[image: Balisage logo]Balisage: The Markup Conference

Managing XML references through the XRM vocabulary
Jean-Yves Vion-Dury
Senior Scientist
Xerox Research Centre Europe

<jean-yves.vion-dury@xeroxlabs.com>

Balisage: The Markup Conference 2009
August 11 - 14, 2009

Copyright © 2009 Mulberry Technologies, Inc. Used with
 permission.

How to cite this paper
Vion-Dury, Jean-Yves. "Managing XML references through the XRM vocabulary." Presented at: Balisage: The Markup Conference 2009, Montréal, Canada, August 11 - 14, 2009. In Proceedings of Balisage: The Markup Conference 2009.
 Balisage Series on Markup Technologies vol. 3 (2009). https://doi.org/10.4242/BalisageVol3.Vion-Dury01.

Abstract
This paper presents a general purpose method (called XRM for
 XML References Management) to express knowledge about links common to a family of
 XML documents (a.k.a. a document type) and to exploit this knowledge in order to
 operate verifications, transformations or derivations of the corresponding XML
 instances.

Balisage: The Markup Conference

 Managing XML references through the XRM vocabulary

 Table of Contents

 	Title Page

 	Introduction

 	Problem overview

 	State of the Art
 	XCatalog

 	XLink

 	Approach Principle
 	Specification

 	Matching language

 	Execution model

 	The approach in more detail
 	Link Description
 	Overview

 	The link descriptors

 	Link Validation

 	Link Transformation

 	Link Dependencies

 	Conclusion

 	Appendix A. The pattern matching language

 	Appendix B. Verification and execution of XRM specifications (principles)

 	About the Author

 Managing XML references through the XRM vocabulary

Introduction
 So far no specific method nor well suited technology exist to address XML link
 management related applications, although those are numerous and may require quite
 complex processing when using standard XML tools or programming languages.
We call link or reference any URL, URN, URI, IRI, XLink (see [1]
 and [3]) be it relative or absolute that can be found in a given
 XML document instance, either under the form of an attribute or as a text node (once
 parsed, an XML document is composed of element nodes, attribute nodes or text nodes: see
 [4] for a general description of XML standard).
 The method and conceptual models we propose hereby allow concise and efficient XML
 descriptions of links that can be heavily reused, and enable adequate descriptions of
 main link-based operations required in XML processing environments, especially link
 relocation for packaging clusters of documents and associated resources, verification of
 link properties with respect to security, conformance to a predefined selection of HTTP
 servers, simplification and normalization of link representation inside a given XML
 instance, smooth redirection of database requests hidden inside the structure of links,
 to cite a few among the huge variety of relevant cases.
 The knowledge about links is formalized into a specification language that 	describes links location and typology inside a family of XML documents

	 tags these link descriptions in such a way that they can be further
 designated and reused either individually or collectively.

 The operations on XML instances use the link descriptions above in order
 to 	verify the compliance of links according to the standards describing
 properties that these links must satisfy (e.g. lexical and syntactic
 structure),

	check the conformance to specific or general properties (e.g. URI must be
 relative, or must match a given pattern),

	generate a list of all links contained in the instance (dependencies),
 with related useful meta-information such as the path expression that
 uniquely locate them inside the hierarchical structure and the type of link
 (URI, IRI, XLink,…)

	rewrite some links into other links (reference relocation), depending on
 matching patterns, side conditions of source document as well as side
 conditions of referenced objects (links targets).

Problem overview
 There are currently two different ways (inside XML standard) for identifying and
 designating items inside or outside a document. The first one is based on ID/IDREF
 mechanisms which only apply to intra-document references. The second one, more general,
 is based on URL (Uniform Resource Locator) that has been historically derived into
 several variants (e.g. URI, uniform resource identifiers; IRI, internationalized
 resource identifier; URN Uniform resource name), each having different intended use and
 slight lexical variations (see [1,8]).
 This research work, whose results are described hereby, focused on the second kind of
 references. According to the related standards, references have a syntactic structure
 that enables describing the protocol used for accessing resources over networks, the
 address of the server providing the resource, the path which uniquely designates the
 object to be accessed, and in some cases the fragment inside the document (i.e. a unique
 element identifier) and/or parameters. For instance the URL
 http://ds-1/example/dog.jpeg designates an object located on
 the “ds-1” server and accessible through the “http” protocol. This object is called
 “dog.jpeg” and the server is supposed to find it through the path “/example” before
 delivering it back to the caller that invoked the protocol.
 Although the referential objects are precisely defined through their syntactic and
 semantic structure, we have poor information about the context in which they are used
 and where they are located inside a given document. In the best case, an XML instance is
 compliant with an XML schema, e.g. XHTML, and thus we hopefully know where one can find
 such a reference, e.g. inside any img element, and more precisely,
 inside the value of its href attribute. Note that the semantics of
 the reference is implicitly defined by the informal description of the HTML standard (it
 points to an image; it must be fetched through the URL and incorporated into the visual
 representation of the containing document).
 However, many specific transformation operations can be envisioned which are quite
 focused on these referential objects, and no methods or tools are proposed today to
 simplify these operations and to make them more reliable and easier to specify. Among
 others, one can mention : 	link relocation, which consists in changing the
 external environment of a given instance (for instance, changing absolute
 reference to an external server into a pointer on a local cache where the
 target resources are stored)

