[image: Balisage logo]Balisage: The Markup Conference

XDML - an extensible markup language and processor for XDM
Hans-Jürgen Rennau
Senior programmer
bits - Büro für Informations-Technologie und Software GmbH

<hrennau@yahoo.de>

David Lee
Senior Principal Software Engineer
Epocrates, Inc.

<dlee@epocrates.com >

Balisage: The Markup Conference 2011
August 2 - 5, 2011

Copyright © 2011 by the authors. Used with permission.

How to cite this paper
Rennau, Hans-Jürgen , and David Lee. "XDML - an extensible markup language and processor for XDM." Presented at: Balisage: The Markup Conference 2011, Montréal, Canada, August 2 - 5, 2011. In Proceedings of Balisage: The Markup Conference 2011.
 Balisage Series on Markup Technologies vol. 7 (2011). https://doi.org/10.4242/BalisageVol7.Rennau01.

Abstract

 XDML is a set of rules how XDM values can be built which are more
 useful entities as compared to ordinary XDM values. The key idea is to insert
 into the XDM values control information which guides the interpretation and
 processing of the data. In particular, it structures the XDM value into
 named parts and associates these parts with metadata. The control
 information is evaluated by an XDML processor, which reports and processes
 the data accordingly. The processing of a part is organized as the execution
 of operations which the control data bind to the part, but whose actual
 invocation depends on API calls of the XDML user. The bindings are
 represented by request messages which encode the actual input to operations
 selected from an extensible library of available "XDML operations".
 The operation bindings of a part can be regarded as a specific interface
 dynamically attached to the data of the part. The net result
 of this approach is to enable the creation of self-describing XDM values: they encode
 the way how they are presented to applications, as well as how they
 should or might be processed. This means that the
 XDM producer - e.g. XQuery programs - can emit "rich" data whose downstream
 processing is significantly simplified.

Balisage: The Markup Conference

 XDML - an extensible markup language and processor for XDM

 Table of Contents

 	Title Page

 	Introduction

 	Why ask for XDM (if we have XML)?

 	XDM structure
 	Partitioning an XDM value

 	Imposing tree structure

 	Concept: Information units

 	XDM metadata
 	Why and how add metadata?

 	A model of metadata

 	XDML - the concept
 	Goals

 	Structure model

 	Metadata model

 	Processing model

 	Encoding principles

 	XDML - concrete proposal
 	XDML operations
 	Data model of input and output

 	Request messages

 	Special parameter values

 	Library of standard operations

 	Extensibility

 	Methods

 	Execution context
 	Execution context "finalize"

 	Execution context "execute"

 	Execution context "enable"

 	Execution context "translate"

 	Method definitions

 	XDML user perspective
 	Obtaining and extending the XDML processor

 	Obtaining an XDML value

 	Parsing an XDML value

 	Processing an XDML value

 	Example

 	Generalization: XDML as an information model
 	Encoding XDML with map items

 	Encoding XDM as XML

 	Discussion

 	About the Authors

 XDML - an extensible markup language and processor for XDM

Introduction

 XDM [W3C XDM] is the data model of the major XML processing languages – XPath, XQuery
 and XSLT. The model is marked by a bold simplicity: (a) every value is a sequence of items,
 (b) an item is either an XML node or an atomic value, (c) there are seven kinds of XML
 nodes and (d) a few dozens atomic types. This means that the size and complexity of an
 XDM value is virtually unlimited, and at the same time that any value can be decomposed
 into a linear sequence of building blocks, the items. "XDM item" is an abstraction enabling
 us to regard a single byte and a huge XML document as just two instances of the same building block.

 One can look at the XDM from three different perspectives. The first one regards XDM as a
 component of those processing languages, concerning only writers of XPath expressions,
 XQuery scripts or XSLT stylesheets. We suspect that the majority of software developers
 and architects would subscribe to this view.

 The second perspective takes into account that input and output of those languages is
 also XDM and accepts the XDM as a player in the game of process integration. This
 perspective pays attention to the issue of translating information back and forth
 between XDM values and other data models, for example the data models of general
 purpose programming languages. It should also take an interest in the
 serialization of XDM values.

 A third perspective makes a step from looking at the XDM as either a local affair
 of specialized languages or a challenge for data mapping. This new perspective regards
 the XDM as the foundation for building a new kind of resource, offering some particular
 advantages in comparison to other resource types – e.g. XML documents, relational tables
 or CSV files. At the same time it gives a boost to XQuery, as XQuery
 is the XDM producer par excellence. Increased importance of XDM means increased importance
 of XQuery.

 Ironically, the key step toward a new appreciation of the XDM is awareness of its
 fundamental limitation: there is no structure – only a flat sequence of items; there
 is no meta information – only items and nothing else. An XDM value has something in
 common with a string – no limitation of size and complexity, but unless a creative
 step is taken there is no general way how to impose and detect a structure (above the level
 of its building blocks, that is).
 Concerning strings, the creative step was the invention of markup: divide the sequence
 of atoms (characters) into sections of primary information and those of meta information,
 the latter also known as markup. One might consider doing something equivalent with XDM
 values, where the atoms are XDM items, rather than characters. We want to explore the
 potential of such an approach. Based on prior experimental work, we propose
 a simple markup language and an infrastructure evaluating it.
 A prototypic reference implementation is a work in
 progress, and our main intent is to open a discussion.

Why ask for XDM (if we have XML)?

 Let us assume a consumer’s perspective. Scenario: some processing
 yields a result. This might be an XML document, a sequence of XML documents,
 or an XDM value. The last alternative is clearly the most general one, as
 any sequence of XML documents is an XDM value. But do we really need this
 alternative, if we consider the expressiveness of XML?

 From a theoretical point of view, the answer is "no": whatever you can encode as an XDM value you
 can translate 1:1 into an equivalent representation consisting of a single
 XML document. For example, the following rules would suffice: (a)
 the XDM items are represented by children of the document element; (b)
 a dedicated type attribute on these children encodes the item type.
 Clearly - XDM values cannot express more than a
 single XML document, if some simple conventions are accepted.
 We turn to the practical side and consider the
 usage of the results.
 Can XDM under certain circumstances provide more convenient access to the
 units we need, or can it deliver units which are a closer fit to
 what is actually needed?

 Atomic values

 A striking difference between XML and XDM is that the latter supports
 atomic values. This is a concrete advantage: if the desired result
 is one or several atomic values, then XDM can explicitly deliver
 them as such, whereas in the case of an XML result they must be
 extracted. Extraction requires knowledge about the result document
 structure and involves non-trivial instruments like
 an XPath or DOM API. A further drawback of the XML variant is
 computational overhead. Conclusion: in cases where the result
 consists wholly of atomic values, XDM is probably the more
 suitable format.

