[image: Balisage logo]Balisage: The Markup Conference

Easy XML Serialization of C# and Java Objects
Carlos R. Jaimez-Gonzalez
Associate Professor
Departamento de Tecnologias de la Informacion, Universidad Autonoma Metropolitana - Unidad Cuajimalpa, Mexico

<cjaimez@correo.cua.uam.mx>

Simon M. Lucas
Professor
School of Computer Science and Electronic Engineering, University of Essex, UK

<sml@essex.ac.uk>

Erick J. Lopez-Ornelas
Associate Professor
Departamento de Tecnologias de la Informacion, Universidad Autonoma Metropolitana - Unidad Cuajimalpa, Mexico

<elopez@correo.cua.uam.mx>

Balisage: The Markup Conference 2011
August 2 - 5, 2011

Copyright © 2011 by the authors. Used with permission.

How to cite this paper
Jaimez-Gonzalez, Carlos R., Simon M. Lucas and Erick J. Lopez-Ornelas. "Easy XML Serialization of C# and Java Objects." Presented at: Balisage: The Markup Conference 2011, Montréal, Canada, August 2 - 5, 2011. In Proceedings of Balisage: The Markup Conference 2011.
 Balisage Series on Markup Technologies vol. 7 (2011). https://doi.org/10.4242/BalisageVol7.Jaimez01.

Abstract
Object serialization is the process of rendering an object into a state that can be stored persistently.
 Serializing objects to XML brings many advantages over binary encoding because XML is human and computer readable,
 and it also aims to have better interoperability between different programming languages. This paper presents
 Web Objects in XML (WOX), an efficient and easy to use XML serializer for C# and Java objects. It allows to serialize
 Java objects to XML, de-serialize them to C#, and viceversa. Our serialization approach does not need code annotations
 or any other type of configuration from the user in order to serialize objects. The XML encoding used in our WOX serializer can
 represent objects in other object-oriented programming languages. We describe the main features and uses of the WOX serializer,
 its implementation, and the XML representation generated along with some examples.

Balisage: The Markup Conference

 Easy XML Serialization of C# and Java Objects

 Table of Contents

 	Title Page

 	Introduction

 	Existing XML Serializers

 	WOX Features and Uses

 	WOX Implementation

 	WOX XML Representation
 	Data Type Mapping Table

 	Simple object with primitive types

 	Uni-dimensional primitive arrays

 	Multi-dimensional primitive arrays

 	Object arrays

 	Lists

 	Maps

 	Object references

 	Conclusions and Further Work

 	About the Authors

 Easy XML Serialization of C# and Java Objects

Introduction
Object serialization is the process of rendering an object into a state that can be stored persistently.
 Serializing objects to XML brings many advantages over binary encoding because XML is human and computer readable,
 and it also aims to have better interoperability between different programming languages. Interoperability is
 an important issue in distributed object-based systems, because it allows the communication of
 programs (clients and servers) written in different object-oriented programming languages. There are some fundamental
 issues that have to be agreed by the different programming languages to be able to reach interoperability. Some of these
 are related to the data type mapping, object representation, messages, serialization and de-serialization.
Data type mapping. Data types are one of the main issues when it comes to interoperability between different
 programming languages. There must be an agreed mapping between the data types in the programming language X and the data
 types in the programming language Y. One way to solve this problem is a mapping table with the different data types
 supported by the different programming languages.
Object representation. There must be a standard way of representing objects, either the object is written in Java,
 C#, or other object-oriented programming language. A standard format must be established to represent the supported
 structures in the different programming languages: classes, primitive data types, arrays, and user-defined classes.
 This must also include a standard way to represent remote object references.
Messages. They represent the way clients and servers communicate. Messages are used to make requests or receive
 responses, and they must also be written in a standard way to be understood by clients and servers.
Serialization and de-serialization. In the context of data storage and transmission, serialization is the process
 of rendering an object into a state that can be saved persistently into a storage medium, such as a file, database, or
 a stream to be transmitted through the network. De-serialization is the opposite process, which puts the serialized
 version of the object into a live object. Serialization and de-serialization are processes heavily used when dealing
 with distributed object-based systems.
In this paper we present Web Objects in XML (WOX), an efficient and easy to use XML serializer for interoperability
 between the C# and Java programming languages. The WOX serializer is a stand-alone library based on XML (woxSerializer.jar
 for the Java programming language, and woxSerializer.dll for the C# programming language), which is able to serialize
 Java and C# objects to XML and back again. One of its main features is the generation of standard XML, which is language
 independent. This means that if we serialize a Java object to XML, we could take the generated XML to reconstruct the
 object back to C#; and viceversa. It is worth noticing that our serialization approach does not need code annotations
 or any other type of configuration from the user in order to serialize objects.
We have made our WOX serializer publicly available as an open-source project,
 which can be downloaded from http://woxserializer.sourceforge.net/. It must be noticed that the
 WOX serializer presented in this paper is an improved and interoperable version of the serializer that is part of
 the WOX framework reported in [Jaimez 2007], which has been used to develop distributed object-based applications.
 Many people have been using our WOX interoperable serializer since we made it available. As a consequence of this work,
 the MSDN Magazine (a Microsoft Magazine) published an article, in its October 2010 issue [Khan 2010], about interoperability between
 Java and .NET, where they mention and recommend the use of our work for interoperability between applications. We consider this as a
 valuable example that demonstrates that our work has had an impact on the MSDN community.
The rest of the paper is organized as follows. Existing XML serializers are discussed in the next section.
 A following section describes the main features and uses of the WOX serializer. Then, we dedicate another section to the implementation
 of the WOX serializer. The XML representation generated by the WOX serializer is presented in a subsequent section along with some examples.
 Finally, conclusions and further work are discussed in the final section.

