[image: Balisage logo]Balisage: The Markup Conference

Freedom to Constrain
where does attribute constraint come from, mommy?
Syd Bauman
Senior Programmer/Analyst
Brown University Women Writers Project

<Syd_Bauman@Brown.edu>

Balisage: The Markup Conference 2008
August 12 - 15, 2008

Copyright © 2008 Syd Bauman. Some rights reserved.

How to cite this paper
Bauman, Syd. "Freedom to Constrain." Presented at: Balisage: The Markup Conference 2008, Montréal, Canada, August 12 - 15, 2008. In Proceedings of Balisage: The Markup Conference 2008.
 Balisage Series on Markup Technologies vol. 1 (2008). https://doi.org/10.4242/BalisageVol1.Bauman01.

Abstract
Where should attribute constraints live? In an external schema? In the document’s own
 metadata? In a separate file? Several possibilities are examined, raising lots of questions
 and offering a few answers.

Balisage: The Markup Conference

 Freedom to Constrain

 where does attribute constraint come from, mommy?

 Table of Contents

 	Title Page

 	Use Case

 	Background
 	Open vs Closed vs Extensible Schemas

 	Literate Encoding

 	In the Closed Schema (RELAX NG file)
 	how

 	advantages

 	disadvantages

 	In the Open Schema (ISO Schematron)

 	In the Metaschema (ODD file)
 	how

 	advantages

 	disadvantages

 	In the Metadata (<teiHeader>)
 	how — pointing

 	advantages

 	disadvantages

 	how — co-reference

 	In the Metadata (separate file)

 	Appendix A. <codeGrp> to Schematron

 	About the Author

 Freedom to Constrain
where does attribute constraint come from, mommy?

It is clear that constraining document structure is a very
 important part of document production. We test whether or not our
 XML documents are properly constrained through the process of
 validation. The … purpose of validation is to subject a
 document … to a test, to determine whether it conforms to a given
 set of external criteria. … Our need to test is simply explained and
 understood (so much so that it rarely needs to be explicated): if
 there exists a point in a process where it is less expensive to
 discover and correct problems than it is to save the work of testing
 and fix at later points, it is profitable to introduce a
 test.[1]

Michael Sperberg-McQueen may have summed this importance up
 best when he advised constrain your data early and
 often, which he often did.[2]
 (It helped that he lived in Chicago at the time.)
So it is obvious that constraints need to be expressed in a
 formal language of some sort. Many such general-purpose formal
 languages are available, including closed schema languages like DTDs
 and RELAX NG, and open schema languages like Schematron and CLiX.
 Furthermore at least one literate encoding language exists in which
 such constraints along with documentation about them can be
 expressed. This language is called ODD (for “one document does it
 all”) — constraints expressed in other languages (DTDs, RELAX NG, or
 XML Schema; in theory others as well) can be derived from a set of
 constraints expressed in ODD.[3][4][5][6]
 Furthermore there are systems of constraint based on special-purpose
 languages, rather than general-purpose languages. The feature system
 declaration created by the Text Encoding Initiative (TEI) and now
 being incorporated into ISO 24610-2 is an example — a set of XML
 elements (the feature system declaration) that can be used to
 constrain the expression of another set of XML elements (the feature
 structure itself).[7]
So the choice of how to express a
 particular constraint is not always obvious. But a related question
 is perhaps just as important: where should
 these constraints be expressed? What are the consequences of
 expressing them in different places?
This paper will attempt to shed light on these general
 questions by taking an in-depth look at the possible locations for
 the expression of one particular kind of constraint, and the
 consequences of those different locations. The constraint discussed
 will be that of limiting the value an attribute may take to one of
 an enumerated list of possible values. For simplicity the presumed
 setting for this constraint will be in a TEI document, but the
 principles should be equally applicable to any other encoding
 language that separates the document from its metadata, including
 DocBook or XHTML. The locations considered will be
 	the “normal” way, in the formal closed schema (RELAX NG
 will be used as the example)

	in a formal open schema (ISO Schematron will be used as the example)

	in the metadata element (i.e.
 <teiHeader>)

	in a separate metadata file

	in the metaschema file (i.e. the ODD file)

