[image: Balisage logo]Balisage: The Markup Conference

Including XSLT stylesheets testing in continuous integration process
Benoit Mercier
Analyst
Faculté des lettres et sciences humaines, Université de Sherbrooke

<benoit.mercier@usherbrooke.ca>

Balisage: The Markup Conference 2011
August 2 - 5, 2011

Copyright © 2011 Benoit Mercier

How to cite this paper
Mercier, Benoit. "Including XSLT stylesheets testing in continuous integration process." Presented at: Balisage: The Markup Conference 2011, Montréal, Canada, August 2 - 5, 2011. In Proceedings of Balisage: The Markup Conference 2011.
 Balisage Series on Markup Technologies vol. 7 (2011). https://doi.org/10.4242/BalisageVol7.Mercier01.

Abstract
 XSLT stylesheets are just like any other programming language code units: they
 need to be written, debugged, refactored and tested. In these days of « Agility »,
 refactoring and continuous integration play major roles in development process. How
 to assert that XSLT stylesheets refactoring are still producing correct outputs? How
 to early detect defects? This paper proposes a practical approach to include XSLT
 stylesheets testing in continuous integration process, based on XSpec, a Behavior
 Driven Development (BDD) framework for XSLT, and on Java helpers
 provided by Jxsl, a Java
 XSL code library.

Balisage: The Markup Conference

 Including XSLT stylesheets testing in continuous integration process

 Table of Contents

 	Title Page

 	Problem

 	Solution
 	XSLT test framework

 	Java unit testing wrapper

 	Build tool and continuous integration server

 	Conclusion

 	Acknowledgments

 	About the Author

 Including XSLT stylesheets testing in continuous integration process

Problem
Writing XSLT stylesheets is similar to writing code in any kind of programming
 language. The aim is to build a working piece of code that will produce predictable
 results to meet functional requirements. Software development is evolving at a fast
 pace and more and more new methodologies are emerging in order to guide development
 process. One of the key aspects shared by all these methodologies is testing, to
 guarantee software behaviour predictability and consistency. To be really efficient and
 useful, testing should be made easy for developers and tests scenario executions should
 be triggered automatically as soon as code has been modified. This is nowadays part of a
 common best practice called Continuous Integration (CI). But XSLT stylesheets are in a
 poor relation in this context. There are few unit testing frameworks available for XSLT
 and none of them are easily embeddable in CI processes and tools.
This paper tries to demonstrate that XSLT stylesheet testing can be made simple by
 using the XSpec
 Behavior
 Driven Development (BDD) framework for XSLT through the use of Jxsl Java wrapper library and can
 be easily integrated into existing or new CI environment. It is an awareness-raising
 document to help XSLT stylesheet developers to change their outlooks so as to foster the
 adoption of testing as a new valuable tool at their disposal.

Solution
The proposed solution to achieve continuous integration of XSLT stylesheets adds three
 possibly new components to the usual toolkit (IDE, version control system, etc.) used by
 XSLT developers: 	an XSLT test framework;

	a Java unit testing wrapper;

	a continuous integration server.

The following sections describe the selected tools and their respective roles in the
 process.
XSLT test framework
This is the core of the solution. Writing tests should be easy, intuitive and
 frictionless. XSpec framework meets these conditions[[xspec-01]]. BDD approach, tool quality,
 authors and recent project activities have lead to its selection from among various
 other projects like Juxy, XSLTUnit or UTF-X for instance.
The general idea is to write XSpec documents to describe stylesheet behaviours.
 XSpec documents are XML documents which adhere to the XSpec
 RELAX NG schema. XSpec scenarios are straightforward to write for XSLT
 developers. Stylesheet templates and functions can be tested against contextual data
 (XML documents, fragments or mock object) by creating test scenarios. Here is a
 sample XSpec file.

