[image: Balisage logo]Balisage: The Markup Conference

Graciously handling a level of change in a complex specification
Configuration management for community-scale implementation of an HL7v3 messaging
 specification
Charlie McCay
Ramsey Systems Ltd

Michael Odling-Smee
XML Solutions Ltd

Joseph Waller
XML Solutions Ltd

Ann Wrightson
IT Consultant - Technical Architecture
Informing Healthcare (NHS Wales)

Balisage: The Markup Conference 2009
August 11 - 14, 2009

Copyright © 2009 C. McCay, M. Odling-Smee, J. Waller, A. Wrightson.

How to cite this paper
McCay, Charlie, Michael Odling-Smee, Joseph Waller and Ann Wrightson. "Graciously handling a level of change in a complex specification." Presented at: Balisage: The Markup Conference 2009, Montréal, Canada, August 11 - 14, 2009. In Proceedings of Balisage: The Markup Conference 2009.
 Balisage Series on Markup Technologies vol. 3 (2009). https://doi.org/10.4242/BalisageVol3.Wrightson01.

Abstract
The concept of a flexible and yet also breakable interface is central to
 successful configuration and version management for a messaging specification.
 Changes which are made to a message or message definition should not affect systems
 or design teams that are not concerned with the subject of the change. However,
 changes causing unexpected behaviour or misinterpretation of a message should ‘break
 the interface’ thus making it impossible for systems to unknowingly use a changed
 message in a way which may hold clinical safety or other risks. Achieving these
 features in a complex specification with a diverse implementation community is not a
 simple matter. However, there are several measures that could be beneficial.
 Applying the kind of configuration management discipline that is well known for
 complex software artefacts to the development of a complex specification is likely
 to be cost-effective, even though the tools available are less mature. A combined
 strategy of representing key aspects of design configuration not only within the
 specification artefacts published to the implementation community, but also as a
 matrix documenting expected impacts, and within message instances in live operation,
 is also promising as a way to enable gracious handling of change.

Balisage: The Markup Conference

 Graciously handling a level of change in a complex specification

 Configuration management for community-scale implementation of an HL7v3 messaging
 specification

 Table of Contents

 	Title Page

 	Introduction
 	HL7v3 from RIM to XML - a quick tour

 	Sustaining an HL7v3 Messaging Specification
 	Development and maintenance process for a community-level specification

 	Representative change scenarios
 	Extension to a value set due to organizational change

 	Introducing structured representation of medication dose

 	Extemporaneous Preparations

 	Increased validation leading to new error codes

 	Changes to Tabular Views to clarify interpretation

 	Schema change as a result of an integration defect

 	Specification artefacts and the HL7v3 specification change process
 	Configuration issues for key specification artefacts

 	A framework for implementing specification change
 	Configuration Matrix

 	Version Profile, Profile ID and Profile Manifest

 	Additions to XML Schemas to support more flexible, configurable change.
 	Treat even small value sets as separately maintained vocabularies

 	Embed versioning in names of complex and simple types to control breaking
 change

 	Support for fallback processing?

 	Validating the recommended framework

 	In conclusion

 	Acknowledgements

 	About the Authors

 Graciously handling a level of change in a complex specification
Configuration management for community-scale implementation of an HL7v3 messaging
 specification

Introduction
Version and configuration management is an important area both in computing generally
 and in the management of XML artefacts of many kinds (see
 Versioning Symposium
). This paper is about version and configuration management issues arising
 for a closely related collection of HL7v3 (Health Level Seven Version 3) healthcare
 messaging specifications. Although this is a specialist area, the overall challenges,
 approach and conclusions are expected to be of interest to a wider community. This paper
 is therefore divided into two sections, an introduction for background and a main body
 describing the method of analysis and resulting recommendations for improving management
 of configurable artefacts on a large programme.
This Introduction provides background on the underlying principles of HL7v3 and a
 general description of the structure and internal dependencies of an HL7v3
 specification.
The main body of the paper describes an approach developed in order to enable a
 substantial HL7v3 messaging specification to change "graciously", that
 is, accommodating change whilst restricting the introduction of interface-breaking
 changes to a necessary minimum. The principal recommendations of this approach are
 first, developing an overall dependency map and corresponding configuration matrix; and
 second, identifying specific dependencies in message instances through profiles
 referenced by name (that is, by profile-id).
HL7v3 from RIM to XML - a quick tour
HL7 as a standards development organization (generally known as
 "HL7.org") has been engaged recently in extending and adapting the
 HL7v3 framework to accommodate a wider range of system integration approaches, in
 particular adopting an enterprise architecture framework based on RM-ODP (Reference
 Model – Open Distributed Processing, ISO/IEC 10746), and developing a suite of
 service-oriented specifications. The interested reader can follow these recent
 developments on the HL7 wiki , however this
 section focusses on the traditional core of HL7v3, that is, messaging specifications
 designed to enable information flow between disparate information systems within a
 healthcare organization. The account that follows draws on the HL7v3 Guide and
 Foundation sections of the HL7v3 Normative Edition 2008 (see
 HL7v3 Normative
), intentionally following their style and phraseology so as to give an
 accurate sketch. However, this is only a sketch, and a thorough and accessible
 introduction to HL7v3 can be found in Hinchley's HL7v3 Primer (see
 HL7v3 Primer
).
The heart of HL7v3 is a hierarchy of three levels of information modelling:
	Reference Information Model (RIM)- The RIM encompasses the HL7 domain of
 interest as a whole, and provides an underlying relatively simple yet
 comprehensive model for the data content of all HL7 messages. The RIM is a
 static model of health and health care information as viewed within the
 scope of HL7 standards development activities. The RIM is a class-based
 model that can be expressed in UML (the Object Management Group's Unified
 Modelling Language, ISO/IEC 19505).