Existing XML Serializers
We have not found any out of the box XML serializer to interoperate
 between different programming languages. In this section we present a series of frameworks and libraries to
 serialize objects to XML. All of the libraries explored (except one of them) are not able to generate a standard
 XML object representation to interoperate between different programming languages.
XStream. This is a Java library [XStream 2010] to serialize objects to XML and back again. XStream is able
 to serialize most objects without the need for custom mappings. The XML generated is easy to understand. One of
 its features is the use of aliases, which offer a way to use different tags or attribute names in the XML produced.
 Class types, package names, and field names can be mapped to XML tags. This library is a good option to have an
 object serialized to XML, but the main limitation is that it is only implemented in Java.
Koala. Koala XML serialization [Koala 1998] is a Java application that provides a way to serialize and
 de-serialize any Java objects in an XML document. The serialization mechanism of Koala relies in the Java
 Serializable interface. This application is called KOML for Koala Object Markup Language, which is also a 100%
 pure Java solution. The website of this project has not been updated since 1998.
XMOP. XML Metadata Object Persistence [XMOP 2000] allows some degree of interoperability between object
 technologies such as Java, and Microsoft COM. In the case of Java, it provides automatic serialization capabilities
 only for simple classes. For those classes that contain string and array members, developers have to hand code the
 serialization methods. In the case of COM, it does not provide automatic serialization for simple nor complex objects.
 Developers have to code COM serialization/persistence through some interfaces provided. XMOP employs the Simple
 Object Definition Language (SODL) and its DTD. Using introspection an object is serialized in the XMOP document format,
 which is a description of the interfaces, properties and methods of an object. Although the XML representation
 generated by XMOP is interoperable between programming languages, the developer has to do considerable effort to hand
 code the serialization methods for the objects to be serialized.
JSX. Java Serialization to XML [JSX 2002] serializes only Java objects to XML. JSX can persist any Java object in
 a human readable format, where the XML generated is nice and clean. Another of its benefits is that it provides the
 evolution techniques of the Java Object Serialization. This library used to be free, but it now provides a trial period
 of 30 days, after which the user must pay to use it.
Castor. The Castor project [Castor 2010] is an open source data binding framework for Java. It provides Java-to-XML
 binding and Java-to-SQL persistence. The Java-to-XML framework enables the user to deal with the data defined in an XML
 document through an object model which represents that data. Castor can marshal almost any Java object to and from XML.
 One restriction is that the Java classes of the objects to be serialized must follow the Java Bean conventions. Castor
 uses a set of class descriptors and field descriptors to describe how an object should be serialized and de-serialized
 from XML. Castor can work in two different modes: the introspection mode does not require any configuration from the
 user; but in the mapping mode, the user provides a user-defined mapping file that allows the definition of a customized
 mapping between Java classes and XML.
JAXB. The Java Architecture for XML Binding [JAXB 2010] is a framework for processing XML documents. Unmarshalling
 an XML document with JAXB results in a tree of objects, with the nodes in this tree corresponding to XML elements, which
 contain attributes and the content as instance variables. In order to extract this information and convert it to objects
 from the XML document it is needed an XML Schema (which defines the structural relationships and data types). The XML
 Schema is compiled, and a set of Java classes is generated, which define the types required for accessing elements,
 attributes and other content. In this approach the user is required to know the structure of the XML document, and
 create an XML Schema in order to map it to Java objects.
Although there are other existing libraries to serialize objects or messages to XML and viceversa, they are not
 stand-alone, but they are part of a framework for web services, such as XML-RPC [Winer 1999], or those that implement
 the SOAP standard [SOAP 2003]. Web service frameworks like those use XML serialization internally, and are out
 of the scope of this paper.
The next section presents some of the main features of our WOX serializer, which can be used to generate standard
 XML representations of objects, and is able to interoperate between C# and Java.