 Collection-like data

 The second difference between XML documents and XDM values is that documents are
 logical trees within which everything is
 related to everything; whereas an XDM
 value is a collection of independent entities.
 What if the result is just that,
 conceptually, a collection? Then the main concern is fast and convenient access
 to the individual parts, as well as the possibility to process them – e.g.
 update them – in safe isolation. Typical examples for collection-like results are:
 	a heterogeneous result, the parts of which are used in different ways

	a large result, only selected parts of which are used

 So the need for differential or selective processing calls for a collection-like
 result. Arrays and maps come to mind, supporting index or name based access to
 self-contained units. As we have seen, it is easy to mimic
 collections with XML documents. This amounts to an "XML-as-a-container" approach.
 Under many circumstances, this may be a perfect solution. But there are issues
 that may become important:
 	the access to parts is XPath-based, rather than name- or index-based

	the whole result tree must be constructed in memory (unless streaming processing is used)

	local modification of the result means updating a large document

 XPath-based access is inconvenient, compared to name- or index-based access. It may
 also be less efficient. The need to construct the whole result tree is a real drawback
 if such a construction is not required for other reasons
 anyway. This must not be the case. If the result is available in serialized form,
 then it makes a big difference if the whole result must be turned into an
 in-memory tree, or if small, independent parts can be located and selectively
 expanded. And the required parsing may be extremely fast if the parser is
 able to locate the desired parts without parsing the details of the preceding parts.

 Is XDM a good alternative? Not or not yet. The lack of structure and metadata turn
 XDM into an awkward format: it resembles a Java array of type Object[].
 And there
 is not yet a serialization format available, let alone a parser to read such a
 format. If XDM is to excel as a collection-like format, these problems – no
 structure, no metadata, no serialization – would have to be solved.

 Updatable result

 In pipelined processing, it is a common requirement to receive the result of a
 preceding step, modify it locally and pass it on to the next step. If the result
 is a collection of self-contained parts, such local updating is easier in several
 aspects, compared to the updating of a monolithic document. XDM looks promising
 for such purposes, but the difficulty of selective access – no structure, no
 metadata – reduces the attractiveness.

 Continuous result

 Some resources grow continuously by appending more data. Log data are the classical
 example. Such data, as any other data, may be desired to be XML, so as to enable
 XML processing. But continuous resources must not be an XML document, as it is impossible to
 append data to a document, they must be inserted, which is much more difficult.
 In this case, XDM (a lossless serialization provided) is an obvious solution,
 as you can append items to an XDM value without difficulty.

 Result as an XDM provider

 XDM is the input format for XPath, XQuery and XSLT. In pipelined processing, one
 step might produce a result which provides XDM input for another step – either
 the value as a whole is used, or one or more subsequences of it. In this scenario,
 an XDM result is convenient and natural. Dependent on the type of the required
 input XDM , an XDM result may be a better alternative than an XML result.

 We draw a conclusion:
 XML documents should not be the only option for encoding the result of XML
 processing. No native representation of atomic values, the tight coupling implied
 by overall tree structure and the inability for plain appending must not be ignored.
 XDM is an interesting alternative, as it is a superset of XML and
 addresses those issues. But XDM is, as we said, an awkward format due to lack
 of structure and metadata. Thus we came to explore the possibility of
 augmenting XDM: add to it control information
 which imparts structure and enriches the data with metadata. The goal is to
 combine XDM’s built-in advantages – support for atomic values, collection-like
 nature, being appendable and being a natural XDM provider – with structure and
 metadata enabling convenient and guided access to the contents, as well as
 simplified processing.

XDM structure
Partitioning an XDM value

 Consider the situation that an XDM value should convey two code lists, each one
 represented by a sequence of string items. XDM offers no way to tell where one
 list ends and the other begins. Similar example: the XDM value is a sequence of
 XML documents which represent the log data gathered during one hour - how to
 identify the subsequence corresponding to one day of operation?
 A quick and simple solution is to insert into the XDM
 value additional items which delimit subsequences. These items can be regarded
 as control items, to be distinguished from the
 original data items. The subsequences are parts of the XDM value which have been
 turned into new units of information. In order to give names to these parts,
 we add a "name" attribute to the respective control item. Example:

<xm:part xmlns:xm=”http://www.xdml.org/ns” name=”alpha-codes”/>,
a001,
a005,
a012,

<xm:part xmlns:xm=”http://www.xdml.org/ns” name=”beta-codes”/>,
b002,
b003

 And if the uniqueness of part names is not guaranteed, an optional "partID"
 attribute may accompany the mandatory "name" attribute.

Imposing tree structure

 The shown use of control items defines parts of an XDM value in an intuitive way:
 the contents of a part is simply all items following the part definition and
 preceding the next part definition, or all following items, if this was the last
 part definition. But we might also allow "complex parts" - parts containing
 parts, to be distinguished from simple parts which contain only data items. To
 encode this structural model, we choose a simple rule: the contents of a complex part
 ends before an item explicitly "closing" the part, whereas the contents of a
 simple part is delimited implicitly: it ends before the next control
 item defining a new part (simple or complex) or closing the surrounding complex
 part. Note that these parts - simple or complex - are defined in a "streaming"
 fashion - contents are not children, but a subsequence of items delimited by
 an item recognized as start point and another item explicitly or implicitly
 meaning an end point (or the end of the XDM value, as a special case).

 In order to keep things simple, we constrain the definition of complex parts:
 they must not contain data items outside of contained parts. In other words:
 parts must not be mixed, their content is either a sequence of data items,
 or a sequence of parts which may be simple or complex. An example using
 complex parts:

 Note: Leaving out namespace declarations

 For brevity, all further examples will leave out the namespace declaration xmlns:xm=”http://www.xdml.org/ns".

<xm:complexPart name="code-lists"/>,
<xm:part name="alpha-codes"/>,
a001,
a005,
a012,
<xm:part name="beta-codes"/>,
b002,
b003,
<xm:complexPartEnd/>,

<xm:complexPart name="logs"/>,
<xm:part name="log0800" />,
<log>...</log>,
<xm:part name="log0900" />,
<log>...</log>,
<xm:complexPartEnd/>

Concept: Information units

 We have seen how the insertion of control items can partition an XDM value
 into parts. To denote the concept of such parts we introduce the term
 information unit. An information unit
 is encoded by a sequence of XDM items. According to whether whose items
 represent nested units, two kinds of information units
 are distinguished. A
 simple information unit contains only data
 items, but not any nested information units. A
 complex information unit, on the other hand, contains other
 information units, but no data items outside of nested units.

 An information unit has the following properties:
 	a name

	a part ID (optional)

	metadata (optional)

	value

 Name and part ID we constrain to be a QName and NCName, respectively;
 metadata are introduced in the next section. The value is
 	a sequence of data items - in the case of a simple unit

	an unordered collection of information units - in the case of a complex unit

 Note that this definition renders the sequence of nested information units irrelevant, as these
 units are associated with names. This corresponds to the modeling practice of XML
 attributes or JSON members.

XDM metadata
Why and how add metadata?

 We saw that control items may structure XDM values
 into information units, which are groups of items or of other information units.
 These units are entities
 which do not exist in XDM values without control items. Often they will
 serve as units of processing, and it is reasonable to
 expect that different units may be subjected to different processing.
 Such considerations suggest the usefulness of metadata.

 In fact, it is very simple to associate the units with as many metadata
 as one would like. Every unit is preceded by a control item which amounts to
 a convenient container where to place those metadata, either as attributes
 or as child elements. Come to think of it, the control item can be regarded
 as a full-scale XML document which is still hardly constrained in its
 contents: only the name of the root element and the use of a "name" and a
 "partID" attribute are specified, so far. This document is dedicated to defining
 a unit, and it is ready to be filled with metadata describing the unit.