	Domain Message Information Model (D-MIM)- A D-MIM is a specialization of
 the RIM that models the subject matter of a domain (a particular area of
 interest in healthcare). For example, there is a Clinical Statement Pattern
 D-MIM that provides a standard, high-level structure for clinical
 information as it appears in messages supporting specific business
 functions. A characteristic feature of the HL7v3 modelling style is that one
 RIM class may appear many times in different specializations in one D-MIM.
 Another feature is that association classes (in UML terms) are heavily used,
 and often carry substantive attributes of the domain being modelled.

	Refined Message Information Model (R-MIM)- An R-MIM is a subset or
 refinement of a D-MIM that expresses the information content for a
 particular message or closely related set of messages.

Complementing the structural models in the above hierarchy is a comprehensive
 repertoire of data types for class attributes and vocabulary domains for attributes
 with coded values.
The elaboration of complex and detailed D-MIMs and R-MIMs from a single,
 relatively simple RIM is supported by methodical use of class attributes to express
 structural relationships and dependencies across the model stack. For example, the
 classCode attribute is used to classify derivatives of RIM classes, so that Acts
 that are Observations all have a common coded attribute expressing that fact.
Another example of methodical use of class attributes is to express state values
 that are defined for a RIM class, so that the status of an Act could be active,
 suspended, cancelled, completed, or aborted - and the semantics of these status
 values is described in a state machine that forms part of the HL7v3 normative
 publication.
The diagrammatic representation of an R-MIM is accompanied by structured tabular
 documentation that typically contains usage constraints and implementation guidance.
 This is called a "Tabular view" in the HL7v3 community.
The HL7v3 Clinical Document Architecture (CDA) is of particular interest, not just
 because it has been adopted for clinical messaging in the NHS Connecting for Health
 Messaging Implementation Manual (
 MIM
), but also because it has been implemented in a range of contexts
 worldwide. The base CDA clinical document includes marked up text intended for human
 readers together with structured, coded data following the Clinical Statement
 Pattern, and is customarily specialized for a particular context of use by means of
 Implementation Guides providing precise guidance on usage. This is a further layer
 of specification, in particular involving Templates, (a rather generic name for) a
 specific HL7v3 way of constraining a region of an R-MIM. Typical constraints added
 to the underlying R-MIM by a Template would be forbidding or making compulsory some
 attributes that are optional, and providing specified value sets for attributes that
 have general datatypes such as strings or integers in the underlying R-MIM.
 CDA has an R-MIM, and like all HL7v3 R-MIMs there is a defined, tool-supported
 automation that generates the XML implementation. R-MIMs (in an XML model
 representation known as the MIF (Model Interchange Format)) are transformed by
 standardized tools into a set of W3C schema documents conforming to the XML
 Implementation Technology Specification (ITS) for HL7v3. The role of datatypes in
 this context illustrates very well the interdependency of computable and human
 readable aspects of HL7v3 specifications, as described in the section on CDA in
 HL7v3 2008 Normative Edition:
HL7v3 defines both an abstract data type specification, which is the
 definitive reference, and an XML-specific data type representation.
 Data types define the structural format of the data carried within a RIM
 attribute and influence the set of allowable values an attribute may assume.
 Some data types have very little intrinsic semantic content. However HL7 also
 defines more extensive data types such as the one for an entity's name. Every
 attribute in the RIM is associated with one and only one data type.
 A reader will often find that the XML-specific description of a data type is
 sufficient for implementation, but at times will want to refer to the abstract
 data type specification for a more comprehensive discussion.

A further factor is that although the principles and specification developement
 practice are strongly model driven, the majority of implementations work purely with
 the XML artefacts technically, treating the models as documentation rather than
 computable artefacts. The XML style adopted in the HL7v3 XML ITS is more suited to
 taking object instances unharmed from one object model into another (i.e as a
 serialization of instances of RIM classes), than for conventional XML processing
 based on XPath and XSLT. Much of the meaning that would be conveyed by element
 naming in other XML styles is provided through attribute values belonging to
 maintained value sets such as template identifiers. This makes these value sets -
 which can get quite numerous - a key dependency item for implementers, especially if
 value sets need to have (for business reasons) a maintenance cycle that is different
 from the maintenance cycle for the message models and thence the XML schemas.
The manifold interdependencies within a sizeable HL7v3 specification, especially
 where a number of clinical communications are implemented using a common repertoire
 of templates, can be seen even from this brief summary. Simple version management is
 built into the available HL7v3 tools, however the potential complexity is greater
 than can be handled by simple means. Conversely, it is difficult to see how the kind
 of technology and practice used to control complex software products together with
 their specification dependencies (see
 Software Product Lines
) can be put in place across a diverse user community - and a diverse
 user community is inherent to the need for a rigorously modelled interoperability
 standard.