<?xml version="1.0" encoding="UTF-8"?>

<x:description xmlns:x="http://www.jenitennison.com/xslt/xspec" stylesheet="toHtmlWithIds.xsl">

 <x:scenario label="When processing a list of books">

 <!-- apply template rules to this element -->
 <x:context href="xsltestengine-data/books-a.xml/>

 <!-- check the result -->
 <x:expect label="There must be 12 button to books" test="count(//button) = 12"/>

 </x:scenario>

</x:description>

The precise way to write XSpec document is described in the official documentation
 [[xspec-02]].
Systematically writing XSpec test scenarios for each XSLT stylesheets produced is
 a first step towards improving bug detection, guaranteeing compliance to
 specifications, business and technical requirements, safer refactoring, etc. But
 XSpec documents alone are not sufficient. Running tests is still under the sole
 responsibility and good will of the developer. Tests should be run on a regular
 basis to allow early error detection. Such systems exist and are widely used for
 other programming languages. How could XSpec files be integrated in those existing
 solutions?

Java unit testing wrapper
In order to be able to benefit from other languages testing tools availability,
 XSpec test executions should be wrapped up in one of these languages. This is one of
 the goals of the Jxsl project [[jxsl-01]]: to offer Java wrapper objects for XSpec test
 configuration and executions.
Jxsl provides method to execute XSpec tests directly from Java code, one at a time
 (XspecTestScenarioRunner) or in batch mode
 (XspecTestSuiteRunner). This is useful for
 embedding test executions in custom Java code. But Jxsl also contains wrapper for
 the JUnit unit testing framework (TestNG support is coming). That means that an
 existing Java project can add XSpec file testing to its standard JUnit test
 suites.
To enable XSLT unit testing with XSpec in an existing Java project, it is as
 simple as creating a new class in the project test package that extends XspecScenarioJUnitTest and to provide a Spring bean
 configuration file called xspec-context.xml. Here is a complete and functional
 implementation.
package com.mycompany.test.xspec;

import com.servicelibre.jxsl.scenario.test.xspec.XspecScenarioJUnitTest;
import java.io.File;

public class XspecUnitTesting extends XspecScenarioJUnitTest {

 public XspecUnitTesting(File xspecFile) {
 super(xspecFile);
 }
}
Jxsl offers a Maven archetype to get started quickly. This archetype is also very
 useful for non Java developers. Java 1.5+ JRE and Maven 2.9+ are required. The
 archetype can be generated with the following command:

mvn archetype:generate -DarchetypeGroupId=com.servicelibre \
 -DarchetypeArtifactId=xspec-test \
 -DarchetypeVersion=0.1.5 \
 -DarchetypeCatalog=http://jxsl.googlecode.com/svn/trunk/archetypes

The only things to configure to get started is the XSpec file locations . This is
 achieved by editing the src/test/resources/xspec-context.xml file.
 Tests can now be run with the following
 command:mvn test

XSpec test executions have now be integrated into some Java unit testing code in
 order to benefit from all the tools available for triggering and monitoring standard
 Java unit tests. The Maven project build from the archetype could also be used to
 integrate XSpec testing in XML editor like Oxygen XML Editor (through External tools
 configuration).

Build tool and continuous integration server
XSpec tests wrapped up in Java unit tests can now be triggered as part of a
 standard Java project build process. Build tool like Maven does this automatically
 by convention. Ant can be configured to run JUnit tests as follows :

<?xml version="1.0" encoding="UTF-8"?>
<project name="jxsl" default="test" basedir=".">

	<target name="init">
		<property name="resources" location="${basedir}/../resources"/>
	</target>

	<target name="test" depends="init">
		<echo>basedir=${basedir}</echo>
		<junit dir="${basedir}" fork="true" haltonerror="true" >
			<test name="com.servicelibre.jxsl.scenario.test.xspec.XspecScenarioJUnitTest"/>

			<classpath>
				<pathelement path="${resources}/jxsl/jxsl-with-dependencies.jar"/>
				<pathelement path="${user.home}/.m2/repository/net/sf/saxon/saxon/9.3.0.2j/saxon-9.3.0.2j.jar"/>
				<path path="${basedir}"/> <!-- for xspec-context.xml Spring bean configuration file -->
			</classpath>