WOX Features and Uses
The main features of the WOX serializer are listed below.
 	Stand-alone. It runs as a stand-alone library to serialize and de-serialize Java or C# objects.

	Easy to use. There is an Easy class, in both programming languages, that provides serialization and de-serialization methods.

	Simple XML. The XML generated by the WOX serializer is simple, easy to understand, and language independent.

	Classes require no modifications. The classes of objects to be serialized do not require to be changed with default
 constructors, getters, setters, or any other modifications.

	Field visibility. Private fields in classes are serialized just as any other field. The WOX serializer serializes
 fields regardless their visibility.

	Interoperability between Java and C#. WOX can serialize a Java object to XML, and reconstruct the XML back to a C#
 object; and viceversa.

	Standard XML object representation. This could potentially allow to have WOX serializers in different object-oriented
 programming languages. There are two WOX serializers already developed: one for Java, and one for C#.

	WOX data types mapping. There is a WOX mapping table that specifies how data types in Java and C# are mapped to WOX data types.

	Robust to class changes. If classes change, default values will be used for newly added fields.

	Arrays. Uni-dimensional and multi-dimensional arrays of primitive types and objects of any class are handled by the serializer.

	Base-64. Byte arrays are base-64 encoded for efficiency.

	Collection classes. Lists and Maps are provided as WOX data types. They are mapped to the ArrayList
 and HashMap classes in Java; and the ArrayList and Hashtable classes in C#.

	Object references. TheWOX serializer is capable to handle duplicate and circular object references with id and idref attributes.

	Class and Type. Objects of these classes are saved by their String name.

	Small footprint. The woxSerializer.jar file (which contains only .class files) is only 25KB.

The WOX serializer can be used by any program that needs to interoperate between C# or Java, or simply to serialize
 objects to XML from any of those programming languages. Some of the purposes where the WOX serializer can be used are listed below.
 	Transport an object. Serializing an object allows you send it through a network. Then it can be reconstructed at the other end.

	Store an object. Persisting objects with the WOX serializer is easy. You can use them later by reconstructing them to the
 appropriate programming language.

	Represent an object in a standard format. The XML generated byWOX aims to be independent of the programming language in which
 the object was created.

	Work with Java and C# objects. Java and C# objects can be serialized and de-serialized to and from XML.

	Testing. An object can be serialized to inspect its current state (fields and nested objects). This can help for debugging purposes.

	Duplicate an object. Serialization is an easy way to duplicate objects.

WOX Implementation
The implementation of the WOX serializer is described in this section through three different flow charts, which
 illustrate how the WOX serializer writes any object to XML. This section has also been presented in [Jaimez 2011].
 The flow chart in Figure 1 shows
 the base functionality. There are some notes indicated with numbers inside a dotted square (A1 to A7) which are explained
 below.
Figure 1: Flow chart A
[image:]
Flow chart A: Base of the WOX serializer.

A1. We represent a NULL object as an EMPTY object in XML.
A2. We use a Map to store object references. This avoids the duplication of objects in the XML representation, and
 the unnecessary serialization processing of objects that were already serialized. This Map is also used to handle adequately
 recursive object references, because the serializer puts an object in the Map as soon as it goes through it (it is the first
 step in the serialization process). This means that if this object is nested inside another object, the serializer will not
 serialize it again, because when it reaches this object, the serializer will find out that its reference is already in the Map,
 which handles the problem of recursive references.
A3. If the object is already in the Map, it is not necessary to serialize it again (a reference to the object will be
 stored instead). The Map is populated as the serializer finds new objects. The idref XML attribute specifies the
 object id in the Map that corresponds to the object found. It is important to notice that the
 id and idref attributes are not the same as those normally used in the XML sense; but they
 are used to identify uniquely objects that have already been serialized.
A4. We say that an object is stringable if it is of any of the following classes: Byte, Short,
 Integer, Long, Float, Double, Character, Boolean,
 Class, String.
A5. Other objects in their stringable versions can be seen below.
<object type="boolean" value="true" id="11" />
<object type="char" value="\u0009" id="15" />
<object type="int" value"785" id="21" />

A6. The serializer will process the array. The process to serialize an array is illustrated in the Flow chart B shown in Figure 2.
A7. At this point the serializer has found another type of object (not a stringable object, not an array). It is a
 user-defined class or other type of object not covered in the previous cases. The serializer will write this object,
 and go through each of its fields (attributes) to serialize them. The process to serialize each of the object fields
 (attributes) is illustrated in Figure 3.
The flow chart in Figure 2 shows the functionality of the WOX serializer to deal with
 arrays. The flow chart has some notes indicated with numbers inside a dotted square (B1 to B3), which are explained below.
Figure 2: Flow chart B
[image:]
Flow chart B: Arrays.