Sustaining an HL7v3 Messaging Specification
A particular challenge in sustaining a complex interoperability specification for the
 long term is to enable it to change "graciously", that is, to
 accommodate change with the minimum necessary impact on established users. This is a
 problem arising from success: being able to handle change graciously is a requirement
 that emerges for interoperability specifications when they achieve a significant level
 of acceptance and implementation, and need to continue to evolve in response to changes
 in business requirements.
Development and maintenance process for a community-level specification
A published specification designed for adoption by a substantial community is
 necessarily the output of a multi-stage process that crosses organizational
 boundaries. Changes to specification artefacts need to make sense in the context of
 this process as well as technically. This section outlines a typical development
 process (in the authors' experience across several such activities) using HL7v3
 tools.
The logical unit in which new content is created, or within which maintenance
 changes are introduced, is called a specification domain in HL7v3. Domains organize
 a large specification into sections containing a suite of interactions with common
 subject matter. For example, domains in the HL7v3 Normative 2008 package published
 by HL7.org include Patient Administration, Public Health Reporting and Clinical
 Genomics. Domains in the NHS Connecting for Health Messaging Implementation Manual (
 MIM
) include Alerts and Diagnostic Image Reporting. From an implementation
 perspective, a domain usually (but not always) also corresponds to a logical service
 interface for interoperability.
 A typical process for introducing change in a specification domain is as
 follows:
	Requirements for new interactions or changes to current interactions are
 elaborated and documented in a business analysis artefact, for example a
 narrative document plus analysis-level UML models showing information
 structures and message flows.
 This analysis (a combination of process analysis and high level
 information modelling) is generally undertaken within the specification
 modelling process, either blended in or as an initial phase of work, in
 HL7.org working groups. In HL7v3 implementation programmes it is more likely
 in the authors' experience to be separated out into a distinct business
 analysis team, partly by design and partly because subject matter knowledge
 and technical HL7v3 knowledge and skills are more likely to be developed by
 different individuals.

	A specification design team analyses the requirements into HL7v3
 information models with accompanying implementation guidance, mostly
 embedded in the specification's Tabular Views. Any required changes to
 locally maintained datatypes and value sets are made, then the XML schemas
 for the new or amended messages are generated from the HL7v3 information
 models using HL7v3 tools.
Alongside the XML schemas, an XML representation of the whole domain model
 is generated, which is particularly useful from an implementer's point of
 view since computational difference checking can be used to verify presence
 or absence of changes eg in the guidance wording. Example messages are
 constructed by a semi-automated process, and the whole domain content is
 formatted into a publication package. The publication package is designed to
 be human-readable in a Web browser, and also to have a uniform directory
 structure so that the XML schemas, for example, can be extracted easily for
 deployment into an implementer's test environment.

	The revised specification is published to the implementation community,
 and a review and comment process follows leading to formal adoption of the
 new and changed content. The new content and changes are then introduced
 into live use through the implementation community's agreed implementation
 and testing processes.

In practice, in the authors' experience, such a development process becomes more
 variable once a family of specifications has become established in use. For example,
 once such interfaces become a normal way of doing business, requirements and
 analysis level models are more likely to come in from different sources, and a
 greater quantity of development relating to live business requirements leads to a
 greater likelihood of high priority late requirements changes. In general there will
 be changes and new content in hand for more than one domain, and the review cycles
 and publication schedules for different domains need to be aligned as far as
 possible to facilitate scheduling of review and testing activities. This added
 complexity is the price of success and needs to be expected and managed rather than
 - as sometimes occurs - just being regarded as anomalous and
 "incorrect".
 A framework for gracious handling of change is expected to deliver its main
 benefit by reducing the overall cost of the activities outlined above.

Representative change scenarios
In order to identify the nature of the changes that needed to be handled
 graciously, a systematic analysis of an established specification was undertaken.
 Representative change scenarios were used to ground the analysis in implementation
 experience. Actual past change scenarios were collected from developers and
 implementers alongside probable future scenarios for change. The resulting
 collection was cut down to a representative selection through a preliminary analysis
 of similarity, ensuring coverage of the main types of change within a manageable
 selection for detailed analysis. All the selected scenarios were analysed as if they
 were isolated requirements for change against an assumed baseline, that is, it was
 assumed that the changes were independent, and actual past changes and other
 scenarios selected were analysed in the same way.
A sample of the types of scenarios encountered is given below.
Extension to a value set due to organizational change
A vocabulary (a value set specifying valid values for an attribute) used in a
 message (call it a type A message) needs an additional term (value) due to the
 addition of a new organizational unit. The structure of the message has not
 changed, however the change in allowed values is significant for a central
 service point that receives type A messages, and also to information systems
 needing to issue type A messages including the new value.
However, any systems that send type A messages and have no need to mention the
 new organizational unit are unaffected. Their old-style type A messages continue
 to be accepted by the central service point.