			<formatter type="brief" usefile="false"/>
		</junit>
	</target>

</project>

Today, not having a CI server in place when doing software development is almost
 like not using a version control system: a risky bet. CI server ensures, at least,
 that code are regularly built and tested successfully in a clean environment
 (understand « not on the developer computer ») . There are several popular CI
 servers: Hudson/Jenkins, Continuum, Bamboo, TeamCity, etc.
XSpec tests should be run regularly by a CI server.
[image:]
In order to catch errors even more early, it is suggested to trigger test
 executions on commit in the version control system. This is usually done via
 server-side hook scripts. Resources on hook scripts for common version control
 systems:
	Subversion: http://svnbook.red-bean.com/en/1.5/svn-book.html#svn.reposadmin.create.hooks

	GIT: http://book.git-scm.com/5_git_hooks.html

	Mercurial: http://hgbook.red-bean.com/read/handling-repository-events-with-hooks.html

Here is a sample Subversion hook script that triggers a project rebuild by
 Hudson#!/bin/sh

POST-COMMIT HOOK

USER=hudson
PASSWORD=*****
HUDSON_SERVER=hostname:8081
HUDSON_COMMAND=polling

HTTP_PREFIX=http://${USER}:${PASSWORD}@${HUDSON_SERVER}

wget -b ${HTTP_PREFIX}/job/hudson_project_name/${HUDSON_COMMAND} > /dev/null

Conclusion
With the proposed solution, XSLT developers, even without any knowledge of Java, are
 now able to easily create a Maven project from an archetype, configure it to run their
 own XSpec files and trigger test executions by a CI server at each commit in their
 version control system.

Acknowledgments
This project would not have been possible without the support of the Franqus Research
 Group of the Faculté des lettres et sciences humaines, Université de Sherbrooke. The
 author wishes to express his gratitude to colleague and friend, Dominic Marcotte, who
 offered invaluable assistance and support.

Work cited
[jxsl-01]
 jxsl, Java XSL code library
 http://code.google.com/p/jxsl.
 Accessed 2011-06-10.

[xspec-01]
 XSpec, BDD framework for XSLT
 http://code.google.com/p/xspec.
 Accessed 2011-06-10.

[xspec-02]
 How to write XSpec scenarios (part of the XSpec documentation),
 http://code.google.com/p/xspec/wiki/WritingScenarios. Accessed
 2011-06-10.

Balisage: The Markup Conference

Including XSLT stylesheets testing in continuous integration process
Benoit Mercier
Analyst
Faculté des lettres et sciences humaines, Université de Sherbrooke

<benoit.mercier@usherbrooke.ca>
Benoit Mercier has been working as researcher and analyst at the Franqus research group of the University of Sherbrooke (Quebec, Canada) since 2006 where he collaborates to the development of a new North American French dictionary. His main interests include computer linguistic, Free Software development and technology watch. His is also a European Commission official since 2000. He started and animated the Commission IT Network (CITnet), an internal collaboration platform for IT specialists (almost 2000 individuals) and is the author of the 2003-2006 version of the strategy for internal use of Open Source Software at the European Commission.

Balisage: The Markup Conference

content/images/Mercier01-001.jpg
Hudson

Hudson » article » #112 » Test Results » com.servicelibre.ixsl.scenario fest.xspec ACTIVER LE RAFRAICHISSEMENT AUTOMATIQUE

ben:

4 reowaneoiet Résultats des tests :

O, statut com.servicelibre.jxsl.scenario.test.xspec

= Changements \

B sotte de la console 22 tests (20)
" oris 45 =

#, Confiaure [Zaiouter une deseription

[tistoriaue

Tous les tests
[7] mesuts des tets
@8 Build précédente Class Durée Echec (dif) Passé (dif) Total (diif)
BUISRECSARS | | [specScenariotunirest ass o o 2

Nextouild

Page générée: 10 juin 2011 10:52:49 Hudson ver. 1.354

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

