[image: Balisage logo]Balisage: The Markup Conference

Visualization of concurrent markup
From trees to graphs, from 2D to 3D
Daniel Jettka

Maik Stührenberg

Balisage: The Markup Conference 2011
August 2 - 5, 2011

Copyright © 2011 by the authors. Used with permission.

How to cite this paper
Jettka, Daniel, and Maik Stührenberg. "Visualization of concurrent markup." Presented at: Balisage: The Markup Conference 2011, Montréal, Canada, August 2 - 5, 2011. In Proceedings of Balisage: The Markup Conference 2011.
 Balisage Series on Markup Technologies vol. 7 (2011). https://doi.org/10.4242/BalisageVol7.Jettka01.

Abstract
The present paper deals with the visualization of concurrent markup. An initial
 discussion of the underlying model of XML instances demonstrates that valid XML exceeds
 the expressive power of trees. While some challenging
 features of concurrent markup, like overlaps, can be captured by minimally extended trees,
 there are other phenomena which can be adequately expressed in XML using constructs
 which instantiate advanced graph structures (e.g. discontinuous elements or repetitive structures).

On the basis of two representation formats for concurrent markup, XStandoff and xLMNL,
 two distinct approaches towards its visualization are presented. The first method has been
 implemented in XSLT as an SVG-based 2D visualization strategy. Although it can be shown that this
 first approach provides an adequate (though not optimal) solution to overlapping
 structures, it is not capable of illustrating enhanced graph-based phenomena
 like the ones mentioned above. Therefore, some remarks about possible 3D visualizations are made
 which show how the adding of another dimension could contribute to the appropriately expressive
 visualization of concurrent markup. In addition, a prototypic implementation based on XSLT and X3D is discussed as first
 step towards a three-dimensional illustration.

Balisage: The Markup Conference

 Visualization of concurrent markup

 From trees to graphs, from 2D to 3D

 Table of Contents

 	Title Page

 	Introduction

 	A formal model of XML instances

 	XStandoff as a starting point for visualization

 	xLMNL as a starting point for visualization

 	2D visualization of concurrent markup
 	Basic principles of the visualization of concurrent markup

 	Rendering SVG from XStandoff

 	Adding the third dimension
 	Considerations

 	Prototypic 3D visualization

 	Conclusion and future research

 	About the Authors

 Visualization of concurrent markup
From trees to graphs, from 2D to 3D

Introduction
More than ten years after the birth of XML the limits of XML-based markup languages seem
 to become apparent: while on the one hand some people tend to see XML together with its accompanying
 specifications as the new (too complex) SGML and try to trim it (see Cowan, 2010, Cowan, 2011, and the discussion on the xml-dev mailing list), on the other hand the underlying formal
 model of a tree cannot cope with multiple and possibly overlapping structures. Together with an
 increasing demand for multiple annotated corpora in the Digital Humanities questions for
 visualizations of concurrent annotations have been posed. In this paper we will sketch
 out two main points: firstly, we will show that the underlying data model of XML is not a tree at
 all and that it is possible to serialize graph-like structures including discontinuous
 elements with plain XML. We will then choose two XML-based representation formats as basis for
 our visualization efforts which will be discussed in section “2D visualization of concurrent markup”. The
 paper continues with some thoughts about 3D visualization techniques and the discussion of a prototypic implementation in section “Adding the third dimension” and concludes with some remarks about possible future research.

A formal model of XML instances
The majority of people dealing with XML instances tend to believe that markup languages
 which were developed to annotate mainly textual content use the formal model of a tree. This
 thinking can be traced back to statements like the one expressed in 1987 by J. H. Coombs et al. who
 stated that [d]ocuments have a natural hierarchical structure: chapters have sections,
 sections have subsections, and so on, until one reaches sentences, words, and
 letters (Coombs et al., 1987, p. 945) and was encouraged by the OHCO theory
 that states that a text is an ordered hierarchy of content objects.[1] From the formal perspective a tree is a special kind of directed graph. We reconsider the definition of a
 directed graph stated in Hopcroft and Ullman, 1979, p. 2: A directed graph (or digraph), [...] denoted G = (V, E), consists of a finite set of
 vertices [(or nodes)] V and a set of ordered pairs of vertices E called arcs. We denote an
 arc from v to w by v→w.
A path in a digraph is a sequence of vertices v1,
 v2,...,vk, k≥1, such that
 v1→vi+1 is an arc for each i,
 1≤i≤k. We say the path is from vi to
 vk. [...] If v→w is an arc we say v is a predecessor of w
 and w is a successor of v.

 An ordered, directed tree is a digraph that has a single root node (a node
 that has no predecessors and from which there is a path to every vertex).
 Each node other than the root node has exactly one predecessor and is connected to this single
 parent via one (and only one) edge. The successors of each node are ordered from left to right
 (Hopcroft and Ullman, 1979, p. 3).
Usually, one tends to agree on XML instances to use the formal model of a single-rooted
 tree: in the XML specification it is stated that [t]here is exactly one element, called
 the root, or document element, no part of which appears in the content of any other element.
 For all other elements, if the start-tag is in the content of another element, the end-tag
 is in the content of the same element. More simply stated, the elements, delimited by start-
 and end-tags, nest properly within each other. And indeed, if we stick with the
 nesting of elements (and attributes) we end up with a tree. A tree, however, has certain
 limitations: since crossing arcs are not allowed, it is not possible to use a tree model for
 the annotation of discontinuous segments (for example multi-word idioms discussed in Pianta and Bentivogli, 2004 or the Alice in Wonderland example quoted in Sperberg-McQueen and Huitfeldt, 2008). Although it would be possible to use TEI's milestone
 elements or fragmentation (see TEI P5 (v 1.9.1), 2011) one would still have to deal with
 separate element instances, that is the relation between the parts of the elements would be
 implicit.
A related disadvantage of trees is that it is often not possible to annotate concurrent
 – and possibly overlapping – hierarchies.
 A hierarchy is formed by a subset
 of the elements of the markup language used to encode the document. The elements within a
 hierarchy have a clear nested structure. When more than such a hierarchy is present in the
 markup language, the hierarchies are called concurrent.

(Dekhytar and Iacob, 2005, p. 186).
Even if two concurrent hierarchies do not overlap it is
 impossible to merge them into a single tree if they do not share the same root, since trees
 are only allowed to have a single root node (see definition above). But the major problem
 related to concurrent markup is that multiple hierarchies may lead to multiple parentage of
 nodes: Overlap can be represented by graphs that are very like trees, but in which nodes may
 have multiple parents. Overlap is multiple parentage.

(Sperberg-McQueen and Huitfeldt, 2004).
Since one of the main driving forces behind the creation of multi-dimensionally annotated
 documents are linguistic corpora, the TEI Guidelines TEI P5 (v 1.9.1), 2011 have not only
 improved the awareness of scholars of the Digital Humanities for the problems regarding this
 special field of research, but also provided some solutions to it. However, the different possible
 solutions (multiple documents, milestone elements, fragmentation and standoff markup) that are
 part of Chapter 20 of the aforementioned Guidelines are flawed with several disadvantages.
 Using multiple documents (cf. Section 20.1 of TEI P5 (v 1.9.1), 2011) results in redundant
 storage of the primary data, that is the character stream which is to be annotated and – as
 an effect – makes further changes to both primary data and annotation files time-consuming,
 which in turn can result in inconsistencies between the various instances. In addition
 there is no explicit indication that the various views, which might be in separate files,
 are related to each other: it might prove difficult to combine the views or access information
 from one view while processing the file that contains the encoding of another (TEI P5 (v 1.9.1), 2011, p. 621). The last point can be addressed by using the primary data as
 reference system, that is the positions in the character stream delimit the start and end points
 of corresponding markup, see Witt, 2002 (which is already referred to in the
 Guidelines) or Witt, 2004 and the standoff approaches discussed below. The
 related approach of twin documents shown in Marinelli et al., 2008 in addition to the primary data redundantly stores the so-called
 sacred markup, that is markup which is shared between different
 annotation layers (in contrast to profane markup that is related
 to a single layer). Although redundancy may lead to an improved sustainability (according to
 Rehm et al., 2010) we tend to follow the Guidelines in believing that the price in form
 of possible inconsistencies is too high.
For these reasons several proposals for graph-based formal models and alternative representation
 formats have been discussed in the last decade. As already stated above, a graph is the
 superclass of trees and therefore allows both multiple parentage and multiple root nodes.
 Again, first proposals for the XML representation of graphs can be found in the TEI Guidelines TEI P5 (v 1.9.1), 2011 in Chapter 18 by introducing feature structures.[2]
 Feature structures are single-rooted labeled directed acyclic graphs, often displayed as attribute value matrices,
 that can be used for representing various kinds of information. The TEI approach was standardized as international
 standard ISO/IEC 24610-1:2006
 and can be used as serialization format for multiple annotations as shown by Stegmann and Witt, 2009.
 However, as discussed in this special paper, the resulting XML instances can be quite huge, rendering this
 approach quite limited.