Introducing structured representation of medication dose
Initially, medication dosage instructions were contained in a text field.
 Whilst this is meaningful for a human, it is not machine processable for example
 to enable decision support for prescribing. A new message component is
 introduced to enable endpoints able to provide fully structured dosage
 instructions to do so. The new component replaces the old component wherever
 possible, and the old component will eventually become deprecated. Because of
 the long retention period of clinical records the old component may still appear
 in older information, even when contained in new messages. This results in
 systematic change to the representation of a prescription, affecting a number of
 messages across a number of different interactions.

Extemporaneous Preparations
Although most prescriptions involve manufactured products (such as packs of
 tablets) that are identified using codes from a nationally managed terminology,
 occasionally a pharmacist creates a one-off preparation for an individual
 patient, and such an extemporaneous preparation needs to be recorded
 differently, including its ingredients. A new message component is introduced to
 represent these extemporaneous preparations. This structure would be used
 instead of the standard prescription item structure when required (i.e. there
 would be a choice about which structure is used). This results in systematic
 change to the representation of a prescription, affecting a number of messages
 across a number of different interactions.

Increased validation leading to new error codes
To increase data quality, additional specific validation is introduced on
 certain interfaces. New error codes will be introduced to indicate the cause
 when a message fails the new validation. The new error codes will need to be
 recognized by sending systems, and implementers' testing processes will also
 need to cope with new errors emerging in previously tested interfaces.

Changes to Tabular Views to clarify interpretation
Documentation in Tabular Views provides authoritative guidance to
 implementers. In this scenario, a defect raised during testing is attributed on
 analysis to misinterpretation of poor wording in the guidance. The wording is
 revised. This is a literal change in the specification that does not include any
 technical change, yet does constitute a significant change for implementers with
 respect to conformance.

Schema change as a result of an integration defect
During testing process an integration defect is encountered which is traced to
 an inconsistency between guidance wording in the Tabular View and the XML schema
 for the associated message. On analysis, the guidance is found to be correct,
 and the schema is corrected and re-issued (using the normal HL7v3 model-driven
 schema generation process).
A complication for this scenario would be if the defect corrected is in the
 datatypes schema document, which is used as a common resource by all schemas in
 a published specification package.

Specification artefacts and the HL7v3 specification change process
The development of a substantial HL7v3 specification package involves many artefacts,
 and an important early activity was to identify amongst these the key items for
 configuration management and change control. Candidate configuration items were gathered
 from the combined knowledge and experience of implementers and developers of the
 specification in workshop-style meetings, in parallel with gathering scenarios as
 described above.
This activity, especially considered in the light of the authors' knowledge
 of other HL7v3 specification developments, brought out clearly the applicability of
 Software Product Line concepts and techniques (see
 Software Product Lines
)to the development of complex specifications.
The full dependency model was too large to reproduce here. The following diagram shows
 the main dependencies in practice.
Figure 1: A simplified diagram of dependencies
[image:]

Further analysis adopted Walter Tichy's principle (see
 Tichy94
) of a variant being anything that is the same from some point of view. That
 is, instead of starting out with a particular model of change (eg temporal sequence),
 start by identifying sources and kinds of variation encountered "in the
 wild" and refine from that gathered knowledge a model of variation and change
 that suits this particular situation. An important advantage of this approach was the
 ability to identify sources of difference as such without necessarily characterizing
 them immediately as sequential versions or alternates.
 An interesting feature emerging from this analysis was that in practice many changes
 acted as sequential versions from one perspective, and parallel alternates from another.
 A simple example of this situation would be where additional interactions including one
 that substitutes for an existing interaction are added to the specification. The one
 that substitutes for an existing interaction is naturally regarded as a sequential
 update by those implementers that require it, and as an alternate by implementers that
 either have no need for the new capabilities, or now handle both variants equally.
 Similar patterns also emerge at finer levels of detail. This general pattern appears to
 be an important aspect of graceful handling of change.
Configuration issues for key specification artefacts
This section describes typical issues that arise during review and testing of a
 new or changed specification domain. These issues are summarized from a longer list
 identified through systematic review of the reference change scenarios with a group
 of experienced implementers.
	Consistency between XML schemas and guidance wording (Tabular Views)
	The schema and tabular views in a specification package are sometimes
 found to conflict. While this is an issue in of itself, interoperability
 could at least be achieved if all implementers followed the same
 approach where there is a conflict, i.e. there was an agreed principle
 of either following the guidance or following the schema in case of
 conflict. However, examples were found of situations where each approach
 was clearly "right", so that a simple rule was not
 appropriate.