 Returning to the example given above, the units containing a single document of
 log data may be associated with metadata "startTime" and "devices".
 To accommodate such data, we can use attributes and child elements of the markup
 item, like so:

<xm:complexPart name="logs"/>,

<xm:part name="log0800" xmlns:e=”e.com” e:startTime="2010-12-30T08:00:00" xmlns:e="http://example.com">
 <e:devices>…</e:devices>
</xm:part>,
<log>...</log>,

<xm:part name="log0900" xmlns:e=”e.com” e:startTime="2010-12-30T09:00:00" xmlns:e="http://example.com">
 <e:devices>…</e:devices>
</xm:part>,
<log>...</log>,

<xm:complexPartEnd/>

A model of metadata

 We have arrived at a very simple method how to impose structure on XDM
 values, and we have found a slot into which one might throw any amount of
 metadata pertaining to the emerging units. Now
 we face two alternatives.
 We might stop here and regard the semantics of metadata as the
 realm of proprietary extensions of our simple, general model, in the
 same way as XML Schema allows annotation attributes. We might, for example,
 say that any additional attributes and child elements of control items are
 meta information, to be evaluated in a proprietary way.

 But we can also take a different path and attempt to arrive at a generic
 model of XDM metadata and its processing by a responsive infrastructure.
 This approach does not remove the option of proprietary extensions, but factors
 them out and constrains them in a way which allows a generic "XDM parser" to
 report them in a structured way.
 The basic principle of such a model is to distinguish metadata meant to
 control a specific processing from other metadata. The latter might be
 called "descriptive metadata"
 and is available for variable uses. The former – "control metadata" – has
 a defined impact on a defined processing.

 Why should one associate data with information which controls their
 processing? We note an interesting analogy. A key concept of object orientation
 is to associate data sets with behavior. This is similar to what we
 try to do. The behavior of objects is implemented by methods; the
 "behavior" of information units resides in control metadata which define a processing.
 Control metadata is behavior encoded as data, as opposed to methods which
 are behavior encoded as code. To get a more practical motivation, imagine
 writing an XQuery program and regretting the limitations of XQuery. For
 example, one cannot call XSLT to accomplish some finalization,
 one cannot trigger actions with side effects (like the execution of the SQL
 just composed), and one cannot create a map object which the calling application
 would really like to receive. In this situation there is a way out: let the query
 code rely on a postprocessing of the query result which is
 defined by the query and
 executed by infrastructure. Our model of
 XDM metadata amounts to a framework for this approach.

 Obviously, control metadata and the responsive infrastructure must be modeled
 as a coherent whole. We assume that control metadata can be further grouped
 into a set of metadata components, and that a general processing model
 yet to be defined determines how actual processing depends on those
 components. But at this point of our
 argument we want to separate the general idea from our elaboration of it,
 as we want to protect the value of the idea from the possible weaknesses of our attempts
 to refine it. For the time being, we remain abstract. We assume a standard
 infrastructure governed by a set of standard metadata components.

XDML - the concept

 By now we have collected a set of ideas which can be assembled into
 a comprehensive concept how XDM is turned into a
 language designed to encode
 information content as well as information processing.
 XDM is turned into a language by defining
 and constraining the way how control items can be used within an XDM value.
 To denote this language we use the acronym "XDML" (short for:
 "XDM markup language"). An XDML value is then an XDM value which uses control
 items in a way consistent with the rules of the language.

 We distinguish between the concept of an
 XDML language and a concrete specification of the language. While we
 offer a first proposal for such a specification, we attempt to factor
 out basic principles. These principles should be simple and
 intuitive to a degree which a concrete elaboration cannot attain.
 Note: Informal style

 For the sake of readability, we do not embark
 on any formal definition. Rather, we want to convey the definition in a
 natural style which concentrates on ideas and intent at the expense of formal
 exactness and completeness.

Goals

 XDML is a set of rules how XDM values can be designed in order to become more
 useful entities as compared to ordinary XDM values. The key idea is to insert
 into the XDM values control information which guides the interpretation and
 processing of the data. An XDM value thus augmented is called an XDML value.
 Its usefulness is provided by an XDML processor, which
 is a generic program evaluating the control information.
 XDML addresses the
 following major goals:
 	to structure XDM values into nestable parts

	to enable name-based access to XDM parts

	to associate XDM parts with metadata

	to process XDM parts as guided by their metadata

Structure model

 XDML structures XDM values by grouping
 the XDM items. The resulting groups are units of usage in a broad sense: conceptual units of
 information, units of data retrieval and units of data processing.
 Item groups are called information units.
 The grouping approach distinguishes:
 	simple information units – do not contain other units

	complex information units – contain other units

 and introduces the following constraints:
 	complex units do not contain data
 items which are not contained by nested units

	the information content of a complex unit is regarded as unordered
 collection of units

Metadata model

 Information units can be associated with metadata. XDML uses a simple metadata model which
 	distinguishes between descriptive data and control data

	distributes control data into distinct sets, called metadata components

	defines how metadata components control the processing

Processing model

 XDML values are submitted to an XDML processor
 which evaluates the control information and is responsible for reporting
 and processing the data
 accordingly. The processor is viewed as the sum of two components:
 	an XDML parser

	XDML engine

 An XDML parser delivers the information encoded as
 XDML value in a structured way. The engine enables other kinds of
 processing. A concrete specification of XDML must define a
 processing model governing the engine and its control by
 metadata and user actions (API calls).

Encoding principles

 XDML defines the syntax and semantics of control information embedded in
 XDM values. We propose four general encoding principles:
 	control information is encoded by control items, to be
 distinguished from data items

	a control item is an XDM item which is an element information
 item in a particular namespace

	each information unit is associated with a control item defining
 the unit in terms of metadata

	metadata components are not mixed - each component is encoded
 by a distinct (possibly empty) set of elements

 A concrete specification of XDML must elaborate these principles into a
 concrete encoding model. This model must define the names and structure
 of control items, and it must define the mapping of control
 items onto content items ("where does the unit begin and end?").

XDML - concrete proposal

 The step from XDML as a concept to a concrete specification requires:
 	A concrete encoding model

	Specification of an XDML parser

	Specification of a processing model

 Note: On language binding

 The XDML user communicates with the XDML processor via an API.
 A processor implementation is therefore
 bound to a programming language, whereas the concept of an XDML processor
 is language neutral. Our ongoing implementation work uses Java,
 and API code snippets in this paper use Java as well. This representation
 is chosen for convenience sake and does not mandate Java in
 preference to other languages.

 Encoding model

 We adopt the rules applied in our illustrative examples:
 	Control items contain elements in the XDML namespace:
 http://www.xdml.org/ns

	Simple information units are preceded by an <xm:part> item

	Complex information units are delimited by <xm:complexPart> and
 <xm:complexPartEnd> items

	Name and partID of an information unit are given by the
 "name" and "partID" attribute of an <xm:part> or
 <xm:complexPart> item

	Descriptive metadata are encoded as attributes or child
 elements of an <xm:part> or
 <xm:complexPart> item; they
 must be in a namespace but must not be in the XDML namespace

 We extend the model of <xm:part> items by three further
 standard attributes. Attribute "private", if containing the value "true",
 indicates that the unit is used to assist in the processing of other units
 and should be ignored by the XDML user. Two other attributes convey type information and
 thus facilitate the translation of XDM values into the data model of the processor
 language:
 	"type" - represents the data type of the information unit

	
 "finalType" - represents the data type of the information unit
 after finalization

 Finalization is a processing which is part of the proposed
 processing model and which may change the data type of the unit (see
 section “Execution context "finalize"” for
 details). The following example shows two information units containing
 a sequence of nodes and a string, respectively, as indicated by the type attributes:

<xm:part name="logs" type="nodes"/>,
<log>...</log>,
<log>...</log>,
<log>...</log>,

<xm:part name="query_getSummary" type="string" private="true"/>,
xquery version="1.0"
...