 Another alternative formal model for markup languages that has received much attention is the
 General Ordered-Descendant Directed Acyclic Graph (GODDAG) which was introduced in Sperberg-McQueen and Huitfeldt, 2004 (see Sperberg-McQueen and Huitfeldt, 2008a for a more
 recent discussion). To be more precise, there is a whole range of GODDAG sub-classes, such as
 the restricted GODDAG (r-GODDAG), the generalized GODDAG, the clean GODDAG, the normalized
 GODDAG and the colored GODDAG (the latter two have been introduced in Huitfeldt and Sperberg-McQueen, 2006). Figure 1 (taken from Sperberg-McQueen and Huitfeldt, 2008) shows a GODDAG representing the aforementioned
 Alice in Wonderland example.
Figure 1: GODDAG representation of discontinuous segments
[image:]

GODDAGs (and especially clean r-GODDAGs) can be serialized as TexMECS instances (see Marcoux, 2008 for a detailed discussion about the relationships between GODDAG
 sub-class and TexMECS serialization). The respective GODDAG serialization of the above-named example
 is shown below:
<p|Alice
was beginning to get very tired ...
it had no pictures or conversations in it,
<q|and what is the use of a book,|-q>
thought Alice
<+q|without pictures or conversation?|q>
|p>
Apart from TexMECS there are other serialization options for representing GODDAGs.
 Especially the work done by Di Iorio et al., 2009 is of interest, since they have
 shown that a data structure based on RDF, called EARMARK (Extreme Annotational RDF Markup), not
 only fully supports the expressiveness of GODDAGs but additionally introduces a new sub-type,
 called e-GODDAG (extended GODDAG) that adds anonymous non-terminal nodes (for establishing
 multiple arcs between two nodes and therefore allowing repetitive structures).
A second alternative data model for markup languages is the Annotation Graph introduced by
 Bird and Liberman, 1999 which was especially designed for linguistic annotations. An AG
 formally is a labeled directed acyclic graph (labeled DAG) which uses an
 order-preserving map assigning times to (some of) the nodes (Bird and Liberman, 1999, p. 2). This formal model is used for example in the annotation tool
 EXMARaLDA discussed in Schmidt, 2001. An extended version can be found in the
 NITE Object Model (cf. Carletta et al., 2003, Carletta et al., 2005) which
 combines hierarchies between nodes (similar to ordered directed trees) and the timing
 information. Both formal models use plain XML as serialization format. We will discuss this
 finding in a few paragraphs.
The third alternative formal model is based on the Core Range Algebra, introduced in Nicol, 2002 and extended in Nicol, 2002a. It uses flat ranges over
 the primary data and allows for overlapping ranges. A related serialization format is the
 Layered Markup and Annotation Language (LMNL, Tennison, 2002, Piez, 2004, Cowan et al., 2006). LMNL uses the primary data as base
 consisting of zero or more atoms (representing a Unicode char or something completely
 different). Ranges over the base contain the atoms between a matching start tag and end tag
 and may overlap. Even self-overlap (that is overlapping of elements, or ranges that bear the
 same generic identifier, see Marinelli et al., 2008 for an example) is supported, as
 well as anonymous ranges (similar to the aforementioned e-GODDAGs). Annotations can be located
 at both the start and end tag and since LMNL completely abandons hierarchy there is no need
 for a 'root range' (although the containment relation can be used via the use of base layers,
 see Cowan et al., 2006). Despite its naming as 'markup language' LMNL was developed as
 a formal model, therefore several serialization formats exist. Apart from LMNL's own Sawtooth
 syntax there is Canonical LMNL in XML (CLIX, formerly known as HORSE, Hierarchy-Obfuscating
 Really Spiffy Encoding, DeRose, 2004, Bauman, 2005), ECLIX
 (extended CLIX) and xLMNL. While CLIX and ECLIX use TEI milestone elements, xLMNL is a flat
 representation, similar to a standoff approach (examples of all these formats can be found at
 http://www.piez.org/wendell/papers/dh2010/clix-sonnets/). Figure 2 shows a
 possible graphical representation of ranges and annotations in LMNL (here syllables and morphemes).
 Note, that due to the two-dimensional
 approach the hierarchy that is implied by the vertical arrangement of the bars is not compulsory in LMNL.
Figure 2: Possible graphical representation of LMNL ranges
[image:]

Other approaches that shall be mentioned here for the sake of completeness are multi-colored
 XML (cf. Jagadish et al., 2004), the use of delay nodes (Le Maitre, 2006), the tabling approach described by Durusau and Brook O'Donnell, 2004 and XCONCUR by Schonefeld, 2007. While some of the aforementioned data models make use of a
 serialization format of their own, others succeed in using plain XML. This indicates that the
 formal model of XML instances has a greater expressive power than a directed ordered tree. And
 indeed, if we leave the field of Digital Humanities, there is a number of authors that tend to
 agree that the formal model of XML instances is that of a graph: Abiteboul et al., 2000, Polyzotis and Garofalakis, 2002, Gou and Chirkova, 2007 or Møller and Schwartzbach, 2007. The discrepancy in the findings can be explained by the sole observation of hierarchical
 relations of elements or by alternatively taking the XML-inherent integrity constraints
 into consideration, that is ID/IDREF/IDREFS token type attributes (in DTD) or
 xs:ID/xs:IDREF/xs:IDREFS and xs:key/xs:keyref (in XSD) respectively. In this context a line can be drawn between well-formed XML instances (in that case we still have to deal with a tree) and valid
 XML instances according to a document grammar that makes use of the aforementioned integrity
 constraints. Using a native XML approach has the advantage of being able to make use not only of a
 large range of software products but also of related specifications such as XPath, XSLT,
 and XQuery. Especially the upcoming XSLT 3.0 is quite interesting since it supports streamable
 transformations allowing for the manipulation of fairly big XML instances (cf. Kay, 2010). In addition, XML-based visualization formats such as the 2D SVG and
 newer approaches such as the 3D X3D are promising formats for the visualization of concurrent
 annotations (see section “2D visualization of concurrent markup” and section “Adding the third dimension”). We have already found proofs
 that the full power of valid XML instances can be used to serialize Annotation Graphs or LMNL
 ranges. Figure 3 demonstrates that valid XML can even make use
 of cyclic paths (or arcs) and therefore definitely exceeds the formal power of trees.
Figure 3: Minimal valid XML instance with cyclic paths

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE a
[<!ELEMENT a EMPTY>
 <!ATTLIST a id ID #IMPLIED idref IDREF #IMPLIED>]>

Together with the standoff approach mentioned both in the TEI Guidelines and Thompson and McKelvie, 1997, this expressive power can be used to capture multiple annotated data. In Stührenberg and Goecke, 2008 and Stührenberg and Jettka, 2009 the authors
 discuss the XStandoff meta annotation format which is capable of representing discontinuous elements, multiple parentage and virtual elements (amongst others). Since it is XML-based
 we have chosen it as one of the two formats (besides xLMNL) to discuss visualization
 aspects.