	document and resource packaging, which consists for
 instance in building an archive containing all dependent resources under a
 suitable directory structure

	selective link stabilization ; this operation allows
 one to substitute some references by others pointing to the same resources,
 but via a storage system that guaranties the long term stability of the
 access

	static xml:base attribute processing ; this operation
 aims at interpreting the xml:base attribute according to the W3C standard
 [5], but as a standalone operation (usually, this
 process is done – or just ignored…- inside the applications)

	static XInclude resolution ; similar remark than
 above

Our contribution can be understood as a way to express link specific schemas,
 validations and transformations. It is orthogonal (and complementary) to general purpose
 schemas.

State of the Art
XCatalog
XCatalog [2,6] is an XML standard
 which allows describing link resolving mechanisms. More precisely, the links are
 categorized into references to XML entities, DTD and XML schema resolution (W3C
 schemas only) on the one hand, and general URI that are defined as strings that must
 match a given prefix on the other hand.
 The first category is focused on link resolution, an operational concept that
 concerns only programmatic toolkits and software libraries that are in charge of
 retrieving the content of pointed objects (so called
 resolvers). It means that the only underlying semantics is
 predefined as “fetch the pointed resource when needed, the way I specify”, and this
 behavior must be implemented by the XCatalog aware processor (typically, XML
 parsers). A strange point is that the XML catalog specification defines "what" and
 "how", but not "when". In other words, the semantics of links is presupposed, and
 indeed strongly related to the XML validation that is accomplished after parsing.
 The other link category is quite general, but only defined through the concept of
 “exact prefix matching”. Nothing is said about the location of links and a fortiori
 about their context.
 Thus there is a deep conceptual difference between our proposal and XCatalog: the
 latter is focused on resolving links, where links are recognized through their
 content, whereas our proposal is based upon a methodology which makes explicit the
 description of links through their localization in the document structure. These
 descriptions can be used for specifying various link oriented validation and
 transformation operations.

XLink
 XLink [3] is a standard that describes a vocabulary and
 syntax for specifying generic links inside XML documents. This standard relies in a
 rich model allowing among others the specification of hyper-graphs, that is, graphs
 based on a generalized notion of arcs possibly binding several sources to several
 targets. XLink is based upon URI mechanism and namespace modularity.
 It is not comparable with our approach, as it is a way to express links whereas
 our method is a way to express properties of links and the related validation or
 transformation operations that can be derived from these properties. As a
 consequence, XLink objects are specific targets of the description mechanisms we
 propose, so as with XInclude, XPointer and other generic linking objects (URI,
 IRI,...) (see section “The link descriptors”)

Approach Principle
In order to express high level properties over links and their localization inside
 instances, one needs a specialized language and dedicated abstractions. Moreover, in
 order to consider the link normalization phenomenon, we also need an execution model.
 Once captured in an adapted format, the link descriptions we propose in this paper might
 be reusable for specifying almost any XML link-related operations.
Our method relies on a specification method, a specialized matching language and an
 execution model.
Specification
 From the specification point of view, our vocabulary allows one to 	express link features by means of three separate sections:
	the link typology and localization (links description), thanks
 to an appropriate sublanguage, typically but not exclusively,
 XPath [7]

	the link’s expected properties (validation description)
This part expresses properties that (groups of) links have to
 satisfy inside a given XML instance in order to be considered as
 valid,

	the link transformation rules (link translation description) :
	transposition (selected links are eventually
 normalized, matched against some pattern and
 rewritten)

	dependency extraction rules (dependency
 description)

	identify, group and designate link descriptions
This one allows the user to attach one or several tags to link
 descriptors, and offers a mechanism for factorizing the tag assignation.
 Tags are simple labels intended to abstract over the semantics of links
 and to memorize them easily.

 The idea of points 1 and 2 above is to
 express bindings between the descriptive section and the other sections through a
 convenient designation mechanism. Hence there is little overhead, and the method
 enables reusing link descriptions in various applicative contexts.

