updated segment spans.
Another problem with some standoff formats is the association with decoupled primary data
 content. In XStandoff the primary data can be included in the XSF instance (as seen in the
 previous examples) or stored in a separate file and referenced via the
 primaryDataRef element (in case of larger textual primary data, multimedia-based or
 multiple primary data files). If this file is on a local storage, the API will take care
 of updating the external textual content as well. Trying to modify files that are not
 modifiable (e.g. accessible online only) will result in a
 warning.
Since metadata in XStandoff can be either included inline or referenced in the same way, the handling of
 metadata in our API can be treated alike, with a slight difference
 if the metadata itself is a well-formed XML document. The example given in Figure 15 assumes a simple metadata document in RDF with a Dublin Core
 namespace at the location files/meta.xml in the local file system (shown in Figure 14).
Figure 14: RDF metadata instance
<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:dc="http://purl.org/dc/elements/1.1/">
 <rdf:Description>
 <dc:creator>Nils Diewald</dc:creator>
 <dc:creator>Maik Stührenberg</dc:creator>
 <dc:title>An extensible API for documents with multiple annotation layers</dc:title>
 <dc:language>EN</dc:language>
 </rdf:Description>
</rdf:RDF>

Figure 15: Accessing external metadata
Define the metadata as an external file
$cd->meta(uri => 'files/meta.xml');

Retrieve the metadata, resulting in a new XML::Loy object
my $meta = $cd->meta(as => [-Loy, -DublinCore]);

The extension is available in the newly defined object
print $meta->at('Description')->dc('title');
'An extensible API for documents with multiple annotation layers'

The API enables the reference to the external document and supports the access by defining
 a new XML::Loy object with an extension for dealing with Dublin Core data.[6] As a result, the Dublin Core annotated title element can be accessed
 directly, although the data is not embedded in the document.

Conclusion and future work
We have demonstrated the XML::Loy API that can be used as a framework
 for development of extensible modules for given namespaces (and therefore markup
 languages). Modules created as extensions can then be used in a simple but yet powerful way to
 create and process multiple annotated instances, even with standoff markup and referenced
 documents for primary and metadata information.
The current implementation of XML::Loy is written in pure Perl, with
 the focus on demonstrating the flexibility and extensibility of our approach, rather than
 creating a performance optimized system. Since the whole API (including the extension modules
 and examples described in this paper) is available under a free license at http://github.com/Akron/XML-Loy-XStandoff further possible steps could include
 performance optimizations and the creation of an extension repository for popular standardized
 markup languages (such as OLAC, DocBook and TEI).

Acknowledgements
We would like to thank the anonymous reviewers of this paper for their helpful comments
 and ideas.