B1. The serializer checks the class of the object against an array that holds all the possible primitive uni-dimensional arrays.
B2. It is not a uni-dimensional array. It could be a n-dimensional array, or an array of objects of user-defined classes.
B3. The type of the primitive array found is any of the following: int, boolean, short,
 long, char, float or double. Some examples of primitive arrays serialized to XML
 by the WOX serializer are shown below.
<array type="int" length="6" id="10">45 67 78 32 34 79</array>
<array type="char" length="3" id="19">\u0065 \u0004 \u0067</array>

The flow chart in Figure 3 shows the functionality of the WOX serializer to deal with fields of an object. The
 flow chart has some notes indicated with numbers inside a dotted square (C1 to C3), which are explained below.
Figure 3: Flow chart C
[image:]
Flow chart C: Fields of an object.

C1. The WOX serializer considers the following as primitive data types: byte, short,
 int, long, float, double, char, boolean.
C2. In this case stringable objects are treated as fields of a parent object. A stringable object is not labeled
 as object when it is the field of another object (observe that it also lacks of the id attribute). This aims to have
 a more compact encoding.
C3. An example of the XML generated for a field of an object is shown below. The field is an object of type
 ser.Person, which also has two more fields: name of type string, and
 age of type int.
<field name="fieldName">
 <object type="ser.Person" id="9">
 <field name="name" type="string" value="Carlos" />
 <field name="age" type="int" value="30" />
 </object>
</field>

WOX XML Representation
In this section we will introduce the data type mapping
 table used by WOX, and show the XML representation of different types of WOX objects: simple objects with primitive types,
 uni-dimensional primitive arrays, multi-dimensional primitive arrays, object arrays, lists, maps, and user-defined
 objects (which also have fields with different types of objects).
Data Type Mapping Table
Table 1 shows the data type mapping used in WOX with the Java and C# programming languages. The
 first column shows the data types used in WOX, and the second and third columns represent the
 corresponding data types in Java and C#, respectively.
Table I
Data type mapping between WOX, Java and C#

	WOX	Java	C#
	byte	byte/Byte	sbyte (SByte)
	short	short/Short	short (Int16)
	int	int/Int	int (Int32)
	long	long/Long	long (Int64)
	float	float/Float	float (Single)
	double	double/Double	double (Double)
	char	char/Character	char (Char)
	boolean	boolean/Boolean	bool (Bool)
	string	String	string (String)
	object	Object	object (Object)
	array	Any Array	Any Array
	list	ArrayList	ArrayList
	map	HashMap	Hashtable
	class	Class	Type

The WOX serializer produces the same XML representation for any object, provided that their fields
 are only the Java and C# data types listed in Table 1, or any nested objects of user-defined classes which
 have fields of those data types. This also includes the list and map data types from the collection APIs
 of both programming languages.

Simple object with primitive types
In this subsection we illustrate the XML representation of WOX primitive types, which include:
 byte, short, int, long, float,
 double, char, and boolean. The complete list of the data types
 supported by WOX is shown in Table 1.
Figure 4 shows the Product class, which has five fields of primitive types: name
 of type string, price of type double, grams of type
 int, reg of type boolean, and categ of type char.
Figure 4: Product class
[image:]
Product class with primitive fields.

The XML representation in WOX of a Product object is shown below. The XML is simple and clean.
<object type="Product" id="0">
 <field name="name" type="string" value="Corn" />
 <field name="price" type="double" value="3.98" />
 <field name="grams" type="int" value="500" />
 <field name="reg" type="boolean" value="true" />
 <field name="categ" type="char" value="\u0041" />
</object>

The root of the XML document is an object element, with its type attribute
 equals Product, which is the class of the object. The id attribute is used to handle
 object references (in this case we only have one object - the product object). Every field in the
 product object is represented by field elements, which have the following attributes:
 name (the name of the field in the class), type (the WOX data type of the field),
 and value (the value of the field for that particular object). Primitive types are represented in
 WOX as field elements.
Observe that the categ field is of type char. WOX data type char
 is represented as a Unicode value.

Uni-dimensional primitive arrays
Uni-dimensional primitive arrays contain primitives as their elements. Primitives include the following
 data types: byte, short, int, long, float,
 double, char, and boolean. For a complete list of the data types supported
 by WOX see the Data types mapping table.
Primitive arrays are treated differently from other arrays, because they are serialized in a very efficient way.
 We will show two examples of the XML representation for primitive arrays. The first one is a stand-alone array,
 in which the array itself is the root object. In the second example, the primitive array is part of an object (it
 is declared as a field in a class).
The XML representation of a stand-alone primitive array is shown below. The XML is simple and efficient. The
 root is an object element, with its type attribute equals array, which
 indicates that the object represented in this case is an array. The elementType attribute provides the
 data type of the primitive array, and the length attribute indicates the number of elements in the array.
 The id attribute is used to handle object references (in this example we only have one object - the
 array itself). The elements of the array are separated by spaces, and presented as only one string.
<object type="array" elementType="double" length="5" id="0">
 12.45 878.98 987.98 435.87 537.87
</object>

The XML representation of an object that contains three uni-dimensional primitive arrays as fields is shown
 below. The primitive arrays are declared as fields of the TestArray class, which is illustrated in
 Figure 5.
Figure 5: TestArray class
[image:]
TestArray class with three primitive array.