 XDML parser

 The parser has to report data in accordance to a data model which in turn
 depends on the processing model. Therefore the parser will be dealt with later,
 after explaining the
 processing model and in the context of describing the various APIs of the XDML processor.

 Processing model

 The processing model is based on three concepts which the following
 sections will explain in detail:
 	Operation - any processing can be decomposed into distinct operations

	Method - unit of processing composed of one or more operations

	Execution context - it specifies when to invoke a method and what to do with
 the return value

XDML operations

 Data processing provided by the XDML processor is modeled as the execution of discrete operations,
 collectively called XDML operations. XDML operations thus serve as basic unit of data processing:
 an operation is either executed as a whole or not at all; and any processing can be decomposed
 into the execution of one or more operations. An operation is supplied with input information,
 it may produce output information and it may have side-effects. Output information is the return
 value of the operation. Input information comprises a data context and a request message.

 The data context can be regarded as the main input,
 comparable to the context item of XQuery, the context node of XSLT or the
 primary input port of XProc. The data context of an XDML operation is (usually) the value
 of an information unit (as represented by the implementation language of the XDML
 processor). Therefore one might say that an XDML operation is applied to an information
 unit, or that an information unit is processed by an XDML operation.

 The request message consists of named parameters,
 comparable to the external variables of XQuery and the global parameters of XSLT.
 In the case of XProc, the corresponding input sources would be non-primary input ports,
 options and parameters.

 The return value of an operation may be an
 instance of any type supported by the implementation language of the XDML
 processor. Note that this value may or may not have a default mapping to
 an XDM value. In other words: operations may produce a result which is not
 related to the XDM model, e.g. an object of a custom class.

 The XDML provider defines the processing of an information unit by
 associating it with methods. A method is a processing defined
 as the sequential execution of one or several operations. It is
 therefore encoded as one or more request messages and
 the choice of a so-called
 execution context. The context determines when to invoke the method and
 what to do with the return value. Method definition is described in
 section “Method definitions”.
 The current section describes XDML operations in general terms, independently of
 their use in a particular execution context. Main aspects are the data model
 of input and output, the encoding of input by request messages, the standard
 library of XDML operations and the extensibility by user-defined operations.

Data model of input and output

 An XDML operation consumes input information, which comprises:
 	data context

	request message

 The data context of an XDML operation
 is (usually) the value of an information unit. The present version of XDML
 constrains XDML operations to process simple information units only.
 The data context is therefore usually an XDM value, or more precisely: the
 implementation language’s representation of an XDM value. But there are
 two exceptions to the rules. First, the data context may also be the
 return value of another XDML operation (preceding it within a method, see
 section “Methods”). Second, the value of a simple information
 unit may be an instance of a data type without default mapping to XDM
 (resulting
 from unit translation, see section “Execution context "translate"”).

 The request message is modeled as follows:
 	
 the message comprises two parameter sets: statically known
 parameters and dynamic parameters

	each set contains zero or more named parameters

	a parameter name is a QName

	
 a parameter value has one of these types: string, node, or a
 sequence of nodes

 The model is easily recognized when looking at the API representation of a request
 message:

interface OperationRequest {
 QName operationName();
 String resultType();

 String getStringParam(QName name);
 Node getNodeParam(QName name);
 Node[] getNodesParam(QName name);

 String getDynamicStringParam(QName name);
 Node getDynamicNodeParam(QName name);
 Node[] getDynamicNodesParam(QName name);

 QName[] getParamNames();
 QName[] getDynamicParamNames();
}

 Note that this model follows the approach taken by the XProc
 language rather closely: the set of statically known parameters
 corresponds to the non-primary input ports and options of XProc
 steps, while the set of dynamic parameters corresponds to XProc’s
 parameter port. Dynamic parameters are required, for example, to
 enable operations which execute arbitrary stylesheets:
 the names of stylesheet parameters cannot be anticipated and may
 collide with the names of statically known parameters.

 Output information is the return value
 of the operation. An operation may or may not produce a return value.
 The return value can be an instance of any data type supported
 by the implementation language: it is not constrained to have a default
 mapping to an XDM value. It may, for example, be an object of a custom class.

Request messages

 The XDML provider encodes the input information of an operation by an
 element information item representing a request message. This message
 is implicitly accompanied by a data context, which is either the value
 of the surrounding information unit or the return value of a
 preceding operation.

 The request message has the following parts:
 	the root element representing the message as a whole

	attributes encoding statically known parameters of type “string”

	
 child elements encoding statically known parameters of type “node”
 or “node sequence”

	
 an optional child element <xm:params>
 representing the dynamic parameters

	
 the attributes of <xm:params> encoding dynamic
 parameters of type “string”

	
 child elements of <xm:params> encoding dynamic parameters
 of type “node” or “node sequence”

 The name of the root element equals the operation name, and the names of
 attributes and elements representing parameters correspond to the parameter
 names. Consider this example:

<submitToXSLT serialize=”true”>
 <stylesheet>
 <xsl:transform …>…</xsl:transform>
 </stylesheet>
 <xm:params verbosity=”1”>
 <weatherData><weather>…</weather></weatherData>
 </xm:params>
</submitToXSLT>

 The operation "submitToXSLT" is invoked with two statically
 known parameters (“serialize” and “stylesheet”) and two dynamic
 parameters (“verbosity” and “weatherData”). In both
 parameter groups there is a string parameter as well as a node parameter.
 The operation executes the stylesheet supplied as parameter “stylesheet”
 and passes to it two stylesheet parameters, one with name “verbosity” and
 type xs:string, the other with name “weatherData” and
 type node(). The
 operation also passes to the stylesheet the value of the
 surrounding information unit as context node.

Special parameter values

 A request message may reference
 	values supplied by the XDML user

	values provided by other information units

Parameter values supplied by the XDML user

 A request message may reference values supplied by the XDML user. Values
 can be supplied as the execution of XDML operations is always triggered
 by an API call of the XDML user (see
 section “XDML user perspective”). A reference to a
 supplied value is encoded by the expression

 $arg{argName}

 which is resolved to the value of an invocation argument with name
 “argName”. For example, the following request message binds two
 dynamic parameters, “verbosity” and “weatherData” to values supplied
 by the XDML user:

<submitToXSLT serialize=”true”>
 <stylesheet>
 <xsl:transform …>…</xsl:transform>
 </stylesheet>
 <xm:params verbosity=”$arg{v}”>
 <weatherData>$arg{weatherData}</weatherData>
 </xm:params>
</submitToXSLT>

 Note that the parameter name used by the request message and the
 argument name expected from the XDML user need not be the same:
 in the example, the request parameter “verbosity” is bound to
 invocation argument “v”. The XDML provider’s choice of referenced
 argument names (in the example – “v” and “weatherData”) defines
 the “signature” of the operation from the XDML user’s perspective.

Parameter values provided by other information units

 A request parameter may reference the value of another information
 unit. Such references are encoded by the expression

 $part{partId}

 which is resolved to the value of the information unit with part ID
 “partId”. In the following example, parameter “stylesheet” is set
 to the value of an information unit with the part ID “toHTML”:

<submitToXSLT serialize=”true”>
 <stylesheet>$part{toHTML}</stylesheet>
 …
</submitToXSLT>

Library of standard operations

 The XDML processor offers a library of available XDML operations.
 The library comprises
 	standard operations which are built-in

	proprietary operations which have been registered at runtime

 See section “Extensibility” for details about the registration facility. Some examples of
 standard operations are:

 Table I

 Some standard XDML operations.