XStandoff as a starting point for visualization
XStandoff is a representation format for multiple hierarchies which evolved from works of
 the research project Secondary structuring of information and comparative discourse
 analysis (Sekimo)[3]. The format is a successor of the Sekimo Generic Format (SGF, cf. Stührenberg and Goecke, 2008) and was presented in detail at the Balisage 2009 (cf. Stührenberg and Jettka, 2009, for current developments see the XStandoff website). XStandoff can be seen as the combination of the standoff approach
 and the formal model of GODDAGs, capable of using native XML to represent multiple hierarchies and the
 specifically challenging structures such as overlaps, discontinuous elements, or virtual elements.
Since XStandoff makes use of the XML-inherent ID/IDREF mechanism the underlying model can
 be seen as a graph and therefore the format is able to represent any graph-based structure.
 Because of this it can become quite complicated to construct XStandoff instances manually. For
 this reason the XStandoff toolkit was implemented[4], providing XSLT 2.0 stylesheets for the
 creation of XStandoff instances on the basis of standard inline XML annotations and their corresponding
 primary data (inline2XSF.xsl), the merging of XSF instances
 (mergeXSF.xsl), the extraction or deletion of levels or layers[5] from XStandoff instances (extractXSFcontent.xsl)
 and the transformation of standard XStandoff instances to inline XStandoff representations
 (XSF2inline.xsl), the latter mainly for demonstration
 purposes.
 The workflow for creating an XStandoff instance can be demonstrated by the following
 example. The basis for the construction is given by two separate annotations (Figure 5) for a single primary data text (Figure 4):
Figure 4: Textual primary data
Asked a girl what she wanted to be
She said baby, can't you see
I wanna be famous, a star on the screen
But you can do something in between
Baby you can drive my car
Yes I'm gonna be a star
Baby you can drive my car
And baby I love you

Figure 5: The annotations (verse structure & direct discourse)
<?xml version="1.0" encoding="UTF-8"?>
<text xmlns="http://www.tei-c.org/ns/1.0">
 <body>
 <lg type="verse">
 <l>Asked a girl what she wanted to be</l>
 <l>She said baby, can't you see</l>
 <l>I wanna be famous, a star on the screen</l>
 <l>But you can do something in between</l>
 </lg>
 <lg type="chorus">
 <l>Baby you can drive my car</l>
 <l>Yes I'm gonna be a star</l>
 <l>Baby you can drive my car</l>
 <l>And baby I love you</l>
 </lg>
 </body>
</text>
<?xml version="1.0" encoding="UTF-8"?>
<text xmlns="http://www.tei-c.org/ns/1.0">
 <body>
 <p>Asked a girl what she wanted to be
 She said <q>baby, can't you see
 I wanna be famous, a star on the screen
 But you can do something in between</q></p>
 <p><q>Baby you can drive my car
 Yes I'm gonna be a star
 Baby you can drive my car
 And baby I love you</q></p>
 </body>
</text>

The stylesheet inline2XSF.xsl can be used to build
 XStandoff instances for each of the input annotations, by using the Saxon XSLT Processor[6]:
saxon -o:[output.xml] -s:[input.xml] -xsl:inline2XSF.xsl
 primary-data=[primary-data-file.txt]
Afterwards the two instances can be merged
 with the help of the stylesheet mergeXSF.xsl:
 saxon -o:[combined-output.xml] -s:[input-xsf-1.xml] merge-with=[input-xsf-2.xml])
This process results in the integration of the separate annotations into a single XStandoff instance:
Figure 6: XStandoff instance
<?xml version="1.0" encoding="UTF-8"?>
<xsf:corpusData xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsf="http://www.xstandoff.net/2009/xstandoff/1.1"
 xsfVersion="1.1"
 xml:id="drive_my_car_lines-drive_my_car_quotes"
 xsi:schemaLocation="http://www.xstandoff.net/2009/xstandoff/1.1 http://www.xstandoff.net/2009/xstandoff/1.1/xsf.xsd">
 <xsf:primaryData start="0" end="235">
 <xsf:primaryDataRef uri="../pd/drive_my_car.txt"/>
 </xsf:primaryData>
 <xsf:segmentation>
 <xsf:segment xml:id="seg1" start="0" end="235"/>
 <xsf:segment xml:id="seg2" start="0" end="140"/>
 <xsf:segment xml:id="seg3" start="0" end="34"/>
 <xsf:segment xml:id="seg4" start="35" end="63"/>
 <xsf:segment xml:id="seg5" start="44" end="139"/>
 <xsf:segment xml:id="seg6" start="64" end="103"/>
 <xsf:segment xml:id="seg7" start="104" end="139"/>
 <xsf:segment xml:id="seg8" start="140" end="235"/>
 <xsf:segment xml:id="seg9" start="140" end="165"/>
 <xsf:segment xml:id="seg10" start="166" end="189"/>
 <xsf:segment xml:id="seg11" start="190" end="215"/>
 <xsf:segment xml:id="seg12" start="216" end="235"/>
 </xsf:segmentation>
 <xsf:annotation>
 <xsf:level xml:id="drive_my_car_lines-level1">
 <xsf:layer xmlns="http://www.tei-c.org/ns/1.0" priority="0">
 <text xsf:segment="seg1">
 <body xsf:segment="seg1">
 <lg xsf:segment="seg2" type="verse">
 <l xsf:segment="seg3"/>
 <l xsf:segment="seg4"/>
 <l xsf:segment="seg6"/>
 <l xsf:segment="seg7"/>
 </lg>
 <lg xsf:segment="seg8" type="chorus">
 <l xsf:segment="seg9"/>
 <l xsf:segment="seg10"/>
 <l xsf:segment="seg11"/>
 <l xsf:segment="seg12"/>
 </lg>
 </body>
 </text>
 </xsf:layer>
 </xsf:level>
 <xsf:level xml:id="drive_my_car_quotes-level1">
 <xsf:layer xmlns="http://www.tei-c.org/ns/1.0" priority="0">
 <text xsf:segment="seg1">
 <body xsf:segment="seg1">
 <p xsf:segment="seg2">
 <q xsf:segment="seg5"/>
 </p>
 <p xsf:segment="seg8">
 <q xsf:segment="seg8"/>
 </p>
 </body>
 </text>
 </xsf:layer>
 </xsf:level>
 </xsf:annotation>
</xsf:corpusData>

There are several parameters which can be specified by the user to influence the
 actual serialization of the XStandoff annotation (for a detailed overview see the
 online stylesheet documentation).
 Apart from this, it should be obvious how the format deals with
 challenging structures like overlaps or discontinuous elements, namely by instantiating an
 underlying graph model through the use of string range references to parts of the primary data
 (xsf:segment elements). At the same time the hierarchical structures of the input annotations are kept nearly
 unchanged (except for the addition of the xsf:segment attribute which refers to the respective
 xsf:segment element) by storing them separately under <xsf:level> and
 <xsf:layer> elements. Note that there is no mandatory relationship
 between the string ranges (containment) and the dominance relations implied by the hierarchical structure
 (cf. the Alice in Wonderland example in Stührenberg and Jettka, 2009).
In section “Rendering SVG from XStandoff” and section “Adding the third dimension” we will present approaches
 to the visualization of XStandoff instances like the one shown in Figure 6. However, as discussed above, we would like to have a second
 XML-based option as starting point for a visualization of concurrent markup. Therefore we explored the possibility of
 converting other formats into XStandoff and vice versa. This would allow for the graphic rendering of distinct formats by the visualization
 approaches we will introduce in section “2D visualization of concurrent markup” and section “Adding the third dimension”. As a possible candidate
 for conversion we have chosen xLMNL which we will briefly
 present in the following section.