	Embedding detailed version history in schema documents
	The schemas and examples (sample instances) generated by the HL7v3
 tools contain embedded version information including information about
 the versions of the tools used. The practical issue here is the
 identification of a significant change. Because all the schema documents
 in particular are regenerated from the model when a domain is
 maintained, embedded version information may change, even where there is
 no change to the content, when the tooling is updated. Since in general
 any change may trigger extgensie testing in a clinical information
 system, this was a matter of concern and needed a formalized consensus
 approach.
 Omitting the tool-version information from the generated schema
 documents was not an attractive option, however, since a tooling version
 upgrade had once introduced an unintended breaking change by changing
 the order in which certain elements in the model (where classes, and the
 attributes of each class, are essentially unordered) were represented in
 a generated schema.
The conclusion was that full version information should be included in
 schemas and example files, and that implementation guidance should make
 it clear that versioning and provenance metadata could be ignored when
 evaluating whether there has been a change in a configuration item for
 testing purposes.

	Usage of CMETs (Common Message Element Types) and Templates
	CMETs and Templates are both ways of specifying component structure on
 a scale in between a whole message and a single class. CMETs are
 embedded components with a predefined structure, whereas HL7v3 Templates
 provide a mechanism for a looser XML structure to be constrained in a
 particular context. Changes to a CMET necessarily result in changes to
 the message schema, whereas a Template can be changed without changing
 the underlying elements in a message, thus providing some built-in
 resilience to change.
 Templates are used in particular to support detailed business
 requirements for clinical data within a generic message pattern. For
 example, in the MIM, the HL7v3 Clinical Document Architecture (CDA)
 underlies a range of specific messages such as a Discharge summary and
 an Emergency department report. In fact, the base CDAv2 standard has
 been specialized to a common pattern for MIM messages (removing some
 optional aspects of the base CDA2 standard); this generic MIM CDA is
 further specialized to provide specific documents for each clinical
 domain such as Discharge. The value of Templates in this context is the
 ability to create additional specialized clincial domain messages, and
 increase the repertoire of clinical subject matter supported,
 independent of the overall structure and data format of the MIM CDA
 document. This enables technical interfaces to be built generically for
 MIM CDA clinical messages, with the detail represented by Templates only
 taken into account by system components that are concerned with the
 detailed subject matter.
A possible approach is for Template changes to be deployed in a way
 that ensures that significant change to a message is necessarily
 communicated to a user (implementer) of the specification. That is, a
 change to a template should be a
 "breaking"change in an interface, re-introducing one –
 though not all – of the original limitations of a CMET.
However, this misses the original objective that system components
 that do not care about Templates must be able to ignore Template level
 changes, whereas system components dealing with the detailed clincal
 information need to be maintained and tested in line with the changes
 made.
It was recommended that Templates should be used in situations where
 the underlying structure – in absence of the template – is expected to
 be used as a valid scenario. The ability for all MIM CDA messages to be
 understood using the generic MIM CDA pattern is a good example of this,
 with the practical benefit of providing a basic level of
 interoperability for all MIM-governed clinical content.
 Where a common message component structure is needed but there is no
 need for the underlying message to be understood without that structure,
 a CMET may be used, and for "breaking" change should
 be used in preference to a Templates.

	Vocabulary changes
	Vocabularies in an HL7v3 specification are controlled sets of allowed
 values for class attributes in the model, represented in the generated
 XML either as values of XML attributes or as enumerated values of XML
 elements.
The uniform designation "vocabulary" for all value
 sets used in a message is somewhat misleading, since they range widely
 in significance and usage, including for example clincial terms,
 repertoires of names for types of organizations, and values that
 indicate the status of a business transaction. Vocabulary changes tend
 to be more frequent than data structure changes, so maintaining
 vocabularies separately is attractive, and is essential for those
 vocabularies such as clinical terminologies that are maintained on an
 independent timescale. However, although separate change management is
 very appropriate for many vocabularies, it also introduces potential
 problems since changes to required processing on receipt of a message
 can in principle be made by this route without necessarily being clear
 to implementers.
 So, although some vocabularies are obviously better maintained
 outside the HL7v3 specification itself, there are also risks associated
 with this approach. It was recommended that if a significant functional
 or conformance interpretation of an element or attribute is changed,
 then this should not be done without simultaneously breaking the
 technical interface - even if this requires an apparently unnecessary
 artifice to force the break.

A framework for implementing specification change
Artefacts within specifications for system interoperability describe behaviours,
 interactions, messages, models, templates, vocabularies, schemas etc. that change over
 time. These changes may be triggered by many factors including new business
 requirements, enhancement/expansion to address new business needs or domains, fault or
 issue resolution, changes to underlying standards, and changes to vocabularies as
 discussed above.
Sizeable specifications generally start small, for example growing from a relatively
 simple set of messages to a complex specification with multiple kinds of dependencies.
 Eventually it is a good idea to take a checkpoint, re-evaluate the whole picture and
 consider how best to support both current implementers and future plans.
The following key recommendations emerged from the work underlying this paper, to
 enable effective configuration management whilst supporting appropriate -
 "gracious" - responses to change in the implementer community.
	Creating and maintaining a fully detailed dependency model that not only shows
 the expected impact of changes but also states where configuration changes
 should create changes in other entities and where they should not.