	Operation name	Description
	createMapFromStrings	
 Creates a map object, using as input a sequence of strings read from the data context.

	createPropertiesFromStrings	
 Creates a Properties object, using as input a sequence of strings read from the data context.

	execAsSQL	
 Regards the data context as a sequence of SQL expressions and executes them.

	execAsPerl	
 Regards the data context as a Perl script and executes it.

	execAsXQuery	
 Regards the data context as an XQuery program and executes it.

	execAsXSLT	
 Regards the data context as an XSLT stylesheet and executes it.

	execAsXProc	
 Regards the data context as an XProc pipeline and executes it.

	readDocument	Reads a document into a node object, reading the document URI from the data context.
	readTextFile	Reads a text file into a string, reading the file URI from the data context.
	sendFTP	Sends the data context per ftp.
	sendSOAP	Regards the data context as the payload of a SOAP request, sends it
 and returns the payload of the response.
	submitToXQuery	
 Executes an XQuery program and passes the data context to it
 as context item.

	submitToXSLT	
 Executes an XSLT stylesheet and passes the data context to it
 as context node.

	submitToXProc	
 Executes an XProc pipeline and passes the data context to it
 as primary input.

	validate	Validates the data context with an XML Schema.
	writeDocument	Stores the data context as an XML document.
	writeTextFile	Stores the data context as a text file.

Extensibility

 The XMDL processor offers a generic mechanism for extending the library
 of XDML operations at runtime. This is achieved by an interface for
 registering proprietary operations:

interface XDMLRegistry {
 void registerXDMLOperations(XDMLOperations impls);
}

 On registration, an implementation must be supplied as an implementation
 of the interface XDMLOperations. It represents the
 invocation of an operation as a method with a generic signature:

interface XDMLOperations {
 QName[] getOperationNames();
 void execute(OperationRequest requestMsg,
 DataUnit dataContext,
 DataUnit returnValue)
 throws XDMLException;
}

 Implementing proprietary operations is a straightforward task:
 interfaces OperationRequest and DataUnit
 provide access to
 operation name, request parameters and data context, respectively.
 The return value is inserted into an instance of interface DataUnit
 which is either supplied from without or instantiated within the
 implementation.

Methods

 In most cases, a desired processing can be provided by a single operation, in
 other words: the unit of intended processing matches the basic unit of
 implemented functionality. Sometimes, however, a processing may
 require two or more operations to be executed. As a generalization, our
 processing model defines the unit of intended processing as a sequence
 of one or more operations. This unit we call a method.
 Assuming sequential execution of the operations,
 one may wish for flexibility concerning the data context: shall the second
 operation use, like the first one, the value of the information unit, or
 shall it use the return value of the preceding operation? This flexibility
 is easy to implement, and it is easy to encode:
 	
 represent the method by a sequence of request messages

	
 add to request messages an optional attribute indicating any non-default use of the data context

 We introduce an attribute "dataContext" which may be attached to a request message in order
 to encode where the actual data context is found. Rules:
 	
 attribute missing => first operation uses the value of the information unit,
 later operations use the return value of the preceding operation

	
 attribute value is "." => use the value of the information unit

	
 attribute value is an NCName => use the return value of the preceding operation with that operation ID (attribute "opID")

 Note that the value of the information unit is always the data context for the method "as a whole" (for
 its first operation), but not necessarily for each of its operations. Every method is therefore
 bound to a particular information unit, as in object oriented programs every instance method
 is bound to a particular object.

 The return value of a method is the return value of its last (or only) operation,
 unless another operation has been marked with a special
 attribute ("methodReturnValue") to yield the return value.

Execution context

 When defining a method, the control data provide
 	one or more request messages

	the execution context

 The execution context specifies (a) when to execute the method and
 (b) what to do with the return value (if any). Note the necessity of
 specifying such an execution context, as the method will be invoked
 after the XDML value is delivered to the XDML user.

 We distinguish four types of execution context, which, taken together,
 define the processing model of XDML. Future versions of XDML may add
 further execution contexts. Each context may be viewed as the intent
 with which the XDML provider defines the method. He may want to
 	finalize the value of the information unit

	execute actions

	enable evaluations

	define non-standard representations

Execution context "finalize"

 Sometimes the XDML provider may want to supply intermediary data and
 leave the finalization to postprocessing. There are three main reasons
 for this pattern: (a) the finalization requires some processing resource
 not available to the XDML provider, but available to an XDML operation;
 (b) the finalization is deferred as it may turn out to be unnecessary;
 (c) the finalization requires parameter values to be supplied by the
 XDML user at invocation time.

 For example, the data which an information unit should ultimately
 supply may be obtained by submitting intermediary data to an XSLT
 stylesheet. However, if the XDML provider is an XQuery program, it
 cannot execute the XSLT processing. In this case, the XDML provider
 may provide the intermediate data and bind the information unit to
 the stylesheet execution. The execution context “finalize” ensures
 that the finalization takes place as soon as the XDML user confirms
 that finalizations are to be executed. The confirmation may be global
 or restricted to a particular information unit. The code

XDMLProcessor xp = XDMLProcessorFactory.newXDMLProcessor();
XQSequence xdm = ...;
XDML xdml = xp.newXDML(xdm);
xdml.finalize();

 loads an XDML value and triggers any finalizations, whereas

…
xdml.finalize(“conferenceProgram”);

 triggers the finalization of information unit "conferenceProgram"
 only. In general, finalization is achieved by executing a method
 (one or more operations) defined for that purpose and replacing the value
 of the unit by the return value of the method.

 To give a second example, the intermediary submitted to finalization
 may be the payload of a SOAP request. The finalization may then be
 achieved by operation “sendSOAP”, which wraps the unit data in a
 SOAP envelope, sends the request, receives the response and returns
 its payload. Using this operation in the execution context “finalize”
 will ensure that the information unit supplies the response payload,
 rather than the request payload.

Execution context "execute"

 To create data may be less than what the XDML provider wants to do:
 his intent may be to execute actions related to the data. In some
 cases, the data are only a means to an end which is such an action:
 the data may represent, for example, a sequence of SQL statements, and the
 action consist of their execution. In other cases, the data may be valuable as
 such, but additional action is mandatory – for example, storage in
 a file or in a database. In both situations, overall processing may
 be simplified if the XDML provider may define the actions to be
 executed, specifying all details, rather than rely on the XDML user
 to know which actions to trigger and which details to specify.

 The execution context “execute” takes care of this scenario. The
 XDML user does not have to know which operations are executed.
 He has to confirm, however, that any defined actions shall indeed
 be executed. His responsibility is restricted to giving or refusing
 “green light” to the actions defined by the XDML provider. The
 confirmation may be global:

…
xdml.execute();

 or restricted to a particular information unit:

…
xdml.execute(“cleanupScript”);

 The XDML user does not receive a return value. Therefore, the
 operations commanded by the XDM provider are always actions,
 rather than evaluations: operations motivated by their side
 effects, not by the production of a result value.