In this case, the arrays are not root objects, but they are now fields of the root object. The codes
 field is a primitive array of char elements, the values field is a primitive array of
 int elements, and the answers field is a primitive array of boolean elements.
 It should be noticed that arrays are also objects with their type attribute equals array.
<object type="TestArray" id="0">
 <field name="codes">
 <object type="array" elementType="char" length="5" id="1">
 \u0065 \u0074 \u0072 \u0067 \u0077
 </object>
 </field>
 <field name="values">
 <object type="array" elementType="int" length="5" id="2">
 23 56 78 33 69
 </object>
 </field>
 <field name="answers">
 <object type="array" elementType="bool" length="5" id="3">
 true false true false false
 </object>
 </field>
</object>

The root is an object element, with the type attribute equals TestArray,
 which is the class of the root object. The root element has three field elements as children, which correspond to
 the three primitive arrays. Each array is a field of the root object, and they are treated as object
 elements, with type, elementType, lenght, and id attributes. The
 elements of each array are separated by spaces and written as one simple string.

Multi-dimensional primitive arrays
Multi-dimensional primitive arrays can also be serialized as stand-alone arrays, or as part of an object. Below
 we show the XML representation of an object of the TestMultiArray class. The TestMultiArray
 class, which is illustrated in Figure 6, has one bi-dimensional array of int elements as its field.
<object type="TestMultiArray" id="0">
 <field name="matrix">
 <object type="array" elementType="int[]" length="3" id="1">
 <object type="array" elementType="int" length="5" id="2">23 56 89 36 68</object>
 <object type="array" elementType="int" length="4" id="3">87 64 88 32</object>
 <object type="array" elementType="int" length="6" id="4">78 80 21 29 34 67</object>
 </object>
 </field>
</object>

Figure 6: TestMultiArray class
[image:]
TestMultiArray class with one multi-dimensional primitive array as field.

We can observe that the root is an object element, with its type attribute equals
 TestMultiArray, which is the class of the root object. The root element has only one child: a
 field element, which is a bi-dimensional primitive array. Since this is a bi-dimensional array, it
 is actually serialized as an array of arrays. It is an array of three elements of type int[], where
 every element is an array of type int. The first array has five elements, the second array has four
 elements, and the last array has six elements. The elements of each array are separated by spaces and presented
 as one simple string.
It should be noted that every object element has an id attribute, which is used to
 handle object references. Arrays of more than two dimensions (multi-dimensional) are represented in XML following the
 same idea shown in this subsection.

Object arrays
The main difference between primitive arrays and object arrays is that the elements in primitive arrays are
 serialized to a simple string with spaces to separate each element; whereas in object arrays their elements are
 treated as individual and separate objects.
Object arrays can also be uni-dimensional or multi-dimensional, just like primitive arrays. We will only illustrate
 the XML representation of a uni-dimensional object array. We will use the Product class shown previously
 in Figure 4. The XML representation of an array with three Product objects is
 shown below.
<object type="array" elementType="Product" length="3" id="0">
 <object type="Product" id="1">
 <field name="name" type="string" value="Beans" />
 <field name="price" type="double" value="1.75" />
 <field name="grams" type="int" value="250" />
 <field name="reg" type="boolean" value="true" />
 <field name="categ" type="char" value="\u0042" />
 </object>
 <object type="Product" id="2">
 <field name="name" type="string" value="Rice" />
 <field name="price" type="double" value="3.89" />
 <field name="grams" type="int" value="750" />
 <field name="reg" type="boolean" value="true" />
 <field name="categ" type="char" value="\u0052" />
 </object>
 <object type="Product" id="3">
 <field name="name" type="string" value="Bread" />
 <field name="price" type="double" value="1.06" />
 <field name="grams" type="int" value="300" />
 <field name="reg" type="boolean" value="false" />
 <field name="categ" type="char" value="\u0048" />
 </object>
</object>

The root is an object element, which is the array of three Product objects.
 The elementType attribute specifies the date type of the array, and the length attribute
 indicates the number of elements in the array.
Each product in the array has type and id attributes, and five field
 elements (children) to represent the five fields in a Product object: name, price,
 grams, reg, and categ. Every field element specifies the name,
 type, and value attributes.