	 Using a Configuration Matrix to manage the impact of change, and to
 communicate an authoritative view of the expected impact of a published or
 intended change.

	 Using a Version Profile, Profile ID and Profile Manifest as a central
 resource for versioning all of the ‘configuration items’ of a message.

	 Additions to XML Schemas in the published specification to support more
 flexible, configurable change.

The first of these may seem obvious, however previously the number of configuration
 items and the relationships between them, and the practical benefit to be gained from
 the considerable effort involved to create and maintain a configuration control model
 for an HL7v3 interoperability specification, had not been
 clear.
The other recommendations are presented in more detail below.
Configuration Matrix
The configuration matrix is intended to communicate expectations of change impact
 and dependencies between principal configuration items, to both developers and
 implementers. For all parties, this will help in assessing the impact of upcoming
 changes, and support prioritization of changes in terms of development cost, service
 impact and benefit. In addition, the use of the matrix as a communication tool will
 support the development of a shared understanding of the impact of new requirements,
 and of the level of change that is expected to be handled by information systems
 performing different roles within the implementation community.
 The following shows a simplified view of a configuration matrix for the MIM,
 showing the various versioned configuration items matched against implementation
 areas in which specification changes may cause change (note values shown are
 illustrative and do not represent real findings). The list of items on the left
 shows configuration items, including some MIM components and related artefacts not
 discussed in this paper. The list along the top shows the main areas of
 implementation affected by specification change.
Figure 2: An example matrix
[image:]

The example above shows a simple scale of severity of impact. Depending on the
 overall system architecture and the kinds of impact most relevant to an
 implementation community, a configuration matrix could show for example:
	Levels of impact against a predefined scale indicating the extent and
 nature of testing required before entering live operation

	Categorization against a range of predefined timescales for withdrawal of
 "old" interfaces

Version Profile, Profile ID and Profile Manifest
The main technical innovation proposed to support configuration management
 together with gracious response to change is that all MIM-specified messages will
 carry a Profile ID that references a corresponding
 profile manifest published to the implementation community.
 A particular profile manifest will contain a version identifier for every
 configuration item relevant to an instance message. Thus a particular permutation of
 artefact versions can be referenced at run time in a message and at design time by
 suppliers.
 The profile manifest will be the key singular reference for version control that
 is maintained by specification developers. In other words, if any item that affects
 a message is changed then the profile manifest for that message must be updated.
 This will allow most other versioning constraints to be liberated. For example,
 parts of a message can be changed without having to change the formal identifier of
 the interaction but in the confidence that the change will be known to any user via
 reference to the profile.
A example of a (very short) profile manifest follows, showing references to a code
 set for error codes together with two items of supporting documentation.

 <?xml version='1.0' encoding='UTF-8'?>
 <pm:profile
 xmlns:pm="urn:modelling-config-managment-initiative/profile-manifest"
 xmlns:SOAP="http://schemas.xmlsoap.org/soap/envelope/" >

 <pm:profile-id-meta-date>
 <pm:profile-id>eps-2.01.03</pm:profile-id>
 <pm:creation-date>
 $Date: 2008-12-01 10:55:32 +0000 (Mon, 01 Dec 2008) $
 </pm:creation-date>
 <pm:status>normative</pm:status>
 <pm:author>$Author: Mikeodlingsmee $</pm:author>
 <pm:version>$Revision: 83 $</pm:version>
 </pm:profile-id-meta-date>

 <pm:config-item type="document">
 <pm:name>EIS</pm:name>
 <pm:id>EIS</pm:id>
 <pm:version>11.3</pm:version>
 </pm:config-item>

 <pm:config-item type="document">
 <pm:name>EPS Implementation Guide</pm:name>
 <pm:id>EPS-Impl</pm:id>
 <pm:version>7.5</pm:version>
 </pm:config-item>

 <pm:config-item type="codeSystem" SOAP:mustUnderstand="1">
 <pm:name>EPS (PPA) Error Codes</pm:name>
 <pm:id>2.16.840.1.113883.2.1.3.2.4.16.37</pm:id>
 <pm:version>3</pm:version>
 </pm:config-item>
 </pm:profile>

Since some content may be sent onward some time after initial receipt, and message
 wrappers will in general be regenerated for each sending, then for most messages it
 is actually necessary to have two profiles:
	Transport-profile-ID: Represents layers of the
 instance message that are necessary for transport, security and audit. In
 general this information is only relevant whilst the message is in flight,
 and most systems discard the information (bar audit) once the message has
 reached its destination. At any one time there will be relatively few
 different transport-profile-IDs in use to exchange messages between
 endpoints.

	 Payload-profile-ID: Represents the business payload
 of the message. In general the business payload contains information that is
 displayed to the end user or otherwise acted upon by the receiving system.
 Depending on the application this information (in some cases the raw XML)
 may have a long lifetime (from days, weeks, to many years) and hence we
 should expect to have an ever-growing list of profile IDs over time. For the
 same reason, it is expected that (copies of) the same payload will be
 transmitted at different times in messages with different
 Transport-profile-IDs.