Execution context "enable"

 A different intent of the XDML provider might be to make
 certain evaluations or actions available, but leave it to the XDML
 user if the processing is actually performed. An example
 might be an evaluation which extracts some values from an
 XML document, which might or might not be desired. The
 execution context “enable” supports such intent: the evaluation
 is only executed if the XDML user demands it explicitly,
 identifying it by a name which the XDML provider has assigned
 to it. In this example code:

String[] locations = (String[]) xdml.invoke(“waterReport”, “getLocations”);

 the XDML user invokes an evaluation which is labeled "getLocations"
 and bound to information unit "waterReport".
 The name identifies a method (one or more operations) defined
 for this unit and associated with the execution context "enable".
 The method has
 a signature, as implied by the use of $arg{argName}
 references in the operation requests. The following
 method definitions create two XDML methods, one without parameters
 and the other with a string parameter "location". The methods
 are implemented by one and two operations, respectively:

<xm:part name="waterReport" type="node">
 <xm:interface>
 <xm:method name="getLocations" returnType="strings">
 <submitToXQuery>
 <query>distinct-values(//location/@name)</query>
 </submitToXQuery>
 </xm:method>
 <xm:method name="getResultTable" returnType="map_string_to_string">
 <submitToXQuery>
 <query>
 declare variable $location external;
 //location[@name eq $location]//substance/(@name, @quantity)
 </query>
 <xm:params location="$arg{location}"/>
 </submitToXQuery>
 <createMapFromStrings/>
 </xm:method>
 </xm:interface>
</xm:part>

 These method definitions impart to the information unit
 an interface of possible method invocations, which might be represented
 in pseudo-code like so:

 informationUnitInterface {
 String[] getLocations();
 Map<String,String> getResultTable(String location)
 }

Execution context "translate"

 The XDML provider might desire the XDML parser to deliver data
 which are not a standard representation of XDM data. For example,
 he might intend to deliver a map object, whereas the information
 unit contains an XML fragment encoding the map entries. To achieve
 this, the metadata specify the transformation of the unit data
 into the desired representation. Conceptually, this may be viewed
 as executing a method which produces the non-standard
 representation and replaces the value of the unit with this
 representation – which is essentially the same processing as provided
 by a method in context “finalize”. We prefer, however, to
 distinguish finalization in the sense described above from the
 translation of the unit data into a specific data type. Such
 translation we regard as processing associated with an
 execution context "translate". Contrary
 to the handling of finalization, the XDML user does not confirm
 translation - translation is built into the XDML parser which
 always delivers values in accordance to a defined translation. For example, this code:

Map<String,String> map = xdml.getPart("foo").getMapString2String()

 retrieves the unit data as a map, rather than as an XML element
 which is the XDM source format consumed by the XDML processor.
 The XDML user can only retrieve the unit data as a map.

Method definitions

 The processing of an information unit is organized as the execution of
 methods. A method consists of one or several operations. The definition of a method
 consists of the request message(s) launching its operation(s).
 The definitions are associated with an execution context, where
 execution contexts and method definitions are related as follows:

 Table II

 Execution contexts and method definitions.

	Execution context	Content
	finalize	
 a single anonymous method (or empty)

	execute	
 a single anonymous method (or empty)

	enable	
 a set of named methods (possibly empty)

	translate	
 a single operation per target language (possibly none)

 The encoding of method definitions reflects these relationships:

 Table III

 Execution contexts and their encoding.

	Execution context	Encoding
	finalize	
 optional <xm:finalize> element, child elements are request messages

	execute	
 optional <xm:execute> element, child elements are request messages

	enable	
 optional <xm:interface> element, child elements are <xm:method>
 elements representing named methods, whose child elements are request messages

	translate	
 zero or more <xm:translate> elements, each one representing a target language
 and encoding the data type and translation parameters as attributes

 The following listing presents a schematic example:

<xm:part name="foo" type="bar">
 <xm:finalize>
 <op1>...</op1>
 <op2>...</op2>
 </xm:finalize>
 <xm:execute>
 <op3>...</op3>
 <op4>...</op4>
 </xm:execute>
 <xm:interface>
 <xm:method name="m1" returnType="t1">
 <op5>...</op5>
 <op6>...</op6>
 </xm:method>
 <xm:method name="m2" returnType="t2">
 <op7>...</op7>
 <op8>...</op8>
 </xm:method>
 </xm:interface>
 <xm:translate target="java" type="t3" att1="..." att2="..."/>
</xm:part>

 And here comes a realistic example using three execution contexts, “finalize”, "execute" and "enable".
 It shows an information unit which is finalized into a Perl script to be executed in context "execute"
 and besides offering a little interface of methods to be invoked explicitly ("writeLog", "save"):

<xm:part name="cleanupScript" type="node" finalType="string">
 <xm:finalize>
 <execAsXSLT serialize="true"/>
 </xm:finalize>
 <xm:execute>
 <execAsPerl>
 <xm:params options="-m cleanup"/>
 </execAsPerl>
 </xm:execute>
 <xm:interface>
 <xm:method name="writeLog">
 <execAsPerl>
 <xm:params options="-m writeLog -f $arg{fileName}"/>
 </execAsPerl>
 </xm:method>
 <xm:method name="save">
 <execAsPerl>
 <xm:params options="-m save"/>
 </execAsPerl>
 </xm:method>
 </xm:interface>
</xm:part>

XDML user perspective

 An XDML value is a set of information units which may be
 retrieved and – depending on the method definitions – processed
 in a simplified way. An XDML value is represented by an object
 whose interfaces provide for retrieval
 (interface XMDLParser) and processing
 (XDMLProcessing).
 The following sections give a brief overview of these and further
 interfaces which taken together amount to the user perspective
 of XDML.

Obtaining and extending the XDML processor

 The instantiation of XDML values requires an instance
 of the XDML processor.
 The processor object represents the engine responsible for
 executing XDML operations. It implements interface
 XDMLRegistry which enables the XDML user
 to register proprietary operations:

XDMLProcessor xp = XDMLProcessorFactory.newXDMLProcessor();
xp.registerXDMLOperations(new WaterOperations());
xp.registerXDMLOperations(new WeatherOperations());

 Now we are ready to begin working with XDML values.

Obtaining an XDML value

 An XDML value is represented by an instance of class
 XDML. The XDML processor offers a
 generic method for instantiating XDML values:

void newXDML(Object dataSource) throws XDMLException;

 Note that the signature does not constrain the data type of the data source.
 Which type(s) are supported depends on the actual implementation of the
 processor. Our prototypic implementation expects an
 XQSequence object, which is the XQJ representation
 [XQJ Spec] of an XDM value. Typical code snippet:

XQSequence xdm = …; // procure XDM value
XDML xdml = xp.newXDML(xdm); // create XDML value

Parsing an XDML value

 Class XDML implements a parser API which
 supports iteration over the units as well as
 random access:

interface XDMLParser {
 InformationUnit next();
 boolean hasNext();
 void rewind();

 InformationUnit getPart(QName partName);
 InformationUnit getPart(QName[] partNames); // access nested part
 InformationUnit getPartByID(String partID);

 …
}

 If the information unit is complex, it is represented by an
 XDML object delivered by the InformationUnit
 object:

class InformationUnit implements DataUnit, MetadataUnit {
 XDML getComplexValue();
 boolean isValueComplex();
 ...