Lists
Lists are similar to arrays in WOX. A List in WOX is the equivalent to
 java.util.ArrayList in Java, and System.Collections.ArrayList in C#, as can be seen in Table 1
 previously shown. A List in WOX is represented in a simple form, and can be de-serialized either to Java or C#.
The XML representation of a list of Course objects is shown below. The Course class, which is
 illustrated in Figure 7, has three fields: code of type int, name of type
 string, and term of type int.
<object type="list" elementType="Object" length="3" id="0">
 <object type="Course" id="1">
 <field name="code" type="int" value="6756" />
 <field name="name" type="string" value="XML" />
 <field name="term" type="int" value="3" />
 </object>
 <object type="Course" id="2">
 <field name="code" type="int" value="9865" />
 <field name="name" type="string" value="DB" />
 <field name="term" type="int" value="2" />
 </object>
 <object type="Course" id="3">
 <field name="code" type="int" value="1134" />
 <field name="name" type="string" value="Java" />
 <field name="term" type="int" value="2" />
 </object>
</object>

Figure 7: Course class
[image:]
Course class with three fields.

The root is an object element, which represents the list of three Course objects. Each
 course has its type, and id attributes, and its three field elements
 (children): code, name, and term. Every field element specifies its
 name, type, and value attributes.

Maps
A Map is an object that maps keys to values. A map cannot contain duplicate keys, and each key can map
 to at most one value. A Map in WOX is the equivalent to java.util.HashMap in Java, and
 System.Collections.Hashtable in C#, as can be seen in Table 1 previously shown. A Map in WOX
 is represented in a simple form, and can be de-serialized either to Java or C#.
The XML representation of a map of Course objects is shown below. The Course class,
 which is illustrated in Figure 7, has three fields: code of type int, name of type
 string, and term of type int.
<object type="map" id="0">
 <object type="entry">
 <object type="int" value="1134" id="1" />
 <object type="Course" id="2">
 <field name="code" type="int" value="1134" />
 <field name="name" type="string" value="Java"/>
 <field name="term" type="int" value="2" />
 </object>
 </object>
 <object type="entry">
 <object type="int" value="6756" id="3" />
 <object type="Course" id="4">
 <field name="code" type="int" value="6756" />
 <field name="name" type="string" value="XML" />
 <field name="term" type="int" value="3" />
 </object>
 </object>
 <object type="entry">
 <object type="int" value="9865" id="5" />
 <object type="Course" id="8">
 <field name="code" type="int" value="9865" />
 <field name="name" type="string" value="DB" />
 <field name="term" type="int" value="2" />
 </object>
 </object>
</object>

The root is an object element, which is the map of four entry objects. Each
 entry object has two children: the first object represents the key, and the second object is the value
 associated with that key. The key is an object of type int, and the value is an
 object of type Course. The XML representation of a Course object was previously explained.

Object references
In order to avoid duplicate objects in the XML representation of an object, the WOX serializer uses object references,
 which are handled by using id and idref attributes. Figure 8 shows an array of Product
 objects with duplicates.
Figure 8: Object references
[image:]
Array of Product objects with duplicates.

The use of object references in the XML representation of this array of Product objects is illustrated
 below. The Product class was introduced previously, which has five attributes: name
 of type string, price of type double, grams of type int,
 reg of type boolean, and categ of type char.
<object type="array" elementType="Product" length="6" id="0">
 <object type="Product" id="1">
 <field name="name" type="string" value="Beans" />
 <field name="price" type="double" value="1.75" />
 <field name="grams" type="int" value="250" />
 <field name="reg" type="bool" value="true" />
 <field name="categ" type="char" value="\u0042" />
 </object>
 <object type="Product" id="2">
 <field name="name" type="string" value="Rice" />
 <field name="price" type="double" value="3.89" />
 <field name="grams" type="int" value="750" />
 <field name="reg" type="bool" value="true" />
 <field name="categ" type="char" value="\u0052" />
 </object>
 <object idref="1" />
 <object type="Product" id="3">
 <field name="name" type="string" value="Bread" />
 <field name="price" type="double" value="1.06" />
 <field name="grams" type="int" value="300" />
 <field name="reg" type="bool" value="false" />
 <field name="categ" type="char" value="\u0048" />
 </object>
 <object idref="3" />
 <object idref="1" />
</object>

The duplicated Product objects in the array are not duplicated in the XML representation that WOX
 generates. They are referenced by using the idref attribute, which actually refers to the unique
 id given to every object. It can be observed that the XML representation of the array has the three
 object references for the duplicated objects (two for product p1 identified by id="1",
 and one for product p3, identified by id="3".