Additions to XML Schemas to support more flexible, configurable change.
The full analysis contained a number of recommendations specific to the HL7v3 XML
 ITS. Amongst these are some more general recommendations more likely to be of
 interest to the wider markup community, as follows.
Treat even small value sets as separately maintained vocabularies
A number of small value sets were accumulated into a single schema document,
 that in time gradually became a common dependency point for a large number of
 message schemas.
It is recommended that this single common schema be split into multiple
 vocabulary files, managed as parts of specific domains. Some vocabularies will
 be used by interactions from multiple domains. Where this occurs one domain
 should be considered ‘owner’ of that vocabulary. Other domain interactions using
 that vocabulary will use that domain’s vocabulary schema. This recommendation
 would also allow versioning of the vocabulary schema document filenames,
 supporting direct control of schema "breakage" in implementation contexts
 without configuration management support.

Embed versioning in names of complex and simple types to control breaking
 change
Changing the filename in order to break an interface is one possible approach.
 However a finer grained mechanism for selectively breaking the interface is to
 version the type name in a schema. For example, instead of a type name such as
 <xs:simpleType name="AdministrationType_code">,
 use <xs:simpleType
 name="AdministrationType_code_v1.1">
Designers are thus able to add a new version of a type without changing the
 filename of the schema document. Legacy schemas will be able to use the new
 schema document but instances of the legacy schema will not be able to use the
 new version of the type without allowing for the update. Again, this feels
 somewhat crude compared to automated configuration control, however is likely to
 deliver appreciable benefit across a diverse implementation community where
 common tools & approaches cannot be assumed.

Support for fallback processing?
A range of possibilities were discussed for establishing uniform strategies
 for handling messages where the sending and receiving system are out of step in
 version support. This is especially relevant in the longer term for dealing with
 older electronic records of clinical information that are still relevant for a
 patient's care. No consensus was reached for a definite recommendation, however,
 since the balance between losing some information by rejecting messages, and
 potentially misinterpreting some information by applying fallback processing to
 poorly supported messages, is difficult to weigh. The main strategy in this
 regard remains the overall conformance of all MIM clinical documents to a
 generic HL7v3 CDA format, with defined minimum processing for such generic
 documents that ensures the human-readable information at least will be able to be displayed.

Validating the recommended framework
The full recommended framework for change, which we have only sampled here, was
 validated by working through all the change scenarios identified at the start of the
 project. In each case, the current process for managing such a change was elaborated
 in detail, followed by elaboration of a recommended process using the new framework,
 and testing of these recommendations by an independent panel.
This validation process was used informally with key scenarios during development
 of the framework, then documented formally for each change scenario in the final
 report as evidence for the viability and efficacy of the recommendations.

In conclusion
The concept of a flexible and yet also breakable interface is central to successful
 configuration and version management. A well-planned configuration management strategy
 allows interfaces to be both flexible and breakable depending on the circumstance.
 Changes made to a messaging specification should not affect systems or system
 creators that are not concerned with the subject of the change. However, changes to a
 message or message definition that could cause unexpected behaviour or misinterpretation
 of a message should "break the interface" thus making it impossible for systems to
 unknowingly use a changed message in a way which may hold clinical safety or other
 risks.
In other words, in any particular configuration change, people and systems which need
 to know MUST know and people and systems who don’t need to know, SHOULD NOT have to
 know.
Achieving these features in a complex specification is not a simple matter. Applying
 the kind of configuration management discipline that is well known for complex software
 artefacts to the development of a complex specification is likely to be cost-effective,
 even though the tools available are less mature. Representing key aspects of design
 configuration within the specification artefacts published to the implementation
 community, in documentation as a matrix documenting expected impacts, and as profiles
 within message instances in live operation, is also promising as a strategy to enable
 gracious handling of change. The way in which these artefacts support activities and relationships
 across the implementation community is summarized in the following diagram.
Figure 3: Overview
[image:]

A final conclusion was that validation of the actual benefit of these recommendations
 should be undertaken in a structured, evidence-based manner after a period of live use.

Acknowledgements
Thanks to Keith Naylor of NHS CFH for reviewing the paper and sponsoring it for
 publication.
The authors are indebted to the CFH Spine programme as an indirect means of forming
 the team. During 2006-7 Ann, Joe & Mike were colleagues at the "sharp
 end" of implementing the MIM in the National Care Records Service. Charlie was
 involved in developing some parts of the MIM itself, and also, within HL7.org, in
 designing the overall approach and XML formats used in the HL7v3 development
 tools.