 Class InformationUnit implements two interfaces for accessing
 the data value (interface DataUnit) and metadata
 (MetadataUnit) of a simple unit.
 The data value is always retrieved
 as a single object (which may
 be an array object) – never by iterating over the items of the
 value. There are many possible types and for each
 one there is a specific retrieval method. The range of data types
 includes several types which have no default mapping to an XDM
 value, as the interface must also handle values which result
 from a value translation (via <xm:translate> metadata)
 or which are the return value of an XDML operation -
 e.g. several map types:

interface DataUnit {
 // *** read value
 Node getNode();
 Node[] getNodes();
 int getInteger();
 int[] getIntegers();
 String getString();
 String[] getStrings();
 Duration getDuration();
 Duration[] getDurations();
 …
 Object getObject(); // allows for a DataUnit to contain ANY type

 // *** write value
 void setNode(Node value);
 void setNodes(Node[] value);
 ...
 void setObject(Object value, String typeName);
}

 The retrieval of metadata is different
 dependent on the metadata component. Descriptive metadata and translation
 metadata are delivered as a metadata set:

interface MetadataUnit {
 MetadataSet getDescriptiveMetadata(String topic);
 MetadataSet getTranslationMetadata(String targetLanguage);
 String[] getDescriptiveTopics();
 String[] getTranslationTargetLanguages();
 ...
}

 A metadata set is a set of named properties; similar to the
 parameters of request messages, property names are QNames
 and values are either a string, or a node, or a sequence of nodes:

interface MetadataSet {
 QName[] getPropertyNames();
 String getStringProperty(QName name);
 Node getNodeProperty(QName name);
 Node[] getNodesProperty(QName name);
 …
}

 Other metadata – that is, metadata components corresponding to
 execution contexts (other than “translate”) – are delivered as
 methods or a map of named methods:

interface MetadataUnit {
 …
 Method getFinalizationMethod();
 Method getExecutionMethod();
 Map<QName, Method> getInterfaceMethods();
}

 A Method is a sequence of operation requests:

interface Method {
 int getOperationCount();
 OperationRequest getOperationRequest(int index);
 Integer getDataContext(int index);
 // data context is the return value of a preceding operation (>0), or the unit value (0), or null
}

 See section “Data model of input and output” for details
 about interface OperationRequest.

Processing an XDML value

 Any processing happens in response to an API call of the XDML user (finalize, execute,
 invoke). Here comes the processing interface implemented by class XDML:

interface XDMLProcessing {
 void finalize();
 void finalize(Arguments args);
 void finalize(QName part);
 void finalize(QName part, Arguments args);

 void execute();
 void execute(Arguments args);
 void execute(QName part);
 void execute(QName part, Arguments args);

 Object invoke(QName part, QName methodName);
 Object invoke(QName part, QName methodName, Arguments args);

 boolean isFinalized();
 boolean isFinalized(QName part);
 boolean isExecuted();
 boolean isExecuted(QName part);
}

 If arguments are passed to the processing, they will be used in the respective request messages
 for resolving argument references of the syntax $arg(argName) (see
 section “Parameter values supplied by the XDML user”). Setting arguments is straightforward:

Document weatherData = ...;
String location = "NY";

Arguments args = xdml.newArguments();
args.set(new QName("location"), location);
args.set(new QName("weatherData"), weatherData);

Example

 An example handles the following scenario. Two datasets – one representing
 hydrological measurements, the other meteorological data – are the input
 for an evaluation yielding an XML report. Some value extraction, as
 well as HTML and CVS representations of
 the report should be available on demand. Before creating the report, the
 input datasets must be procured: weather data are obtained from a SOAP
 service, water data are downloaded from a relational database. The
 following code snippet demonstrates XDML user code:

// *** obtain XDML value
XDMLProcessor xp = XDMLProcessorFactory.newXDMLProcessor();
XQSequence xdm = …; // procure source data (e.g. exec XQuery)
XDML xdml = xp.newXDML(xdm);

// *** use XDML value
xdml.finalize();
Map<String,String> results = (Map<String,String>) xdml.invoke("report", "getResultTable");
String html = (String) xdml.invoke("report", "getHTML");
String[] cvs = (String[]) xdml.invoke("report", "getCVS");

 Although the processing requires the use of various technologies
 (XQuery, XSLT, SOAP, SQL), the client code is very simple and
 unawares of the complexity involved:
 	
 Calling finalize accomplishes ...
 	retrieval of a dataset via SOAP

	retrieval of a dataset via SQL

	execution of an XQuery script producing the XML report

	
 Calling invoke(..., "getResultTable") creates a value extraction

	
 Calling invoke(..., "getHtml") creates an HTML representation

	
 Calling invoke(..., "getCVS") creates a CVS representation

 The following table summarizes the structure of the XDML value enabling
 this simplicity:
 Table IV

 Example: information units providing simplified processing.

	Unit name	Semantics	(Initial) unit value	Context : used operations
	toHTML	tool for transforming the report to HTML	an XSLT stylesheet	-
	toCVS	tool for transforming the report to CVS	an XQuery program	-
	weatherData	weather data	payload of a SOAP request	finalize:sendSOAP
	waterData	water data	text of a SQL SELECT statement	finalize:execAsSQL
	report	
 an XML report with an interface
 	an XQuery program	
 finalize:execAsXQuery

 invoke:createMapFromStrings

 invoke:submitToXQuery

 invoke:submitToXSLT

 An abbreviated representation of the XDM value follows:

<xm:part name="toHTML" partID="toHTML" type="node" private="true"/>,
<xsl:transform…>…</xsl:transform>
,

<xm:part name="toCVS" partID="toCVS" type="string" private="true">,
xquery 1.0 …
…
,

<xm:part name="weatherData" partID="we" type="node" finalType="node">
 <xm:finalize>
 <sendSOAP href="…" />
 </xm:finalize>
</xm:part>,
<getWeatherData>…</getWeatherData>
,

<xm:part name="waterData" partID="wa" type="string" finalType="node">
 <xm:finalize>
 <execAsSQL driver="…" host="…" db="…" user="…" password="…" format="xml"/>
 </xm:finalize>
</xm:part>,
SELECT …
,

<xm:part name="report" type="string" finalType="node">
 <xm:finalize requiredParts="we wa">
 <execAsXQuery resultType="node">
 <xm:params>
 <weatherData>$part{we}</weatherData>
 <waterData>$part{wa}</waterData>
 </xm:params>
 </execAsXQuery>
 </xm:finalize>

 <xm:interface>
 <xm:method name="getResultTable" returnType="map_string_to_string">
 <submitToXQuery resultType="strings">
 <query>...</query>
 </submitToXQuery>
 <createMapFromStrings/>
 </xm:method>
 <xm:method name="toHTML" returnType="string">
 <submitToXSLT serialize="true">
 <stylesheet>$part{toHTML}</stylesheet>
 </submitToXSLT>
 </xm:method>
 <xm:method name="toCVS" returnType="strings">
 <submitToXQuery resultType="strings">
 <query>$part{toCVS}</query>
 </submitToXQuery>
 </xm:method>
 </xm:interface>
</xm:part>,
xquery 1.0
declare variable $weatherData as node() external;
declare variable $waterData as node() external;
<waterReport>{
 …
}</waterReport>

Generalization: XDML as an information model

 The concept of XDML can be generalized by distinguishing the
 encoding of XDML values from their information model.

Encoding XDML with map items

 This paper describes a technique how to create XDML values by
 augmenting an XDM value with control items. The use of control
 items amounts to encoding an information model which is based
 on the concept of information units. It is important to note
 that the XDML API does not reflect this encoding. Therefore
 XDML user code does not depend on how the XDML value is encoded.
 It is possible that a future version of XDML supports additional
 encodings which do not rely on control items.