References
[Atkins et al., 2011] Martin Atkins, Will Norris,
 Chris Messina, Monica Wilkinson, and Rob Dolin (2011). Atom Activity Streams 1.0. http://activitystrea.ms/specs/atom/1.0/
[Bray et al., 2009] Tim Bray, Dave Hollander, Andrew
 Layman, Richard Tobin, and Henry S. Thompson (2009). Namespaces in XML 1.0 (Third Edition).
 W3C Recommendation, World Wide Web Consortium (W3C). http://www.w3.org/TR/2009/REC-xml-names-20091208/
[Diewald, 2011] Nils Diewald (2011). XML::Loy –
 Extensible XML Reader and Writer. http://search.cpan.org/dist/XML-Loy/
[Fallside and Walsmley, 2004] David C. Fallside
 and Priscilla Walmsley (2004). XML Schema Part 0: Primer Second Edition. W3C Recommendation,
 World Wide Web Consortium (W3C). http://www.w3.org/TR/2004/REC-xmlschema-0-20041028/
[Gao et al., 2012] Shudi (Sandy) Gao, C. M.
 Sperberg-McQueen, and Henry S. Thompson (2012). W3C XML Schema Definition Language (XSD) 1.1
 Part 1: Structures. W3C Recommendation, World Wide Web Consortium (W3C). http://www.w3.org/TR/2012/REC-xmlschema11-1-20120405/
[Goecke et al., 2010] Daniela Goecke, Harald Lüngen,
 Dieter Metzing, Maik Stührenberg, and Andreas Witt (2010). Different
 views on markup. Distinguishing Levels and Layers. In: Witt, A. and Metzing, D.
 (eds.), Linguistic Modeling of Information and Markup Languages. Dordrecht:
 Springer. doi:https://doi.org/10.1007/978-90-481-3331-4_1.
[Ishikawa, 2002] Masayasu Ishikawa (2002). An
 XHTML+MathML+SVG Profile. W3C Working Draft, World Wide Web Consortium (W3C). http://www.w3.org/TR/XHTMLplusMathMLplusSVG/xhtml-math-svg.html
[van Kesteren and Hunt, 2013] Anne Van Kesteren,
 and Lachlan Hunt (2013). Selectors API Level 1. W3C Recommendation, World Wide Web Consortium
 (W3C). http://www.w3.org/TR/2013/REC-selectors-api-20130221/
[Nottingham and Sayre, 2005] Mark Nottingham, and
 Robert Sayre (2005). The Atom Syndication Format. The Internet Society. http://tools.ietf.org/html/rfc4287
[Riedel, 2008] Sebastian Riedel (2008). Mojolicious.
 Real-time web framework. http://search.cpan.org/dist/Mojolicious/
[Snell, 2006] James M. Snell (2006). Atom Threading
 Extensions. The Internet Society. http://www.ietf.org/rfc/rfc4685.txt
[Sperberg-McQueen and Huitfeldt, 2004] C.
 M. Sperberg-McQueen and Claus Huitfeldt (2004). GODDAG: A Data
 Structure for Overlapping Hierarchies. In: King, P. and Munson, E. V. (eds.),
 Proceedings of the 5th International Workshop on the Principles of Digital Document Processing
 (PODDP 2000), volume 2023 of Lecture Notes in Computer Science, Springer
[Sperberg-McQueen and Huitfeldt, 2008] C.
 M. Sperberg-McQueen and Claus Huitfeldt (2008). GODDAG. Presented at the Goddag workshop,
 Amsterdam, 1-5 December 2008
[Stührenberg and Goecke, 2008] Maik
 Stührenberg and Daniela Goecke (2008). SGF – An integrated model for multiple
 annotations and its application in a linguistic domain. Presented at Balisage: The Markup
 Conference 2008, Montréal, Canada, August 12 - 15, 2008. In: Proceedings of Balisage: The
 Markup Conference 2008. Balisage Series on Markup Technologies, vol. 1. doi:https://doi.org/10.4242/BalisageVol1.Stuehrenberg01
[Stührenberg and Jettka, 2009] Maik
 Stührenberg and Daniel Jettka (2009). A toolkit for multi-dimensional markup: The development
 of SGF to XStandoff. In Proceedings of Balisage: The Markup Conference 2009. Balisage Series
 on Markup Technologies, vol. 3. doi:https://doi.org/10.4242/BalisageVol3.Stuhrenberg01.
[Stührenberg, 2013] Maik Stührenberg. A What,
 when, where? Spatial and temporal annotations with XStandoff. In Proceedings of Balisage: The
 Markup Conference 2013. doi:https://doi.org/10.4242/BalisageVol10.Stuhrenberg01.
[Thompson et al., 2004] Henry S. Thompson, David
 Beech, Murray Maloney, and Noah Mendelsohn (2004). XML Schema Part 1: Structures Second
 Edition. W3C Recommendation, World Wide Web Consortium (W3C). http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/
[Winer, 2009] Dave Winer (2009). RSS 2.0
 Specification. http://www.rssboard.org/rss-specification

[1] The leading minus symbol is a shortcut for the XML::Loy module namespace,
 meaning, that the qualified name is
 XML::Loy::Example::Morphemes. More than one extension can be passed
 at once.
[2] More examples can be found at http://www.xstandoff.net/examples.
[3] Think of different POS taggers for example.
[4] The software presented in this section is freely available under the GPL or the
 Artistic License at http://github.com/Akron/XML-Loy-XStandoff.
[5] In the following example we will limit our view on segments defined by character
 positions. See Stührenberg, 2013 for examples for other segmentation
 methods supported by XStandoff.
[6] This extension is not described in this article.

Balisage: The Markup Conference

An extensible API for documents with multiple annotation layers
Nils Diewald
Universität Bielefeld

Institut für Deutsche Sprache (IDS) Mannheim

<nils.diewald@uni-bielefeld.de>
Nils Diewald received a B.A. in German philology and Text Technology and an M.A. in
 Linguistics (with a focus on Computational Linguistics) from Bielefeld University.
 Currently he is employed as a research assistant in the KorAP project at the IDS Mannheim
	 (Institute for the German Language) and is a Ph.D. candidate in Computer Science.
	 His Doctorate Studies focus on communication in social networks,
	 originating from his work as a research assistant in the
 Linguistic Networks project of the BMBF (Federal Ministry of Education and Research).
 Before that, he was a research and graduate assistant in the Sekimo project, part of the
 DFG Research Group on Text-Technological Modelling of Information.

Maik Stührenberg
Universität Bielefeld

<maik.stuehrenberg@uni-bielefeld.de>
Maik Stührenberg received his Ph.D. in Computational Linguistics and Text Technology
 from Bielefeld University in 2012. After graduating in 2001 he worked in different
 text-technological projects at Gießen University, Bielefeld University and the Institut
 für Deutsche Sprache (IDS, Institute for the German Language) in Mannheim. He is currently
 employed as research assistant at Bielefeld University.
His main research interests include specifications for structuring multiple annotated
 data, schema languages, and query processing.

Balisage: The Markup Conference

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

content/images/Diewald01-001.png
T he sumn s hines borightelr.
0010110203[04/05106 | 07108109 10/111 | 12|13]14]15| 1617|1819 | 20 21| 22|23|24