	no formal constraint

 Each of the latter methods will be compared to and contrasted with
 the first.
Use Case
There are lots of reasons to wish to constrain markup
 constructs, in particular attribute values. One case worth
 considering is the markup project which has tens or hundreds of
 occurrences of a particular attribute in each of tens or hundreds
 of files, where the list of possible values for the attribute is
 different for each file.
Imagine, e.g., an epigraphy project transcribing thousands
 of inscriptions on various objects. Imagine further that the
 inscriptions are divided among 27 separate files, organized by
 some criteria other than the kind of object that bears the
 inscription (e.g. date the object was discovered, current museum in
 which it is held, whatever). That which the text bearing object is
 made of is recorded in a TEI manuscript description on the
 material= attribute of the
 <supportDesc> element. Possible values might
 include "bronze", "marble",
 "limestone", "plaster",
 "wood", etc.
Such a typical humanities computing project is likely to have:
 	a subject matter expert

	an XML expert

	encoders — getting the extant text into
 XML-encoded digital form may be accomplished in a variety of
 ways:
 	typed from source

	post-OCR editing

	via an external vendor

	proofreaders, managers, web designers, research assistants, etc.

Background
Open vs Closed vs Extensible Schemas
Formal schema languages can generally be categorized into
 one of two types: open or closed. A closed schema language like
 RELAX NG specifies a complete document grammar. Only those
 documents that meet all of the constraints of the grammar are
 considered valid; all others are rejected as invalid.
An open schema language, like Schematron, specifies
 particular rules. Documents that violate the specified rules are
 rejected as invalid; all others are accepted as valid.
One can think of closed schema languages as a white list
 spam filter, and closed schema languages as a black list spam
 filter. Using a white list (closed schema language) only e-mail
 from the addresses specified get through, all others are
 rejected as spam. Using a black list (open schema language) any
 e-mail that is on the list of problematic addresses is rejected
 as spam, all others are allowed through.
Of course the situation is not as simple as that. One can
 specify some open constructs in many closed schema languages,
 and one can write sufficiently tight rules in most open
 languages that they behave like a closed language.
For example, validation against the following complete
 RELAX NG grammar will permit any XML document as long as it has
 a <foo> element with a bar=
 attribute as the first child of the root element.
 start = element * { any_attribute*, foo, any_element* }
any_attribute = attribute * { text }
any_element = element * { any* }
any = (any_attribute | any_element | text)
any_sans_bar = (attribute * - (bar) { text } | any_element | text)
foo = element foo { attribute bar { text }, any_sans_bar* }

Conversely, validation against the following Schematron
 rule will permit only those documents that have one
 <platypus> element with a bill=
 attribute that has the value "duck" as the only
 child of the root <enigma> element.
 <pattern>
 <rule context="/*">
 <assert test="name(.)='enigma'">Root element must be "enigma"</assert>
 <report test="@*">Root "enigma" element can not have attributes</report>
 <assert test="count(child::*)=1">"enigma" can only have one child
 ("platypus")</assert>
 <assert test="count(child::platypus)=1">"enigma" can only have one
 "platypus" child</assert>
 <report test="child::text()[not(normalize-space(.)='')]">"enigma" is
 not allowed to have text, just "platypus"</report>
 </rule>
 <rule context="/enigma/platypus">
 <assert test="@*[name(.)='bill']">"platypus" must have a bill=
 attribute</assert>
 <report test="@*[not(name(.)='bill')]">"platypus" must not have any
 attributes other than bill=</report>
 <report test="child::*">"platypus" must be empty (i.e., can not have
 child elements)</report>
 <assert test="string-length(normalize-space(.)) = 0">"platypus"
 must be empty (i.e., can not contain text)</assert>
 </rule>
 <rule context="/enigma/platypus/@bill">
 <assert test="normalize-space(.)='duck'">The value of bill= of
 "platypus" must be 'duck'</assert>
 </rule>
 </pattern>

These reverse uses of open and closed schema languages may
 be thought of as analogous to black-list or white-list spam
 filters that permit wildcards.
Neither of the above examples are particularly good ways
 of performing the desired validation, but they serve as
 proofs-of-concept that when we refer to a schema language as
 “open” or “closed”, we may be referring to its default, and not
 its only, behavior.
There is one further twist worth mentioning. Some modular
 XML document systems, including DocBook and TEI, permit a user
 of the system to generate (closed) schemas that contain not only
 the element and attribute declarations native to the system, but
 also additional declarations for constructs added by the
 user.