xLMNL as a starting point for visualization
Since xLMNL, an XML-based serialization format for LMNL, which was introduced by Piez, 2010 as
 an ad-hoc solution for representing LMNL in XML, makes a similar use of string
 ranges like XStandoff, it was chosen as a starting point for a conversion project between
 XStandoff and other XML-based formats.
 The corresponding simplified xLMNL
 serialization for the annotations shown in Figure 5 can be
 seen in Figure 7 which demonstrates the use of character positions (in start and
 end attributes) referring to the normalized textual content of x:content.
Figure 7: xLMNL representation
<x:lmnl-document>
 <x:content>Asked a girl what she wanted to be
 She said baby, can't you see
 I wanna be famous, a star on the screen
 But you can do something in between
 Baby you can drive my car
 Yes I'm gonna be a star
 Baby you can drive my car
 And baby I love you</x:content>
 <x:range name="text" ID="text-1" start="0" end="235"/>
 <x:range name="text" ID="text-2" start="0" end="235"/>
 <x:range name="body" ID="body-1" start="0" end="235"/>
 <x:range name="body" ID="body-2" start="0" end="235"/>
 <x:range name="lg" ID="lg-1" start="0" end="140">
 <x:annotation name="type" role="start-annotation">
 <x:content>verse</x:content>
 </x:annotation>
 </x:range>
 <x:range name="p" ID="p-1" start="0" end="140"/>
 <x:range name="l" ID="l-1" start="0" end="34"/>
 <x:range name="l" ID="l-2" start="35" end="63"/>
 <x:range name="q" ID="q-1" start="44" end="139"/>
 <x:range name="l" ID="l-3" start="64" end="103"/>
 <x:range name="l" ID="l-4" start="104" end="139"/>
 <x:range name="lg" ID="lg-2" start="140" end="235">
 <x:annotation name="type" role="start-annotation">
 <x:content>chorus</x:content>
 </x:annotation>
 </x:range>
 <x:range name="p" ID="p-2" start="140" end="235"/>
 <x:range name="q" ID="q-2" start="140" end="235"/>
 <x:range name="l" ID="l-5" start="140" end="165"/>
 <x:range name="l" ID="l-6" start="166" end="189"/>
 <x:range name="l" ID="l-7" start="190" end="215"/>
 <x:range name="l" ID="l-8" start="216" end="235"/>
</x:lmnl-document>

This illustrates the main difference of XStandoff and xLMNL in that the latter does not
 consider a hierarchical structure and imposes a completely flat structure of annotations.
 Admittedly, in contrast to dominance relations, containment relations can well be derived by
 taking into account the string ranges. Nevertheless, the distinct approaches of xLMNL and
 XStandoff towards the representation of potentially concurrent annotations constitute a
 serious challenge for the conversion enterprise because annotation hierarchies are not present
 in xLMNL. There are two possible ways to deal with this issue. Since XStandoff in principle
 allows for the capturing of arbitrary graph-like structures, the xLMNL representation could be
 integrated without making any assumptions about hierarchies. Another
 strategy, which would make more sense if one wanted to visualize the annotations by the methods
 introduced later on, would be the analysis of the individual relations between annotations on the
 basis of their string ranges and to try to construct hierarchies of annotations by considering
 the containment relations. Conflicting annotations could be separated from each other to avoid
 representation problems. This strategy admittedly inserts information which is not directly present,
 however it would not be a problem to remove the additional information again in
 a later step.
Perspectively there will be an examination of creating or integrating XStandoff into a
 syntactic conversion framework for existing representation formats like the one described in
 Marinelli et al., 2008. Although it would be possible to realize individual
 format-to-format conversions, it seems much more straightforward to have a framework
 which is based on a common model. For this purpose the above-mentioned meta markup language
 EARMARK, which can be used to represent GODDAGs, appears to be a quite promising candidate for a
 pivot format.

2D visualization of concurrent markup
Basic principles of the visualization of concurrent markup
For the visualization of concurrent markup there are two main issues to be regarded
 and to be solved: 	the illustration of the relationship of primary data and annotations

	the visualization of potentially overlapping annotations (including other
 tree-challenging phenomena like discontinuous elements)

In the case of XStandoff the visualization of multiple hierarchies at first glance can be based on a
 relatively simple principle, namely the delineation of separate tree structures. This of course only makes sense when the focus is on dominance
 relationships. As stated above, it is possible to represent graph structures, too. This will
 be addressed in more detail in section “Adding the third dimension”. But before, we want to take a look
 at a general visualization principle for multiple tree structures. A very
 basic visualization method is given in Witt, et al., 2005 where two annotation layers corresponding
 to common textual primary data are represented by vertically ordered colored bars:
Figure 8: Visualization of annotation layers (Witt, et al., 2005: 76)
[image:]

Here the horizontally ordered segments of each level represent the individual
 annotations and their length is used to demonstrate the correspondence to the dominated
 annotations (edges are inferable by the width of the bars) and the spanned textual content.
 This strategy, as indicated above, is based on tree structure visualization. Admittedly it
 could be used to represent minimal extensions to trees, for example multiple parents, which would
 allow for the capturing of overlapping structures; remember that overlap is multiple
 parentage (Sperberg-McQueen and Huitfeldt, 2004). However, there seems to
 be no way to represent more advanced graph structures. In addition there are some
 stylistic disadvantages: first of all, the overall width of the graphic and the visual
 accessibility mainly depend on the length of the primary data. Secondly, in this basic
 strategy line breaks from the primary data would have to be replaced in order to facilitate
 the visualization of continuously ordered annotation segments.
The named stylistic shortcomings could be dealt with by changing the direction of the
 illustration and ordering the annotation levels horizontally. This concept can be
 demonstrated on the basis of the annotations introduced in Figure 5. Since there
 is a classic overlap of the second l element
 (/text/body/lg[1]/l[2]) of the verse annotation and the first q
 element (/text/body/p[1]/q) of the direct discourse annotation which holds for
 the string baby, can't you see, the annotation levels cannot simply be
 integrated into a common tree structure. Following the representation in Witt (2005) the
 present annotations could be visualized like in Figure 9
 (in order to emphasize the present tree
 structures there is an additional representation of nodes and edges):
Figure 9: Graphic representation of annotations from Figure 5
[image:]
[image:]

To avoid the above-mentioned stylistic disadvantages of the horizontal ordering of
 annotation segments (vertical ordering of annotation levels), the representation could be rotated in a 90° angle to the right and
 mirrored horizontally:
Figure 10: Graphic representation of annotations from Figure 5 (different
 perspective)
[image:][image:]

From this state, it is only a few steps towards an adequate readability of the text and the
 consideration of line breaks from the primary data. This can be shown
 by a visualization method implemented by Piez, 2010. On the basis of LMNL
 markup he realized the visualization of concurrent annotations by both an
 'arcs'-visualization and an interactive SVG 'map' (shown in Figure 11 below).
Figure 11: Visualization of xLMNL instance by Piez, 2010
[image:]

The present annotation layers and element types are displayed in the left top corner of
 the graphic and their appearance can be switched on and off by mouse click. The actual
 instances of the underlying annotation are represented by two distinct illustrations: as
 bars on the left hand side and circles on the right hand side. The primary data
 text is located in between. The correspondence of segments of the primary data and annotations is
 demonstrated by interactive mouse-over effects (see the SVG provided online at Piez' website).
Overlaps of annotations from the individual layers can be identified in the graphic by having a look at
 non-matching borders of the bars or cutting lines of the circles. While Piez, 2010 explicitly states that the described visualization method primarily
 takes the function of a basic demonstration, there are certain technical and theoretical
 difficulties which should be named: 	The annotation layers of Piez'
 examples only contain elements which span over text segments large enough to
 avoid problems with the visualization of the corresponding bars. If there were
 annotations for single words or even smaller parts of the text, the bars and circles would
 become too small for a reasonable visualization (see Figure 13).

	The use of circles for representing annotations is only feasible as long as there
 are no very large annotated segments because the diameter could grow too big.

	Since all of the present annotation layers span the complete textual content
 without any gaps, there might be the impression that the method is arranged very
 clearly. In fact, other configurations of annotations which leave out certain parts of
 the text could lead to a less clear picture.

 These restrictions, however, do not decrease the overall
 usefulness of the approach to visualize overlapping structures.