Conclusions and Further Work
In this paper we have presented Web Objects in XML (WOX), an efficient and easy to use XML serializer for
 interoperability between the C# and Java programming languages. The WOX serializer is a stand-alone library based on XML
 which is able to serialize Java and C# objects to XML and back again. One of its main features is the generation of standard
 XML, which is language independent. This means that if we serialize a Java object to XML, we could take the generated XML
 to reconstruct the object back to C#; and viceversa. Our serialization approach does not need code annotations or any other
 type of configuration from the user in order to serialize objects.
We have made our WOX serializer publicly available as an open-source project, which can be downloaded from
 http://woxserializer.sourceforge.net/. As a consequence of this work,
 the MSDN Magazine (a Microsoft Magazine) published an article, in its October 2010 issue [Khan 2010], about interoperability between
 Java and .NET, where they mention and recommend the use of our work for interoperability between applications. We consider this as a
 valuable example that demonstrates that our work has had an impact on the MSDN community.
In this paper we described the main features and uses of the WOX serializer, and we also dedicated a section to give its implementation
 details. We showed the XML representation for the most representative structures and objects in both Java and C#, along with
 some examples. We believe that the XML object representation that WOX uses is efficient, clean, easy to understand, and can
 represent objects in other object-oriented programming languages. Further work is needed to develop our XML serializer in other
 object-oriented programming languages, and allow interoperability among them. We have already started our analysis to develop
 a WOX serializer for the C++ object-oriented programming language.

Bibliography
[Castor 2010] Castor. The Castor Project, 2010, available at
 http://www.castor.org/.
[SOAP 2003] WWW Consortium. Latest SOAP Versions, 2003, available at
 http://www.w3.org/tr/soap/.
[Jaimez 2007] Jaimez, C., Lucas, S., Implementing a State-based Application Using Web Objects in XML,
 In Proceedings of the 9th International Symposium on Distributed Objects, Middleware, and Applications (DOA 2007),
 Lecture Notes in Computer Science, Volume 4803/2007, pp. 577-594,
 Vilamoura, Algarve, Portugal, 25-30 November 2007, available at
 http://www.springerlink.com/content/u842871w0l551002/.
[Jaimez 2011] Jaimez, C., Lucas, S., Interoperability of Java and C# with Web Objects in XML,
 In Proceedings of the IADIS International Conference e-Society (ES 2011), pp. 518-522,
 Avila, Spain, 10-13 March 2011, available at
 http://www.iadisportal.org/e-society-2011-proceedings.
[JAXB 2010] JAXB: The Java Architecture for XML Binding, 2010, available at
 https://jaxb.dev.java.net/.
[JSX 2002] JSX: Java Serialization to XML, 2002, available at
 http://jsx.org/.
[Khan 2010] Khan, I., Interoperability: Runtime Data Sharing Through an Enterprise Distributed Cache,
 MSDN Magazine, October 2010, available at http://msdn.microsoft.com/en-us/magazine/gg232763.aspx.
[Koala 1998] Koala XML serialization, 1998, available at
 http://old.koalateam.com/xml/serialization/.
[Winer 1999] Winer D. XML-RPC specification, 1999, available at
 http://www.xmlrpc.com/spec.
[XMOP 2000] XMOP: XML Metadata Object Persistence, 2000, available at
 http://www.openhealth.org/documents/xmop.htm/.
[XStream 2010] XStream: A Java Library to Serialize Objects to XML, 2010, available at
 http://xstream.codehaus.org/index.html/.

Balisage: The Markup Conference

Easy XML Serialization of C# and Java Objects
Carlos Jaimez-Gonzalez
Associate Professor
Departamento de Tecnologias de la Informacion, Universidad Autonoma Metropolitana - Unidad Cuajimalpa, Mexico

<cjaimez@correo.cua.uam.mx>
Carlos is currently an Associate Professor at the Information Technology
 Department of the Universidad Autonoma Metropolitana in Mexico City, where he is responsible of the
 Web Technologies and Systems Research Group. He holds a PhD from the School of Computer
 Science and Electronic Engineering of the University of Essex, UK. His research interests include
 web services, distributed objects, XML and related technologies, interoperability, systems integration,
 web application development, and technologies for enhancing education.
Carlos has also been involved in several software projects for the industry; working as a Software
 Developer, Team Leader, and Database Officer. He is a Microsoft Certified Systems Engineer (MCSE),
 Database Administrator (MCDBA), and Solution Developer (MCSD).