Literate Encoding
Literate programming is a style of programming intended to
 make computer documentation better by, among other things,
 placing the documentation and source code in the same computer
 file. The TEI has applied this concept to the schemas used to
 validate documents to help ascertain whether or not they conform
 to the TEI Guidelines. The source code from which the schemas
 are generated and the prose documentation that make up the bulk
 of the TEI Guidelines are stored in one computer
 document.
In order to facilitate this, and in order to help make it
 easy to extract formal schemas in any of a variety of popular
 languages, the formal constraints are (for the most part)
 expressed in the TEI language, rather than any particular schema
 language.
Thus the TEI Guidelines proper (some 32 chapters of prose
 documentation), formal schemas expressed in RELAX NG, the XML
 DTD language, or the W3C Schema language, and reference
 documentation for those schemas, are all extracted from the same
 single document. We say that this “one document does” it all,
 and thus it is referred to as an ODD document.

In the Closed Schema (RELAX NG file)
how
Many are probably quite familiar with the mechanism for
 constraining an enumerated attribute in a formal closed schema
 language. E.g., in RELAX NG (compact syntax), the possible
 values of the type= attribute (in this case, of the
 <name> element) could be constrained with a
 construct like
 attribute type { "person" | "place" | "ship" | "sword" }

 A variety of readily available off-the-shelf software will test
 whether or not a document is valid with respect to a RELAX NG
 schema.

advantages
This method is extremely common for a reason: it makes a
 lot of sense. In many, many cases XML document structure is
 already governed by an external closed schema. These external
 schemas, at least when written in one of the three major
 languages (DTD, RELAX NG, W3C XML Schema) are generally easy to
 read and process. They describe the constraint in a standard
 formal language that has wide software support, including open
 source validators.
These languages typically provide the capability to
 specify a variety of structural and content constraints on XML
 documents. In particular, they provide the capability needed
 here: to constrain the set of possible values of the
 type= attribute to one of a list of possibilities.
 [8]

disadvantages
In many cases, the person or persons who write and
 maintain the external schema is not the same as the person or
 persons who create the XML instances (or the programs that write
 the XML instances) that conform to it. In these cases, those who
 create the instances often do not have either the necessary
 knowledge (e.g., knowing the schema language) or capability
 (e.g., having read-write access to the schema) to make changes
 to it.
Furthermore in many cases (whether the instance creator is
 the same as the schema maintainer or not), a single external
 schema governs the validity of dozens or even tens of thousands
 of XML instances. But the desired constraints on a particular
 attribute may be different in different instances. Typically in
 these cases the schema limits the attribute to one of a set
 that is the union of all possible values in all governed
 documents. Here adding the additional constraint of only
 these values in this document
 requires making a separate schema that is like the original in
 all respects except for the declaration of the
 type= attribute of <name>.

In the Open Schema (ISO Schematron)
Many are probably quite familiar with the mechanism for
 constraining an enumerated attribute in a formal open schema
 language. E.g., in Schematron (DSDL part 4), the possible values
 of the type= attribute of the TEI
 <name> element could be constrained with a
 construct like
 <pattern>
 <rule context="tei:name/@type">
 <assert test="normalize-space(.)='person'
 or normalize-space(.)='place'
 or normalize-space(.)='ship'
 or normalize-space(.)='sword'">
 Names can only be of people, places, ships, or swords
 </assert>
 </rule>
</pattern>