Rendering SVG from XStandoff
The creation of two-dimensional SVG-based visualizations for XStandoff instances is to a great extent
 inspired by the approach of Piez, 2010 discussed in the previous section. Accordingly, the visualization
 includes a section displaying the textual primary data and a section with representations of
 annotations which in return correspond to spanned segments of the primary data. The possible
 visualization of annotations by circles was not implemented since it can be assumed that
 this method leads to problems for large annotation segments, as already stated. Piez'
 method was extended by some additional features for user
 interactivity like the horizontal switching of annotation levels and the optional display
 of classic overlaps. The general appearance of an XStandoff instance visualized in SVG can
 be seen in Figure 12. This representation is based on the XStandoff instance given
 in Figure 6 (an online
 version of the example is available for testing the interactive features)[7].
Figure 12: Visualization of XStandoff instance
[image:]

There are two options for the user to influence the configuration of the responsible XSLT stylesheet
 XSF2SVG.xsl[8] and the
 resulting visualization: the stylesheet parameters font-size and
 max-line-length. Since most SVG viewers enable the user to zoom in and out of
 the graphic anyway, the parameter font-size simply determines the initial
 appearance of the resulting graphic. More attention should be drawn to the parameter
 max-line-length which determines the maximal length of a single line of
 primary data. This has to be considered since lines of a certain length in
 combination with relatively small annotation segments can lead to visualization difficulties. Due to the correspondence between the height of a displayed annotation
 segment and the individual characters of a line of the primary data, annotations spanning
 over only a few characters might not be visualized accurately. That is the reason why the
 value of the parameter max-line-length is determined
 automatically by default in order to provide an optimal illustration of the annotation segments.
 Although generally it is up to the user to vary the maximal line length, the
 circumstance that a high value could lead to inaccurate visualizations has to be kept in
 mind. Figure 13 demonstrates the possible difficulties by comparing a
 visualization based on a maximal line length of 15 characters (automatically computed as maximum) with one
 which is based on 40 characters per line:
Figure 13: Influence of parameter max-line-length on readability of SVG
 visualization
[image:]

Even in the case of a short line length of 15 characters (on the left hand side of Figure 13) it is difficult to
 spot the segment for the tagged comma. Certainly, there are possible solutions to this problem. For instance, an advanced
 zooming method for the individual annotations and the corresponding textual content from the
 primary data could be implemented. Furthermore, it would be possible to realize some kind of
 page-wise navigation through the primary data, which would reduce the amount of
 simultaneously displayed text. Nevertheless, the main problems for the present SVG
 visualization are manifested by its conceptual foundation. The focus on tree structures
 (with minimal possible extensions) prohibits the coverage of other phenomena than overlaps
 and discontinuous elements, e.g. repetitive structures. This circumstance could be addressed
 by an increased focus on the annotations, which will be demonstrated in the following section.

Adding the third dimension
A different perspective on the visualization of concurrent annotations can be taken by the consideration of possible 3D graphic rendering. The
 recent developments in native browser support for 3D graphics, especially the specification of
 HTML5 (HTML5 WD 2011) and its element <canvas> allowing for
 programmatic rendering of APIs like WebGL (cf. WebGL, 2011), promises to
 provide a fruitful development and application framework for advanced graphical representation
 of concurrent markup. By the time of writing this article, WebGL is supported by the
 currently available builds of the browsers Firefox 5 and Chrome 12[9].
With X3DOM[10] and the serialization format X3D (ISO/IEC 19776-1:2009) there
 is an appropriate solution for defining 3D graphics in XML. Accordingly, it is possible to
 implement transformation scenarios for XML-based representation formats for concurrent markup
 similar to the one shown for XStandoff and SVG for 3D visualizations without
 leaving the XML context. Certainly, a native browser support of XSLT 2.0 would make the
 framework even more straightforward, which naturally holds for the SVG approach, too. As an alternative
 Kay, 2011 has shown some pretty advantages in implementing a JavaScript version of
 Saxon, called Saxon Client Edition or Saxon-CE, bringing XSLT 2.0 to the browser.
Considerations
Since 3D visualizations accompanied by interactive user navigation open up different
 perspectives than the SVG approach presented in the previous section, the basic underlying principle could focus
 on different aspects. While in the mentioned two-dimensional representation the primary data
 is in focus and minimally extended tree structures for concurrent markup can be
 represented, a three-dimensional approach could envisage the comprehensible
 visualization of annotations with an underlying graph-based model by constructing horizontally
 (along the z-axis of a 3D space) ordered trees, extended tree structures (e.g., allowing
 multiple parentage), or even full-blown graphs (including repetitive structures and cyclic paths).
In order to construct comparable layers of annotations, the structures could be
 normalized with respect to the corresponding primary data. In this context two methods could
 be considered: horizontal normalization and vertical
 normalization. The horizontal normalization of the displayed structures
 refers to the horizontal position of the nodes representing annotations and could be based on
 the primary data virtually transformed into a single line. Along this line of characters the
 nodes could be located by positioning them at the center of their spanned character string
 (x-axis of Figure 14).
The vertical normalization could make use of a very similar strategy. By dividing the
 amount of spanned characters of an annotation by the total amount of characters in the
 primary data, the vertical position of nodes could be determined. Admittedly, this strategy
 could lead to confusion since it is probable that nodes of one level do not have the
 same vertical position, while nodes from different levels have the same position. Having in
 mind that the described normalization method arranges nodes with respect to the concept of containment,
 it would be possible to allow for different realizations of layer visualizations, that is, a containment
 perspective and a dominance perspective.
Figure 14: Normalized positioning of nodes in 3D space
[image:]

The graphic incorporates the normalized structures of the two annotation layers of the
 above-mentioned XStandoff instance
 (Figure 6). The normalized node positions reflect
 the concept of containment.
 In addition to the respective XStandoff instance, the first structure can also be seen as
 a visualization of the containment relations from the xLMNL instance (Figure 11)
 if a virtual node is imposed which spans the complete primary data.
 Note, that the hierarchy between the nodes in the structure for an xLMNL instance is only
 implicitly present as already shown in
 Figure 2 – in contrast to hierarchies in XStandoff instances. Thus, in general,
 for the visualization of concurrent markup two distinct
 visualization methods (containment vs. dominance) should be considered.
XStandoff supports the differentiation of containment and dominance relations (see Stührenberg and Jettka, 2009),
 using the start and end positions of the referenced segments for computing whether a string range virtually delimited
 by an annotation is contained inside a second one and using the hierarchical relations between two nodes on the same
 annotation layer to express a dominance between these nodes. Therefore, it would be reasonable to consider
 these two possible normalization methods, allowing for the generation of both visualization methods.
As a benefit from using a 3D approach it would still be possible to use tree-like visualizations as a starting point since both
 the handling of overlapping annotations and the arrangement of different annotation layers can
 be managed by using the z-axis.
The actual realization of a 3D rendering of concurrent markup could vary in its complexity and in the
 amount of the realized features. Figure 15 (corresponding to the XStandoff instance in
 Figure 6) demonstrates the dominance perspective mentioned above (in opposition to the
 containment persective), in which there is a 1:1 relationship between nodes and
 annotation elements. It is based on a hierarchical organization of the annotations.
Figure 15: Basic visualization of referenced primary data
[image:]

Besides these minimalistic illustrations, more complex and sophisticated graphics could be
 realized. For example, it would be possible to represent hierarchies which are based on graphs
 and include phenomena like discontinuous elements or repetitive structures. These would be
 visualized on the basis of present containment relations, that is, nodes are normalized with regard to their
 referenced textual content and edges reflect containment relations.
Regarding the visualization of the relationship between primary data and annotations there are several
 imaginable solutions. Firstly, it would be possible to simply display the spanned textual content of a node in tooltips
 as indicated in Figure 15. Alternatively, it would
 be conceivable to take a 3D space like in Figure 14 as a basis
 and project the textual primary data onto the back wall. By mouse-over effects the user could
 focus the spanned textual content, for example by evoking light and shadow effects which
 highlight the corresponding primary data section(s). At the same time information about the annotation could
 be shown in a tooltip.
Figure 16: Advanced primary data visualization
[image:]

In the visualization from Figure 16, which shows horizontally and vertically normalized trees,
 the appearance and position of nodes depend on the presence of distinct string
 ranges for which there are annotations, that is, a single node might represent more than one
 annotation element. This should be kept in mind.
Apart from the actual design there are some core features which should be realized in the
 envisaged approach:
	free user navigation through the graphic, including zooming in and out;

	draggable structures for layers (e.g. draggable as a whole along the z-axis);

	mouse-over effects: for example information on spanned primary data (textual content &
 positions), information on annotation, XPath;

	highlighting of specific structures (distinct element relations, overlaps,
 discontinuous elements, virtual/repetitive structures);

	the choice between displaying annotated or plain textual content for a node;

	illustration of left and right context of focused annotation elements and
 corresponding textual content (+ specification of the range of considered context).