Simon Lucas
Professor
School of Computer Science and Electronic Engineering, University of Essex, UK

<sml@essex.ac.uk>
Simon M. Lucas is a Professor of Computer Science at the University of Essex, UK. His main research interests
 are in machine learning and games. He has published widely in these fields with over 130 peer-reviewed papers and
 is the Founding Editor-in-Chief of the IEEE Transactions on Computational Intelligence and AI in Games.
Professor Lucas was chair of IAPR Technical Committee 5 on Benchmarking and Software (2002–2006) and is the
 inventor of the scanning n-tuple classifier, a fast and accurate OCR method. He was appointed inaugural chair of
 the IEEE CIS Games Technical Committee in July 2006, has chaired or co-chaired many international conferences,
 including the First IEEE Symposium on Computational Intelligence and Games in 2005. He is also an associate editor
 of the IEEE Transactions on Evolutionary Computation, and the Springer Journal of Memetic Computing. He was an
 invited keynote speaker or tutorial speaker at IEEE CEC 2007, IEEE WCCI 2008, IEEE CIG 2008, PPSN 2008,IEEE CEC 2009
 and IEEE CEC 2010. He leads the newly established Game Intelligence Group at the University of Essex.

Erick Lopez-Ornelas
Associate Professor
Departamento de Tecnologias de la Informacion, Universidad Autonoma Metropolitana - Unidad Cuajimalpa, Mexico

<elopez@correo.cua.uam.mx>
Erick is currently an Associate Professor at the Information Technology
 Department of the Universidad Autonoma Metropolitana in Mexico City. He holds a PhD from the Universite
 Paul Sabatier (France). He worked as researcher in the high resolution remote perception laboratory
 in Toulouse, France, in the areas of processing of high resolution satelital images, and geographical
 information systems. His research interests include the analysis of high resolution images,
 and the processing, visualization, and extraction of knowledge from spatial information.

Balisage: The Markup Conference

content/images/Jaimez01-008.jpg
Product[]

‘DW p2 | p1 | p3 | p3 | p1

Produ Product: p2 Product: p3
name="Beans" name="Rice" name="Bread"
price=1.75 price=3.89 price=1.06
grams=250 grams=750 grams=300
reg=true reg=false
categ=F' categ=H

content/images/Jaimez01-007.jpg
Course

~code: int
- name: String
- term int

content/images/Jaimez01-006.jpg
TestMultiArray
matrix: int{J[]

content/images/Jaimez01-005.jpg
TestArray

- codes: char[]
~values: int[]
- answers: boolean[]

content/images/Jaimez01-004.jpg
Product

-name: String
- price: double
- grams: int
- reg: boolean
- categ char

content/images/Jaimez01-003.jpg
For each field
of an object

P
o the field™ Examples of the XML to be returned
AGE yterisld” type="byts" value=r4s" />
8 pomitive et nEField” type="int" valus="g509" />

harFisld” type=

S type?
/Di//

char” valus="\u0004” />

No

s
Ts the field ™ Yes
a stringable oS

<

<field name="strField" type="

Example ofthe XML to be returned

string” valus="Carlos” />

2
~~_object?
\\J\/ -
| no
v
The field is another type of abject (array, user-defined dlass, etc.)

The serializer will write the following XML
<field name="ficldName">

It will then serialize the object that represents this field, by
following the Flow chart A: Base of the WOX serializer.

content/images/Jaimez01-002.jpg
The object is
an array

b
s it a primitive Yes Is it an array . Yes

uni-dimensional of byte?
array? P
%
Y — No No

At a primitive

~_n-dimensional
~_aray?

The serializer will setthe
type of the array, and

write it to XML. Example:
<array type="int[][]"
length="4" id="20">

Itis an array of user-defined
objects. The serializer will set
the type of the array, and
write it to XML. Example

<array type="ser.Person”

iy

Length="3" id="i%

The serializer will go through all the elements ofthe array.

For each element (object) in the array, it wil follow the
Flow chart A: Base of the WOX serializer

The serializer converts the array of
byte using Baseb4 encoding

Example of the XML to be retumed
<array type="byts" length="16"
1d="10">CQsWLSWIQKIYYW=</ array>

The serializer takes the array and
makes a string of it, separating every
element with a blank space

Examples of the XML to be retumed.

<array type="double" length=r4"
id="12753.4 4.6 5.8 7.9</array>

<array typs="boolean” length="3"
id="177>true false trus</array>

content/images/Jaimez01-001.jpg
object == NULL

.

No

Example ofthe XML to be returned (A1)

<object />

=~
" lIsthe Yes

object in the /3—F
Map?

The serializer returns a reference to
the object that is already in the Map.
—{A3
Example ofthe XL to be returned :
<object idref="3" />

The serilizer puts the
object in the Map

)

\

Is the

Yes
object stringable?]

The serializer returns the stringable version of the object.

Examples of the XML to be retumed
int” value="585" id="6" />
String” value="Carlos” id="8" />

double” value"s.&" id="10" />

Is the Yes

objectan

The serializer processes the array. It will follow the
Flow chart B: Arrays.

array? -

It is another type of object. The serializer will set the
type ofthe object, and wite it to XML. Example

<object type="ser.Person” id="8">

The serializer will go through all the fields (attributes) of
the object. For each field (atribute) of the object, it will
follow the Flow chart C: Fields of an object.

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