While the use of open vs closed schemas have a lot of
 advantages and disadvantages to the schema designer, with respect
 to this particular question, the advantages and disadvantages are
 primarily the same: while the constraint can be expressed in a
 formal, widely supported language, and can be tested with readily
 available tools, it is still in a separate file that may support
 many documents, that may not be accessible, and that uses a
 language that may be foreign to those who would like to change it.
There is one additional disadvantage of Schematron in
 particular with respect to RELAX NG: it is harder to annotate the
 Schematron schema than the RELAX NG schema. RELAX NG deliberately
 permits elements from other namespaces to be mixed in with the
 RELAX NG specifications, and defines where annotations relating to
 particular structures should go. Furthermore, because the four
 tokens against which we are trying to validate are expressed as
 four separate elements (in the XML syntax), there is a place to
 annotate each separately (the <a:documentation>
 element follows the <rng:value> element to which it
 refers). Schematron also has a built-in documentation feature (a
 <p> element), but because all four tokens are
 tucked into a single XPath expression, it is a bit harder to
 discuss them individually. This is partially confounded because
 <p> is not permitted in <rule>,
 <assert>, or <report>, making it
 difficult to put the documentation close to the code. This is
 partially alleviated because elements from foreign namespaces are
 permitted in those spaces, and inside <p>. Thus
 something like the following construct could be used to provide
 documentation of such a constraint.
<pattern>
 <p class="annotation">The various values for <tei:att>type</tei:att> of
 <tei:gi>name</tei:gi> came about as follows: <tei:list type="gloss">
 <tei:label>
 <tei:val>person</tei:val>
 </tei:label>
 <tei:item>Added 2007-04-17 when we removed <tei:gi>persName</tei:gi></tei:item>
 <tei:label>
 <tei:val>place</tei:val>
 </tei:label>
 <tei:item>Added 2007-04-17 when we removed <tei:gi>placeName</tei:gi></tei:item>
 <tei:label>
 <tei:val>ship</tei:val>
 </tei:label>
 <tei:item>Added 2007-04-17 in order to accommodate the various ship names</tei:item>
 <tei:label>
 <tei:val>ship</tei:val>
 </tei:label>
 <tei:item>Added 2007-10-02 when we found a reference to "Excalibur" that the
 professor needed to annotate</tei:item>
 </tei:list>
 </p>
 <rule context="tei:name/@type">
 <tei:note><tei:att>type</tei:att> of <tei:gi>rs</tei:gi> is matched elsewhere.</tei:note>
 <assert test=".='person' or .='place' or .='ship' or .='sword'"> Names may only be
 of people, places, ships, or swords </assert>
 </rule>
</pattern>

In the Metaschema (ODD file)
how
The same constraint might be expressed, at a slightly
 higher level of abstraction and combined with some
 documentation, using the ODD literate encoding language:

<attDef ident="type">
 <valList type="closed">
 <valItem ident="person">
 <desc>The name refers to a person</desc>
 </valItem>
 <valItem ident="place">
 <desc>The name refers to a political or man-made region, for example
 a city, country, hamlet, town, or neighborhood. For geographical
 places such as rivers or valleys, use <gi>geogName</gi></desc>
 </valItem>
 <valItem ident="ship">
 <desc>The name refers to a ship, whether sea-worthy, interplanetary,
 or interstellar</desc>
 </valItem>
 <valItem ident="sword">
 <desc>The name refers to a sword</desc>
 </valItem>
 </valList>
</attDef>

 There exists software that will tangle ODD
 specifications like the above into formal declarations in one of
 several schema languages, including RELAX NG. Then any of the
 same variety of readily available off-the-shelf software could
 be used to test validity.
Furthermore, there exists software that will
 weave the same specification above into easily
 readable hyperlinked documentation.

advantages
The advantages of literate programming are well
 understood, and include more easily readable and understandable
 source code, and that documentation (because it is right next to
 the source code) is more likely to match the program and be
 updated when the source code changes.[9] These advantages apply here as well.
 In addition, at least for those familiar with TEI, there is the
 advantage that the language used to describe the constraints is
 a TEI language, so schema designers are likely to be familiar
 with at least the documentation paradigm for the specialized
 schema-description elements, if not the elements themselves; in
 addition, they are likely familiar with the generic TEI elements
 (like <desc>, above) that are used in addition
 to the specialized elements.

disadvantages
The disadvantages of the external schema (whether open or
 closed) are present here as well. Furthermore, an extra
 processing step is required to generate (i.e.
 tangle) a schema that itself can be used to
 validate instances using off-the-shelf software. In addition, at
 least for those who are not intimately familiar with TEI, there
 is the disadvantage that the language used to describe the
 constraints is primarily a TEI language, so schema designers may
 not be familiar with the specialized schema-description
 elements.