 In this context, recent work of W3C working groups on the XDM model
 promises an interesting alternative. The current working draft of the
 XDM specification version 3.0 [W3C XDM 3.0]
 introduces as new item type a “map item”
 which uses atomic values as keys and sequences of XDM items as values.
 It is easy to encode XDML values as defined in this paper using map
 items instead of inserting control items between data items.
 The change amounts to shifting control items and data items
 from their linear arrangement into a couple of map items,
 one receiving the control items and the other receiving the data items.
 This is shown in two steps. First assume
 an XDML value which does not contain any metadata – which only structures
 the overall XDM value into named units. The information content can be
 represented by an XDM value obeying the following rules:
 	
 the value consists of a single map item which uses QNames as keys

	
 the map values are XDM values which either do not contain map items
 or consist of a single map item

	
 any nested maps are constrained in the same way as the top-level map:
 keys are QNames, values are XDM values which either do not contain
 map items or consist of a single map item

 In order to reestablish our full XDML model which associates information
 units with metadata, the above rules are modified by replacing each map item
 with a sequence of two map items, the first one representing the
 data of the information units, the second one representing the
 associated metadata and the map keys encoding the names of the units.
 The metadata of a unit can again be represented by a single
 <xm:part> or <xm:complexPart>
 element item. The net result is a lossless encoding of
 the XDML information model using map items rather than inserting control items
 between data items.

 The relationship between the XDML data model and the new map items can
 be further elucidated by regarding XDML values as
 dual maps: the keys are
 associated with two entities, one representing the data, the other representing
 associated metadata.

Encoding XDM as XML

 The XDML data model is based on the XDM model: the XDML value as a
 whole is an XDM value, and the value of any (simple) information unit
 is a sequence of XDM items, in other words – an XDM value. This
 dependence on XDM does not preclude the option to encode the underlying
 XDM value as a single XML document. This possibility is important, as
 XSLT and XProc do not export XDM values, but export XML documents. A
 generic XML encoding of XDM values can be easily defined. It might, for
 example, represent each XDM item by a child node of a root element
 representing the XDM value as a whole. The following listing provides an
 illustrative example:

<x:xdm xmlns:x="http://www.xdml.org/ns/xdm">
 <x:item type="document">
 <foo/>
 </x:item>
 <x:item type="element">
 <bar/>
 </x:item>
 <x:item type="attribute" name="a" value="v"/>
 <x:item type="processing-instruction" value="foo a=x b=y"/>
 <x:item type="xs:string">hello</x:item>
 <x:item type="xs:integer">123</x:item>
</x:xdm>

 Therefore, the factory method constructing an
 XDML value might easily be extended
 to load the XDML value from an XML document conforming to
	 an agreed upon “XDM schema”.

Discussion

 The languages XQuery and XSLT enable a very efficient and elegant processing
 of XML resources. Their integration into programs written in general purpose
 languages - like Java - is therefore highly desirable. The potential
 contribution is
 however limited by three major issues. First, XQuery and XSLT are designed
 to create information, rather than execute actions with side effects.
 Second, these languages are rather closed systems,
 without a concept of embedding other technologies and domain-specific
 functionality. Third,
 the information delivered (XML and/or atomic values) is pure information without
 behaviour, rather than objects associating information with
 specific behaviour, which means that downstream usage of the information
 may be a relatively complex and challenging task. These limitations of effect -
 "no actions, closed functionality, no behaviour" - is at odds with the
 enormous power of the means which the X-languages offer.

 XProc [W3C XPROC] addresses the first two limitations: it integrates
 the major XML technologies (XSLT, XQuery, XML Schema, ...) into a single
 script language, provides openness
 to other technologies (HTTP, system commands, ...) and enables to
 combine side-effect free processing with actions in a well-controlled
 way (based on distinct steps). XProc is a powerful approach
 to accomplish complex XML processing.

 XDML has a different emphasis: it concentrates on integrating
 XML technology into general purpose languages.
 XDML strives to broaden the
 scope of what the X-developer can achieve as a
 contributor to a non-XML environment - rather than as the author
 of a standalone processing. He is enabled to
 define a complex postprocessing and its control by API client actions.
 This creates a novel
 possibility of leveraging XML technology to generate
 information associated with behaviour:
 information with an interface.
 The usefulness of the behaviour hinges critically upon the functional
 wealth offered by the available XDML operations. Therefore we believe
 that the easy extensibility of the XDML processor by proprietary,
 domain specific XDML operations may be of key importance for
 the value which XDML has to offer.

Bibliography
[Rennau 2010] Hans-Juergen Rennau.
 Java Integration of XQuery - an Information-Unit Oriented Approach.
 Presented at Balisage: The Markup Conference 2010, Montréal, Canada, August 3 - 6,
 2010. In Proceedings of Balisage: The Markup Conference 2010. Balisage
 Series on Markup Technologies, vol. 5 (2010). doi:https://doi.org/10.4242/BalisageVol5.Rennau01.
 http://www.balisage.net/Proceedings/vol5/html/Rennau01/BalisageVol5-Rennau01.html.
[XQJ Spec] Jim Melton et al, eds.
 JSR 225: XQuery API for JavaTM (XQJ) 1.0 Specfication.
 http://jcp.org/en/jsr/detail?id=225.
[W3C XDM] Mary Fernandez et al, eds.
 XQuery 1.0 and XPath 2.0 Data Model (XDM) W3C Recommendation 23 January 2007.
 http://www.w3.org/TR/xpath-datamodel/.
[W3C XDM 3.0] Norman Walsh et al, eds.
 XQuery and XPath Data Model 3.0 W3C Working Draft 14 June 2011.
 http://www.w3.org/TR/xpath-datamodel-30/.
[W3C XPROC] Norman Walsh et al, eds.
 XProc: An XML Pipeline Language W3C Recommendation 11 May 2010.
 http://www.w3.org/TR/xproc/.

Balisage: The Markup Conference

XDML - an extensible markup language and processor for XDM
Hans-Jürgen Rennau
Senior programmer
bits - Büro für Informations-Technologie und Software GmbH

<hrennau@yahoo.de>
Hans-Jürgen Rennau works as a software developer for bits GmbH (Büro für Informations-Technologie und Software). He takes a keen interest in the integration of object-oriented and “item-oriented” (XML) components of behavior and components of information. Hans-Jürgen's background as a biologist partly accounts for his belief that the naturalness of a thought is important to its potential. A natural integration of two natural approaches — OO and XML — is what he strives for in theory and practice.

David Lee
Senior Principal Software Engineer
Epocrates, Inc.

<dlee@epocrates.com >
David Lee has over 25 years experience in the software industry responsible for many major projects in small and large companies including Sun Microsystems, IBM, Centura Software (formerly Gupta), Premenos, Epiphany (formerly RightPoint), WebGain, Nexstra, Epocrates. As senior principal software engineer at Epocrates, Inc., Mr Lee is responsible for managing data integration, storage, retrieval, and processing of clinical knowledge databases for the leading clinical information provider.
Key career contributions include Real-time AIX OS extensions for optimizing transmission of real-time streaming video (IBM), secure encrypted EDI over internet email (Premenos), porting the Centura Team Desktop system to Solaris (Gupta, Centura), optimizations of large Enterprise CRM systems (Epiphany), author of xmlsh (http://www.xmlsh.org) an open source scripting language for XML.

Balisage: The Markup Conference

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