Besides these rather stylistic considerations, which focus on the informational level of
 the visualization, the conceptual advantages of a 3D approach to concurrent markup should
 have become clear. Since it is not automatically restricted to strictly hierarchical
 structures, it would be possible to display graph-based constructs like repetitive/reentrant
 structures. Furthermore, relations between individual hierarchies of graph structures
 could be illustrated and there could be a distinction of representations of dominance and/or
 containment relations being reflected by the actual instantiation of the edges of graphs.

Prototypic 3D visualization
We've implemented a first prototypic 3D visualization based on an XSLT stylesheet
 named XSF2X3D.xsl that transforms
 XStandoff instances into X3D graphics like the one in Figure 14.
 Since there is no complete implementation available yet, in the remainder of this section we
 will concentrate on the things already accomplished, followed by possible future enhancements.
The current implementation of a 3D visualization of concurrent hierarchies reflects the
 considerations from the previous sections. The direct embedding of X3D into HTML5 allows for the
 rendering of 3D visualizations in current browser versions.[11]
 The actual appearance of the current state of the prototype is shown in Figure 17.

Figure 17: Screenshot of the prototype (Google Chrome)
[image:]

The main component of the visualization is a 3D space indicated as a cube which contains the
 layers from the corresponding XStandoff instance (Figure 6) ordered along the z-axis.
 At present, the normalization methods described in the previous section have not been fully implemented. In a later realization of the XSLT
 stylesheet it should be possible for the
 user to choose the normalization method, that is, the visualization of dominance or containment
 relations.

The illustration given in Figure 17 indicates most of the available user interactivity. Besides
 free navigation like zooming in and out of the graphic and rotating it, there are certain predefined viewpoints
 like front view and side view, which could be interesting for the user and can be taken by selection
 from the menu item 'View'. In addition, it is possible to freely drag the hierarchies along the
 z-axis by using the sliders, which are available for each individual layer in the info box on the
 right hand side. An interesting feature of the graphic is the possibility to virtually merge layers
 by either dragging them into the appropriate positions or selecting the predefined 'Merge layers' option
 from the 'Layers' submenu. The initial configuration of the layers can be
 reestablished by a click on 'Reset layers'. In the case of feeling lost in 3D space the 'Reload' button
 on the left hand side restores the initial state of the graphic.
Information on the present annotations in the individual layers can be gathered by hovering over the
 nodes with the cursor evoking a tooltip, which contains basic information like element names,
 string ranges, and XPath expressions. Other desirable features for an appropriate visualization of
 concurrent markup, like the ones listed in the previous section, will be considered in a later version.

Conclusion and future research
In this paper we demonstrated two aspects: firstly, that the formal model of XML
 instances can exceed that of trees; in fact, we have proven that it is fully capable of
 representing graphs. This, secondly, was used as a starting point to choose two XML-based representation
 formats for multiple annotations that can be converted into 2D visualizations. Although it could be shown
 that the first visualization approach provides an adequate (though admittedly suboptimal) solution to
 overlapping structures, it is not capable of illustrating enhanced graph-based phenomena like
 discontinuous elements or repetitive structures. Therefore we have sketched possible
 3D renderings of concurrent markup. A first prototypic realization demonstrated how the adding of an additional
 dimension could in principle contribute to the appropriate visualization of concurrent markup and could serve
 as the basis for further research. The current version will be made available under
 the GNU Lesser General Public License (LGPL v3) at the XStandoff website.
 Unresolved tasks like an improved visualization of overlapping annotations
 and the treatment of discontinuous and repetitive structures could be tackled in a future release.

Bibliography
[Abiteboul et al., 2000] Abiteboul, S.,
 Buneman, P., and Suciu, D. Data on the Web: From Relations to Semistructured
 Data and XML. San Francisco, California: Morgan Kaufmann Publishers,
 2000.
[Bauman, 2005] Bauman, S. TEI
 HORSEing Around. In: Proceedings of Extreme Markup Languages, Montréal, Québec,
 2005.
[Bird and Liberman, 1999] Bird, S. and Liberman, M.
 Annotation graphs as a framework for multidimensional linguistic data
 analysis. In: Proceedings of the Workshop "Towards Standards and Tools for
 Discourse Tagging". Association for Computational Linguistics, 1999.
[TEI P5 (v 1.9.1), 2011] Burnard, L. and Bauman, S.
 (eds.). TEI P5: Guidelines for Electronic Text Encoding and
 Interchange. Published for the TEI Consortium by Humanities Computing Unit,
 University of Oxford, Oxford, Providence, Charlottesville, Bergen. Version 1.9.1. Last updated
 on March 5th 2011.
[Carletta et al., 2003] Carletta, J., Kilgour, J.,
 O’Donnel, T. J., Evert, S., and Voormann, H. The NITE Object Model
 Library for Handling Structured Linguistic Annotation on Multimodal Data Sets.
 In: Proceedings of the EACL Workshop on Language Technology and the Semantic Web (3rd Workshop
 on NLP and XML (NLPXML-2003)), Budapest, Ungarn, 2003.
[Carletta et al., 2005] Carletta, J., Evert, S., Heid, U., and Kilgour, J. The NITE XML Toolkit: data model and query
 language. In: Language Resources and Evaluation, Springer, Dordrecht, 2005,
 39.
[Coombs et al., 1987] Coombs, J. H., Renear, A. H.,
 and DeRose, S. J. Markup Systems and the Future of Scholarly Text
 Processing. In: Communications of the ACM 30.11, 1987.
[Cowan et al., 2006] Cowan, J., Tennison J., and Piez,
 W. LMNL Update. In: Proceedings of Extreme Markup Languages,
 Montréal, Québec, 2006.
[Cowan, 2010] Cowan, J. MicroXML. Poster presented at XML Prague 2010.
[Cowan, 2011] Cowan, J. MicroXML. Editor's Draft 2011-06-30. http://www.ccil.org/~cowan/MicroXML.html.
[DeRose, 2004] DeRose, S. J. Markup Overlap: A Review and a Horse. In: Proceedings of Extreme Markup
 Languages, Montréal, Québec, 2004.
[Dekhytar and Iacob, 2005] Dekhtyar, A. and Iacob,
 I. E. A framework for management of concurrent XML markup.
 Data & Knowledge Engineering, 52(2):185–208, 2005.
[Di Iorio et al., 2009] Di Iorio, A., Peroni, S.,
 and Vitali, F. Towards markup support for full GODDAGs and beyond: the
 EARMARK approach. In: Proceedings of Balisage: The Markup Conference 2009.
 Balisage Series on Markup Technologies, vol. 3 (2009). doi:https://doi.org/10.4242/BalisageVol3.Peroni01.

[Durusau and Brook O'Donnell, 2004] Durusau, P. and
 Brook O'Donnell, M. Tabling the Overlap Discussion. In:
 Proceedings of Extreme Markup Languages, Montréal, Québec, 2004.
[Goecke et al., 2010] Goecke, D., Lüngen, H.,
 Metzing, D., Stührenberg, M., and Witt, A. Different views on markup.
 Distinguishing Levels and Layers. In: Witt, A. and Metzing, D. (eds.), Linguistic
 Modeling of Information and Markup Languages. Dordrecht: Springer, 2010. doi:https://doi.org/10.1007/978-90-481-3331-4
[Gou and Chirkova, 2007] Gou, G. and Chirkova, R.
 Efficiently Querying Large XML Data Repositories: A Survey.
 In: IEEE Transactions on Knowledge and Data Engineering 19.10, 2007.
[Hopcroft and Ullman, 1979] Hopcroft, J. E. and
 Ullman, J. D. Introduction to Automata Theory, Languages, and
 Computation. Addison-Wesley, 1979.
[HTML5 WD 2011]
 HTML5: A vocabulary and associated APIs for HTML and XHTML,
 W3C Working Draft 05 April 2011. World Wide Web Consortium. http://www.w3.org/TR/html5/.