References[1]
[Tichy94] W F Tichy (ed), [Trends in] Configuration Management, Wiley 1994 (ISBN
 0471942456)
[Software Product Lines] F J van der Linden, K Schmid and E Rommes, Software Product Lines in Action: The Best Industrial Practice in
 Product Line Engineering, Springer 2007 (ISBN 3540714367)
[HL7v3 Normative] Health Level Seven, HL7v3 Normative edition 2008
[HL7v3 Primer] A Hinchley, Understanding Version 3 - A Primer on the HL7 Version 3 Interoperability
 Standard - Normative Edition, 4th edition, Alexander Mönch 2007 (ISBN
 3-933819-21-0)
[MIM] NHS Connecting for Health, Messaging Implementation Manual, issue 7.2.02, 2008

[Versioning Symposium] Balisage Series on Markup Technologies (ISSN
 1947-2609) Vol. 2 International Symposium on Versioning XML Vocabularies and Systems
 (ISBN-13 978-0-9824344-1-3 ISBN-10
 0-9824344-1-3)

[1] Note that a number of the sources for this paper are unpublished internal
 documents, in particular the MIM itself, & the Modelling Configuration
 Management Investigation report, by McCay, Oldling-Smee & Waller 2009. The MIM
 is made available to members of HL7.

Balisage: The Markup Conference

Graciously handling a level of change in a complex specification
Configuration management for community-scale implementation of an HL7v3 messaging
 specification
Charlie McCay
Ramsey Systems Ltd

Charlie McCay has been closely involved in defining how XML is used in the HL7
 healthcare interoperability specifications for ten years. He is Chair of the HL7
 Technical Steering Committee and on the HL7 international board. As well as
 international standards work, he has been responsible for specifying the way XML
 is used in many English national projects including the transfer of primary care
 records (GP2GP), Electronic Prescribing, and the Retinal Screening Program. He
 is currently working on Standards conformance methods for the NHS in England,
 and convergence between international standards groups in the healthcare
 sector.

Michael Odling-Smee
XML Solutions Ltd

With a background in Experimental Atomic & Molecular Physics Dr.
 Michael Odling-Smee switched to IT in 2000 where he started his career in a
 small Java software consultancy start-up before moving on to Integration
 architecture in both B2B and Health care arenas. As is the nature with
 integration Michael has been involved in XML message integration design using
 many XML based technologies - XSD, XSL, SOAP, WS-*, ebXML, BPEL and XML
 Acceleration appliances. Michael also started an XML based requirements
 management system (http://www.xml-solutions.com/products.html) that uses XSD to
 define an XML data model for requirements and use-cases with XSL and XSL:FO to
 derive multiple views on the data. In May 2007 Michael co-founded XML Solutions
 Ltd. - a specialist XML and Systems Integration Consultancy.

Joseph Waller
XML Solutions Ltd

Joseph is co-owner and Director of the Integration Consultancy XML Solutions
 ltd (http://www.xml-solutions.com). He started his career developing hedge
 derivative systems for Halifax Bank before moving onto architectual consultancy
 work and eventually specializing in XML and Healthcare integration. Developing
 integration strategies across finance and UK government systems, recent work has
 focussed on England's NHS Spine and related parts of the National Programme for
 IT.

Ann Wrightson
IT Consultant - Technical Architecture
Informing Healthcare (NHS Wales)

Ann Wrightson has been working with markup since 1978, from typesetting
 languages & fielded records through generic coding to SGML &
 XML. She has experience of using markup for interoperability and
 platform-independence across a wide range of content including published
 reference works, technical publications, e-learning, legal codes &
 materials, and semantic interoperability standards for information systems.
 Since 2004 Ann has worked principally with interoperability in healthcare,
 initially on the information systems supplier side and more recently in NHS
 Wales. She has a particular concern for usability of interoperability standards
 within a diverse implementation community, and has pursued that concern in the
 international HL7 community through involvement in innovations to introduce
 service-oriented integration and an adaptable enterprise architecture framework.
 Ann has been a member of the Board of HL7 UK since 2007, from 2009 as HL7 UK
 Technical Committee Chair.

Balisage: The Markup Conference

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

content/images/Wrightson01-002.jpg
high)

z
i

= 5

) — Elo|®

Configuration item |z |2
Interaction 30
Transmission VWrapper 04
Control Act Wrapper 08
Message Payload 52
CDA Document 32
Vocab 18
CMET 5]
Template 32
Enumerated Vocab 36
SNOMED 36
Business Error Codes 34
System Error Codes 18
Transport Error Codes 18
NASP Validation Rules 16
SOAP / HTTP Error codes 2
Contract Properties 34
MEP 08
Profile. 44

<
T

3
<
=

&
S
=

HL7 Ul (Viewer)

HL7 Ul (Data Entry)

Key
No impact / not applicable / graceful
Winor impact

WMedium impact

WMajor Impact

Note - the values will need to be
calibrated to suit local needs

content/images/Wrightson01-001.jpg
olass Dependencies
HL7v3 M

RIM structurst
vooabutary

LT3 Datepes

HLT COA R-MIM

HLTa XL T

Template

P — Inpe-A dosument
mez=age XL]
sonems
Implamentation

domain

e —
vosabutary

message| Tabular

: View

e CDA
ooumart |

content/images/Wrightson01-003.jpg
aial pue ajeoudap

profile ID

1paiooe

1surebe
1591 %8 ping

t
|73
£
=
I
[
i)
=
o
a
A

BOUBULIOJUOD auyep

ssesse

suopejoadxa S]EoJUNWILIOD

Aunge-op
SSasse