In the Metadata (<teiHeader>)
how — pointing
It should be quite feasible to develop a mechanism for
 expressing the list of possible values of an attribute in the
 same document in a rather abstract way. For
 example:<codeGrp elementTypes="name rs" attributes="type">
 <codeDef xml:id="person">The name or string refers to a
 person</codeDef>
 <codeDef xml:id="place">The name or string refers to a
 political or man-made region, for example a city, country,
 hamlet, town, or neighborhood. For geographical places such as
 rivers or valleys, use <gi>geogName</gi></codeDef>
 <codeDef xml:id="ship">The name or string refers to a ship,
 whether sea-worthy, interplanetary, or
 interstellar</codeDef>
 <codeDef xml:id="sword">The name or string refers to a
 sword, <foreign xml:lang="fr">main-gauche</foreign>, switchblade,
 or other edged weapon</codeDef>
</codeGrp>

 Given this encoding in the <teiHeader>, the
 <name> element could have type=
 values of "#person", "#place", etc.
 Software could be developed to validate that the value of
 type= of <name> is a URI that
 points to an element whose parent <codeGrp> has
 "name" in its elementTypes= list and
 "type" in its attributes= list. (I
 believe that Schematron code could probably be used for this
 test, but have not yet demonstrated this.) Note that the check
 does not specify the element type of the child of
 <codeGrp>. This gives the flexibility to have
 special-purpose <codeDef>-like elements that
 might provide structured information about the value. E.g., one
 can well imagine the TEI’s <handNote> element being
 used in this way.

advantages
This mechanism has significant potential advantages,
 particularly in cases where one schema is used for many files
 which may have different attribute constraint requirements. For
 most users it is much easier to change something in the same
 file they are working on, rather then needing to make changes to
 an external schema, particularly an external schema that may be
 in a language the user does not know or in a file to which the
 user does not have write access, and particularly changes that
 might inadvertently invalidate other existing instances. Thus
 the encoder, as opposed to the schema-designer, can add, remove,
 or change a value quite easily.
Another advantage is that the information about to what
 values the attribute is constrained, and what those values mean,
 is an integral part of the document. This means that this
 information will survive in the situation where a document
 instance is sent along without its schema or documentation.
 Furthermore the list of values in different files at a given
 project could be slightly different.
Moreover, the particular system shown here has the
 advantage that it uses a mechanism most users are already
 familiar with: xml:id= and relative URIs (i.e.,
 bare name fragment identifiers). It is worth noting, though,
 that there is no requirement that the URIs be bare name
 fragment identifiers, which permits this system to quickly and
 easily be changed to that which is discussed in section “In the Metadata (separate file)”.

disadvantages
This system has obvious inefficiencies when multiple,
 perhaps thousands, of document instances share the same
 constraints — the same information is repeated in each
 file.
Another significant disadvantage of this method is that we
 are using a non-standard language for constraint and
 documentation. The question, then, is whether or not this system
 is demonstrably significantly better than what can be obtained
 using standard languages.[10]
Lastly the fact that this system uses the URI pointing
 mechanism produces a disadvantages, one of which is
 severely problematic:
 	of minor annoyance is that the user needs to
 encode a hash-mark (#, U+0023) at
 the beginning of each value;

	the fact that values are restricted to XML
 Names could be a problem in some situations;

	but far more problematic, because
 xml:id= needs to be unique within the document,
 any given possible attribute value can only occur on one
 attribute (although that attribute could be on multiple
 elements) — furthermore, no other element elsewhere in
 the document can use the same string as one of these attribute
 values as its identifier.