[Huitfeldt and Sperberg-McQueen, 2006] Huitfeldt,
 C. and Sperberg-McQueen, C. M. Representing and processing of GODDAG
 structures: implementation strategies and progress report. In: Proceedings of
 Extreme Markup Languages, Montréal, Québec, 2006.
[ISO/IEC 19776-1:2009]
 ISO/IEC 19776-1:2009, Information technology – Computer graphics,
 image processing and environmental data representation – Extensible 3D (X3D) encodings
 – Part 1: Extensible Markup Language (XML) encoding. International
 Standard, International Organization for Standardization, 2009.
[ISO/IEC 24610-1:2006]
 ISO/TC 37/SC 4. ISO 24610-1:2006: Language Resource Management – Feature Structures – Part 1: Feature Structure Representation. International Standard, International Organization for Standardization, 2006.

[Jagadish et al., 2004] Jagadish, H. V.,
 Lakshmanany, L. V. S., Scannapieco, M., Srivastava, D., and Wiwatwattana, N. Colorful XML: One hierarchy isn’t enough. In: Proceedings of ACM
 SIGMOD International Conference on Management of Data (SIGMOD 2004), ACM Press, New York, NY,
 USA, 2004. doi:https://doi.org/10.1145/1007568.1007598
[Kay, 2010] Kay, M., 2010. A streaming XSLT
 processor. In: Proceedings of Balisage: The Markup Conference 2010.
 Balisage Series on Markup Technologies, vol. 5 (2010).
 doi:https://doi.org/10.4242/BalisageVol5.Kay01.
[Kay, 2011] Kay, M., 2011
 XSLT in the Browser. In: Kosek, J. (ed), XML Prague 2011 Conference Proceedings, number 2011-519 in ITI Series, pages 125–134, Prague, Czech Republic, 3 2011. Institute for Theoretical Computer Science.
[Le Maitre, 2006] Le Maitre, J. Describing multistructured XML documents by means of delay nodes. In:
 DocEng ’06: Proceedings of the 2006 ACM symposium on Document engineering, ACM Press, New
 York, NY, USA, 2006.
[Marcoux, 2008] Marcoux, Y. Graph characterization of overlap-only TexMECS and other overlapping markup
 formalisms. In: Proceedings of Balisage: The Markup Conference 2008.
 Balisage Series on Markup Technologies, vol. 1 (2008).
 doi:https://doi.org/10.4242/BalisageVol1.Marcoux01.
[Marinelli et al., 2008] Marinelli, P., Vitali,
 F., and Zacchiroli, S. Towards the unification of formats for
 overlapping markup. In: New Review of Hypermedia and Multimedia, 14(1), 2008.
 doi:https://doi.org/10.1080/13614560802316145.
[Møller and Schwartzbach, 2007] Møller, A. and
 Schwartzbach, M. I. XML Graphs in Program Analysis. In: PEPM
 ’07: Proceedings of the 2007 ACM SIGPLAN symposium on Partial evaluation and semantics-based
 program manipulation. Nice, France, 2007.
[Nicol, 2002a] Nicol, G. T. Attributed Range Algebra. Extending Core Range Algebra to Arbitrary Structures,
 2002.
[Nicol, 2002] Nicol, G. T. Core Range
 Algebra: Toward a Formal Model of Markup. In: Proceedings of Extreme Markup
 Languages. Montréal, Québec, 2002.
[Pianta and Bentivogli, 2004] Pianta, E. and
 Bentivogli., L. Annotating Discontinuous Structures in XML: the
 Multiword Case. In: Proceedings of LREC 2004 Workshop on "XML-based richly
 annotated corpora", Lisbon, Portugal, 2004.
[Piez, 2004] Piez, W. Half-steps
 toward LMNL. In: Proceedings of Extreme Markup Languages. Montréal, Québec,
 2004.
[Piez, 2010] Piez, W. Towards Hermeneutic Markup: An architectural outline. In: Digital Humanities
 2010 Conference Abstract, London, 2010.
[Polyzotis and Garofalakis, 2002] Polyzotis, N. and
 Garofalakis, M. Statistical Synopses for Graph-Structured XML
 Databases. In: Proceedings of the 2002 ACM SIGMOD International Conference on
 Management of Data, Madison, Wisconsin, 2002. doi:https://doi.org/10.1145/564691.564733.
[Rehm et al., 2010] Rehm, G., Schonefeld, O., Trippel,
 T., and Witt, A. Sustainability of linguistic resources
 revisited. In: Proceedings of the International Symposium on XML for the Long
 Haul: Issues in the Long-term Preservation of XML. Balisage Series on Markup
 Technologies, vol. 6 (2010). doi:https://doi.org/10.4242/BalisageVol6.Witt01.
[Schmidt, 2001] Schmidt, T. The transcription system EXMARaLDA: An application of the annotation graph formalism as the
 Basis of a Database of Multilingual Spoken Discourse. In: Proceedings of the IRCS
 Workshop On Linguistic Databases. Philadelphia: Institute for Research in Cognitive Science,
 University of Pennsylvania, 2001.
[Schonefeld, 2007] Schonefeld, O. XCONCUR and XCONCUR-CL: A constraint-based approach for the validation of
 concurrent markup. In: Rehm, G., Witt, A., Lemnitzer, L. (eds.), Datenstrukturen
 für linguistische Ressourcen und ihre Anwendungen. Data Structures for Linguistic Resources
 and Applications. Proceedings of the Biennial GLDV Conference 2007, Tübingen, Germany, 2007.
 Gunter Narr Verlag.
[Sperberg-McQueen and Huitfeldt, 2004] Sperberg-McQueen, C. M. and
 Huitfeldt, C. GODDAG: A Data Structure for Overlapping
 Hierarchies. In: King, P. and Munson, E. V. (eds.), Proceedings of the 5th
 International Workshop on the Principles of Digital Document Processing (PODDP 2000), volume
 2023 of Lecture Notes in Computer Science, Springer, 2004.
[Sperberg-McQueen and Huitfeldt, 2008] Sperberg-McQueen, C. M. and Huitfeldt, C. Markup Discontinued
 Discontinuity in TexMecs, Goddag structures, and rabbit/duck grammars. In:
 Proceedings of Balisage: The Markup Conference 2008. Balisage Series on Markup Technologies,
 vol. 1 (2008). doi:https://doi.org/10.4242/BalisageVol1.Sperberg-McQueen01.
[Sperberg-McQueen and Huitfeldt, 2008a] Sperberg-McQueen, C. M. and Huitfeldt, C. GODDAG. Presented
 at the Goddag workshop, Amsterdam, 1-5 December 2008.
[Stegmann and Witt, 2009] Stegmann, J. and Witt, A. TEI Feature Structures as a Representation Format for Multiple Annotation and Generic XML Documents. In: Proceedings of Balisage: The Markup Conference
 2009. Balisage Series on Markup Technologies, vol. 3 (2009).
 doi:https://doi.org/10.4242/BalisageVol3.Stegmann01.

[Stührenberg and Goecke, 2008] Stührenberg, M.
 and Goecke, D. SGF – An integrated model for multiple annotations
 and its application in a linguistic domain. In: Proceedings of Balisage: The
 Markup Conference 2008. Balisage Series on Markup Technologies, vol. 1 (2008). doi:https://doi.org/10.4242/BalisageVol1.Stuehrenberg01.
[Stührenberg and Jettka, 2009] Stührenberg, M. and Jettka, D. A toolkit for multi-dimensional markup: The development of SGF to
 XStandoff. In: Proceedings of Balisage: The Markup Conference
 2009. Balisage Series on Markup Technologies, vol. 3 (2009). doi:https://doi.org/10.4242/BalisageVol3.Stuhrenberg01.