how — co-reference
Those last disadvantages that are the result of using
 xml:id= and URIs could be circumvented by matching
 the attribute values, rather than using a true pointer (e.g.
 ID/IDREF or URI). In the <teiHeader> the enumeration
 of the possible attribute values would look almost the same, but
 would use a different attribute for storing the actual
 value.
<codeGrp elementTypes="name rs" attributes="type">
 <codeDef attrVal="person">The name or string refers to a
 person</codeDef>
 <codeDef attrVal="place">The name or string refers to a
 political or man-made region, for example a city, country,
 hamlet, town, or neighborhood. For geographical places such as
 rivers or valleys, use <gi>geogName</gi></codeDef>
 <codeDef attrVal="ship">The name or string refers to a ship,
 whether sea-worthy, interplanetary, or
 interstellar</codeDef>
 <codeDef attrVal="sword">The name or string refers to a
 sword, <foreign xml:lang="fr">main-gauche</foreign>, switchblade,
 or other edged weapon</codeDef>
</codeGrp>
Software could be developed to validate that the value of
 type= of <name> is a string that
 matches the attrVal= attribute of an element whose
 parent <codeGrp> has "name" in its
 elementTypes= list and "type" in its
 attribute= list. (I believe that Schematron code
 could probably be used for this test, but have not yet
 demonstrated this. Certainly XSLT 1.0 can transform this into
 simple Schematron; this I have demonstrated, see Appendix A.) Note that the check does not
 specify the element type of the child of
 <codeGrp>. This gives the flexibility to have
 special-purpose <codeDef>-like elements that
 might provide structured information about the value. E.g., one
 can well imagine the TEI’s <handNote> element
 being used in this way.
This system avoids the disadvantages of using
 xml:id=, and yet has several advantages over
 external schema files. E.g., encoders can quickly and easily add
 values to closed lists, in a manner that does not run the the
 risk that they might break the rest of the schema. I find the
 case of the encoder who wishes to quickly and easily express
 stricter constraints on her attribute values in a given file
 than those that come with the generic external schema very
 compelling.

In the Metadata (separate file)
In the method described in section “how — pointing”
 the values of the type= attribute of
 <name> are URIs. Because of this, it would be
 feasible to store the <codeGrp> element with
 xml:id= attributes in a project-wide
 “attribute_definitions.xml” file. While this has the advantage
 of flexibility and reusability, it presents the sizable
 disadvantage that the attribute values would now depend on
 details of system features external to the document. E.g., the
 ability to validate <name
 type="../attribute_definitions.xml#sword"> breaks if the
 current file is moved to a sub-directory.
Furthermore, if the <codeGrp> is stored in a
 separate file, the maintenance issues are almost the same as those
 for a separate closed schema (e.g., a RELAX NG grammar), open
 schema (e.g., a Schematron schema), or metaschema (e.g., a TEI
 ODD): those who have reason to change the constraints expressed
 may not have the write-permissions necessary to do so, and if they
 do may be at risk for invalidating files other than the one being
 worked on.
So in some cases (in particular, the scenario sketched out
 in section “Use Case”) it makes lots of sense to leave the
 formal constraints for some aspects of a document in the metadata
 section of that document itself, e.g. in the
 <teiHeader>. But having convinced ourselves there
 is a need to be able to express constraints in a different
 place than is usual, why require a separate
 formal construct to express the constraint? Why not include RELAX
 NG, Schematron, or ODD markup constructs in the
 <teiHeader> directly?[11]
 This is worthy of consideration, but is outside the scope of the
 current paper.

Appendix A. <codeGrp> to Schematron
The following XSLT 1.0 stylesheet is a proof-of-concept
 demonstration for transforming the <codeGrp>
 elements discussed above into Schematron that could be used to
 validate that an XML instance used only the mentioned possible
 values of the attribute specified.
<?xml version="1.0" encoding="UTF-8"?>
<!-- Tranform my mythical <codeGrp> elements into a Schematron schema -->
<!-- Copyleft 2008 Syd Bauman -->
<!-- Last updated: 2008-08-31 -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:sch="http://purl.oclc.org/dsdl/schematron">

 <xsl:template match="/">
 <!-- only mess with <codeGrp> elements; if there are none, we do nothing -->
 <!-- Note that we presume each <codeGrp> has both elementTypes= and -->
 <!-- attriubtes= specified and that their values are lists of one or more -->
 <!-- XML Names. No error-checking for this here, schema validation should -->
 <!-- have already flagged any that don't have both required attributes or -->
 <!-- have inappropriate values. -->
 <xsl:if test="//codeGrp">
 <!-- if there is one (or more) we write out a Schematron schema -->
 <sch:schema>
 <sch:ns uri="http://www.tei-c.org/ns/1.0" prefix="tei"/>
 <!-- and process each <codeGrp> into it -->
 <xsl:apply-templates select="//codeGrp"/>
 </sch:schema>
 </xsl:if>
 </xsl:template>

 <!-- Each <codeGrp> becomes a Schematron <pattern> -->
 <xsl:template match="codeGrp">
 <sch:pattern>
 <!-- append a blank to the GI list for easier parsing later -->
 <xsl:variable name="elementTypes" select="concat(normalize-space(@elementTypes),' ')"/>
 <!-- append a blank to the attribute name list for easier parsing later -->
 <xsl:variable name="attributes" select="concat(normalize-space(@attributes),' ')"/>
 <!-- Each GI/attribute pair becomes a Schematron <rule> -->
 <!-- A little more detail: each paired combination of -->
 <!-- 1. a GI listed on my elementTypes= attribute, and -->
 <!-- 2. an attribute name listed on my attributes= attribte -->
 <!-- becomes a <rule>. We do this by processing each GI in -->
 <!-- a recursive template, which in turn calls another recursive -->
 <!-- template for the list of attributes. -->
 <xsl:call-template name="elementTypes">
 <xsl:with-param name="gis" select="$elementTypes"/>
 <xsl:with-param name="attrs" select="$attributes"/>
 </xsl:call-template>
 </sch:pattern>
 </xsl:template>

 <!-- Each GI listed on the elementTypes= attribute gets processed separately -->
 <xsl:template name="elementTypes">
 <xsl:param name="gis"/>
 <xsl:param name="attrs"/>
 <!-- Taking advantage of that ending blank, parse off the 1st GI -->
 <xsl:variable name="this_gi" select="substring-before($gis,' ')"/>
 <xsl:variable name="rest" select="substring-after($gis,' ')"/>
 <!-- call attributes template to do the work for this particular GI -->
 <xsl:call-template name="attributes">
 <xsl:with-param name="gi" select="$this_gi"/>
 <xsl:with-param name="attrs" select="$attrs"/>
 </xsl:call-template>
 <!-- and do the same thing (via recursion) for the rest of the GIs, if any -->
 <xsl:if test="string-length($rest) > 1">
 <xsl:call-template name="elementTypes">
 <xsl:with-param name="gis" select="$rest"/>
 <xsl:with-param name="attrs" select="$attrs"/>
 </xsl:call-template>
 </xsl:if>
 </xsl:template>

 <!-- Each attibute name on the attributes= attribute gets processed in combination -->
 <!-- with the current GI -->
 <xsl:template name="attributes">
 <xsl:param name="gi"/>
 <xsl:param name="attrs"/>
 <!-- Taking advantage of that ending blank, parse off the 1st attribute -->
 <xsl:variable name="this_attr" select="substring-before($attrs,' ')"/>
 <xsl:variable name="rest" select="substring-after($attrs,' ')"/>
 <!-- make a rule out of it -->
 <xsl:element name="sch:rule">
 <xsl:attribute name="context">
 <!-- There must be a better way to do this ... -->
 <xsl:text>tei:</xsl:text>
 <xsl:value-of select="$gi"/>
 <xsl:text>/@</xsl:text>
 <xsl:value-of select="$this_attr"/>
 </xsl:attribute>
 <xsl:variable name="numVals" select="count(child::*/@attrVal)"/>
 <!-- if I have no children with attrVal= specified, then don't -->
 <!-- generate any assertions (luckily an emtpy <rule> is valid -->
 <!-- in Schematron). -->
 <xsl:if test="$numVals > 0">
 <xsl:element name="sch:assert">
 <!-- Probably would be better to generate this test (i.e., the expression -->
 <!-- that is the value of this output test= attribute) only once per attrVal=, -->
 <!-- rather once for each attrVal= for each GI/attr combination. -->
 <xsl:attribute name="test">
 <xsl:for-each select="child::*/@attrVal">
 <xsl:text>.='</xsl:text>
 <xsl:value-of select="."/>
 <xsl:text>'</xsl:text>
 <xsl:if test="$numVals > 1 and position() != last()">
 <xsl:text> or </xsl:text>
 </xsl:if>
 </xsl:for-each>
 </xsl:attribute>
 </xsl:element>
 </xsl:if>
 </xsl:element>
 <!-- and do the same thing (via recursion) for the rest of the attributes, if any -->
 <xsl:if test="string-length($rest) > 1">
 <xsl:call-template name="attributes">
 <xsl:with-param name="gi" select="$gi"/>
 <xsl:with-param name="attrs" select="$rest"/>
 </xsl:call-template>
 </xsl:if>
 </xsl:template>