[Tennison, 2002] Tennison, J. Layered Markup and Annotation Language (LMNL). In: Proceedings of Extreme Markup
 Languages, Montréal, Québec, 2002.
[Thompson and McKelvie, 1997] Thompson, H. S. and
 McKelvie, D. Hyperlink semantics for standoff markup of read-only
 documents. In: Proceedings of SGML Europe ’97: The next decade – Pushing
 the Envelope, Barcelona, 1997.
[WebGL, 2011] WebGL Specification. Version 1.0, 10
 February 2011. Khronos Group. https://www.khronos.org/registry/webgl/specs/1.0/.

[Witt, 2002] Witt, A. Multiple
 Informationsstrukturierung mit Auszeichnungssprachen. XML-basierte Methoden und deren Nutzen
 für die Sprachtechnologie. Dissertation, Universität Bielefeld, 2002.
[Witt, 2004] Witt, A. Multiple
 hierarchies: New Aspects of an Old Solution. In: Proceedings of Extreme Markup
 Languages, Montréal, Québec, 2004.
[Witt, et al., 2005] Witt, A., Goecke, D., Sasaki, F., and Lüngen, H. Unification of XML Documents with Concurrent Markup. Literary and Linguistic Computing, 20(1):103–116, 2005. doi:https://doi.org/10.1093/llc/fqh046.

[1] Of course one could easily dig any deeper down to the beginnings of the GenCode(r)
 project and GML, but the point we want to take here is that there is a historic
 relation between markup languages on the one hand and the formal model of a tree on the
 other hand.
[2] It may be of interest that the mention of feature structures in the TEI Guidelines can be traced back to the first proposal (P1) written in Waterloo script. Even this very draft version dated from 1990 covered feature structures as a means for linguistic annotation.
[3] The project Sekimo was a part of the distributed research group Text Technological Modelling of
 Information which lasted from 2003 to 2009.
[4] The stylesheets and corresponding documentation are available at
 http://www.xstandoff.net/tk.html.
[5] Levels refer to the conceptual realization of annotations and layers to the technical
 realization (cf. Goecke et al., 2010). This distinction is reflected by XStandoff
 in providing the corresponding meta elements <xsf:level> and
 <xsf:layer>.

[6] inline2XSF.xsl makes use of Saxon specific extensions
 which are available in the older XSLT 2.0 versions of Saxon (-B and -SA) and the newer
 versions PE and EE; see http://saxon.sourceforge.net/.
[7] Also
 consider the online
 visualization corresponding to Figure 11.
[8] The stylesheet
 XSF2SVG.xsl is available at
 http://www.xstandoff.net/tk.html
[9] See http://www.khronos.org/webgl/wiki/Getting_a_WebGL_Implementation for further details.
[10] See http://www.x3dom.org/ for further details.
[11] The visualization has
 been successfully tested in Google's Chrome 12.0.742.112 and Mozilla Firefox 5.0 except for certain HTML5
 constructs like range inputs on the latter. Support is dependent on the GPU installed – it runs fine on an
 NVIDIA GeForce GT 330M installed in a MacBook Pro, while on other configurations Chrome had to be
 started with the '--ignore-gpu-blacklist' startup parameter while Firefox had to be
 customized via the about:config page and enabling the parameter 'webgl.force-enabled'.

Balisage: The Markup Conference

Visualization of concurrent markup
From trees to graphs, from 2D to 3D
Daniel Jettka
Daniel Jettka recently finished his Master degree in Linguistics after acquiring a BA
 in Text Technology. During his studies he worked together with Andreas Witt, Dieter
 Metzing, Daniela Goecke and Maik Stührenberg in the Sekimo project of the Research Group 437 Text-technological Modelling of Information funded by the German Research
 Foundation on different XSLT stylesheets for the handling and transformation of
 overlapping markup. His Master's Thesis dealt with the representation, processing, and
 visualization of multiple hierarchies with XStandoff and XSLT.

Maik Stührenberg
Maik Stührenberg studied Computational Linguistics at Bielefeld University. He worked
 four years as research assistant at Giessen University in different text-technological
 projects together with Henning Lobin and Georg Rehm. Afterwards, he worked together with
 Andreas Witt, Dieter Metzing, Daniela Goecke and Daniel Jettka in the Sekimo project of the Research Group 437 Text-technological Modelling of Information funded by the German Research
 Foundation and is now employed as research assistant at Bielefeld University finishing his PhD thesis. His main
 research interests include specifications for structuring multiple annotated data, query
 languages, and query processing.

Balisage: The Markup Conference

content/images/Jettka01-009.png
O text O text
obody ©body
olg op
ol Oq

® display overlaps

® display line for character position

POOOOOOL

Asked a girl what she wanted to be
She said baby, canyf you see

I wanna be famous, a star on the screen
But you can do something in between
Baby you can drive my car

Yes I'm gonna be a star

Baby you can drive my car

And baby I love you

content/images/Jettka01-005.png

content/images/Jettka01-006.png
Pehees Ao ke e B 5 o AR i

content/images/Jettka01-007.png
Pehees Ao ke e B 5 o AR i

content/images/Jettka01-008.png
octave sestet () William Butler Yeats
quatrain tercet couplet ()
ine @

or @

s @

Leda and the Swan

A sudden blow: the great wings beating still
Above the staggering girl, her thighs caressed
By the dark webs, her nape caught in his bill,
He holds her helpless breast upon his breast.
How can those terrified vague fingers push
The feathered glory from her loosening thighs?
And how can body, laid in that white rush,

But feel the strange heart beating where it lies?
A shudder in the loins engenders there

The broken wall, the burning roof and tower
And Agamemnon dead. Being so caught up,

So mastered by the brute blood of the air,

Did she put on his knowledge with his power

Before the indifferent beak could let her drop?

content/images/Jettka01-001.png
Alice was beginning to get very
tired of sitting by her sister on the

bank, and of having nothing to .
X and what is
do: once or twice she had peeped
. . the use of a book,
into the book her sister was

reading, but it had no pictures or
conversations in it,

. without pictures

content/images/Jettka01-012.png
‘Asked 2 girlwhat she wanted to be

She said baby. can't you see

I'wanna be famous, a star on the screen
But you can do something in between
Baby you can drive my car

Yes 'm gonna be a star

Baby you can drive my car

And baby | love you

Baby you can drive my car
LIRS

content/images/Jettka01-002.png
The sun shines brighter,

content/images/Jettka01-013.png

content/images/Jettka01-003.png
Replace cassette. Tape is not recarded when recarding button is pressed. No cassette iz loaded. Erase prevention tah is hroken off.

Load cassette. Cover hole with plastic tape.

content/images/Jettka01-014.png
© a0 viuszation of standolt

€« € © x3djettka.comjdrive-ssfhtml

XStandoff visualized by X3D

drive-xsf.xml

il view || Merge layers

Frortview || Resetlayers

Side view

Bamer b
Suingrange: 140235
s neaimodyipE]

]

Layers

content/images/Jettka01-004.png
e

I e
- ~ — — v ~

ke st shemted b he s by, s e mous, 5 on e St 54 g Bt Bl 4 e my < e i g b3 3 Bl yu i vy o A by v erou

content/images/Jettka01-010.png
O text 0 corpus
obody © token
o div

ep

0s

ow

o display overlaps

© display line for character position

XXX XX XX

A kg had thre
e sons whom he
loved equally w
elfyand he did
not know which

of them to app

O text 0 corpus
obody © token
o div

ep

0s

ow

o display overlaps

© display line for character position

XXX XX XX

i

A king had three sons whom he loved equa
1ly welfyand he did not know which of t
hem to appomt as king following his own
death. When the time came for him to di

e he called them to his bed and said, "D

ear cluldren. I have thought of somethin

content/images/Jettka01-011.png
sispeey o unowe oo}
“Sispeiey pauueds Jojunowe

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