</xsl:stylesheet>

[1] Piez, Wendell, “Beyond the ‘descriptive
 vs. procedural’ distinction”, presented at Extreme Markup Languages
 2001, Montréal, Canada. http://www.idealliance.org/papers/extreme/proceedings/html/2001/Piez01/EML2001Piez01.html.

[2] Sperberg-McQueen,
 C. Michael. Oral conversation, and multiple oral presentations
 throughout the 1990s. See, e.g., http://www.w3.org/People/cmsmcq/2001/darmstadt.html.
[3] Burnard, Lou and Syd Bauman, eds. “4.3.2 Floating Texts.”
 TEI P5: Guidelines for Electronic Text Encoding and
 Interchange. Version 1.1.0. 2008-07-04. TEI Consortium.
 http://www.tei-c.org/release/doc/tei-p5-doc/html/DS.html#DSFLT
 2008-08-30
[4] Burnard, Lou and Syd Bauman, eds. “23.4 Implementation of an ODD System.”
 TEI P5: Guidelines for Electronic Text Encoding and
 Interchange. Version 1.1.0. 2008-07-04. TEI Consortium.
 http://www.tei-c.org/release/doc/tei-p5-doc/en/html/USE.html#IM
 2008-08-30
[5] Sperberg-McQueen, C. Michael and Lou Burnard. “The Design of
 the TEI Encoding Scheme.” Computers and the
 Humanities 1995. 29 (1) p. 17–39.
[6] Burnard, Lou, Sebastian Rahtz. “RelaxNG
 with Son of ODD”, presented at Extreme Markup Languages 2004,
 Montréal, Canada. http://www.mulberrytech.com/Extreme/Proceedings/html/2004/Burnard01/EML2004Burnard01.pdf.

[7] Burnard, Lou and Syd Bauman, eds. “18 Feature Structures”
 TEI P5: Guidelines for Electronic Text Encoding and
 Interchange. Version 1.1.0. 2008-07-04. TEI Consortium.
 http://www.tei-c.org/release/doc/tei-p5-doc/en/html/FS.html
 2008-08-30
[8] DTDs impose greater restrictions on what the
 members of that list can be than the others: each possible value
 must be an XML Name.
[9] Knuth,
 Donald. Literate Programming, ISBN
 0-9370-7380-6.
[10] What some call
 Syd’s rule, and I have begun to call my
 wheel re-invention prevention convention:
 unless your method is significantly and demonstrably
 superior to the standard, you should be using the
 standard..
[11] Indeed, James
 Cummings and I have suggested this on more than one occasion. See,
 e.g., http://lists.village.virginia.edu/pipermail/tei-council/2005/005627.html.

Balisage: The Markup Conference

Freedom to Constrain
where does attribute constraint come from, mommy?
Syd Bauman
Senior Programmer/Analyst
Brown University Women Writers Project

<Syd_Bauman@Brown.edu>
Syd Bauman is the technical person at the Brown University Women Writers Project,
 where he has worked since 1990, designing and maintaining a significantly extended
 TEI-conformant schema for encoding early printed books. He has served as the North
 American Editor of the Text Encoding Initiative Guidelines, has an AB from Brown
 University in political science, and has worked as an Emergency Medical Technician since
 1983.

Balisage: The Markup Conference

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