Matching language
The specialized matching language is designed in order to optimize the ratio
 expressive power versus complexity; in other words, it simplifies the task of
 expressing the structural properties of links, the (pre/post) processing and
 transformation of links; by offering the right abstractions, and by relying on the
 inherent lexical/syntactical structure of links, it avoids the burden of mastering
 general regular expression languages, tricky and error prone for a non-specialist.
 Details on this aspect of our contribution can be found in Appendix A

Execution model
From the execution model point of view, our approach allows one to
	use the link validation description either via an interpreter or via a
 compiler to operate the verification on any instance expected to comply with
 the description; the verification may output an error report including the
 faulty links, their location in the document and an indicative error message
 or any other relevant information ;

	use the link translation descriptions either via a direct interpretation
 or via a compilation/execution scheme to operate the modification of links
 and possibly generate a new document instance in which relevant links have
 been modified according to the transcription rules (but without any other
 structural changes); this operation may output a log report indicating which
 links have been processed and any other relevant information ;

	use the dependency extraction rules either via an interpreter or via a
 compiler to produce a list of all dependencies, i.e. all resources the given
 instance is sensitive to, as estimated by the designer who specified the
 dependency rules (Order may be significant, if specified so).

Details of significant steps behind applying XRM to some target XML instances can
 be found in appendix Appendix B

The approach in more detail
Link Description
Overview
Links are described in a dedicated XRM element called “links” associated with information	 indicating a unique logical name for this section, which will be
 used for designing it without ambiguity

	 specifying the namespace of the target document, if any (see
 [13] for a description of
 namespaces)

	 providing the URL of one or several schemas to which the target
 document is expected to comply with (optional)

	 listing all tags used to annotate the link descriptions; this
 list is optional, but if provided, it defines exactly and
 exhaustively the authorized tags. Tags are names with any relevant
 lexical structure, as commonly found in the art.

Inside the section, the designer of the description can input as many
 descriptors, possibly embedded in grouping subsections. These subsections are
 decorated with a tag list; the meaning of this grouping subsection is that all
 embedded descriptions will be automatically assigned the associated tags. It is
 thus a way to simplify the specification of descriptors (see example Figure 1).

The link descriptors
The descriptors themselves are specified through one of the following keywords
 :
	URL stands for Uniform Resource Locator (see
 [1]) and is commonly used to give information on
 where a resource is located, understanding that the implicit action is
 to fetch this resource in order to incorporate it inside the document
 (e.g. an image, a sub-part) or to interpret it with respect to the
 current document (e.g. a script)

	URN stands for Uniform Resource Name and aims at
 naming resources in a worldwide unique and temporally stable way. Thus
 no specific action or usage is associated with them, they are just used
 to designate things (e.g. in PUBLIC field of DTDs); however, they often
 have a specific lexical structure, mainly a “urn” scheme and ‘:’
 separated sequence of characters (e.g. urn:example:animal:ferret:nose
)

	URI stands for Uniform Resource Identifier
 ([1]) and commonly used to identify a resource
 in a broader way. The RFC 3986 from IETF explicitly says:
 […] A Uniform Resource Identifier (URI) is a compact
 sequence of characters that identifies an abstract or
 physical resource. […]

— RFC 3986 from IETF

 This excerpt insists on the potential abstract nature of
 the pointed resource. In the sequel, the abstraction hierarchy and
 relationship between URL, URN and URI is clearly described:
 […] URI can be further classified as a locator, a name,
 or both. The term "Uniform Resource Locator" (URL) refers to
 the subset of URIs that, in addition to identifying a
 resource, provide a means of locating the resource by
 describing its primary access mechanism (e.g., its network
 "location"). The term "Uniform Resource Name" (URN) has been
 used historically to refer to both URIs under the "urn"
 scheme [RFC2141], which are required to remain globally
 unique and persistent even when the resource ceases to exist
 or becomes unavailable, and to any other URI with the
 properties of a name. […]

— idem

 From the lexical point of view, a URI must only use UCS (Universal
 Character Set) code points; these code points must be converted to bytes
 through the UTF-8 encoding, but when the character doesn’t belong to the
 unreserved subset, it must be escaped using a “%HH” pattern before
 encoding (full details in [1]).

	IRI stands for Internationalized Resource
 Identifier (see [8]) and has the same meaning and
 syntactic structure than URI, but a more abstract lexical structure. An
 IRI uses hence an extended character set supporting foreign languages
 (foreign should be understood here as non-English), including
 right-to-left writing languages such as Arabic. The specification
 describes the translation algorithm that transforms an IRI into an URI
 (thus allowing physical access if required) through a character
 normalization phase followed by an escaping mechanism based on %HH
 patterns (H stands for any hexadecimal letter taken from the 0-9A-F
 alphabet).

	HREF refers to “Hyper-references” defined in the
 HTML vocabulary among others. Those links have a specific encoding
 policy, using a similar escaping mechanism than URI, but with stricter
 character set (namely, ASCII)

	XInclude refers not only to the link associated
 with it, but to the whole node. This element is meant to express
 document inclusion, a not so simple mechanism whose semantics is
 precisely specified in [9] and makes use of a
 predefined attribute “href” containing a specifically encoded URI
 according to section 4.2.2 of the XML 1.1 specification [10]:
 […] System identifiers (and other XML strings meant to
 be used as URI references) MAY contain characters that,
 according to [IETF RFC 2396] and [IETF RFC 2732], must be
 escaped before a URI can be used to retrieve the referenced
 resource. The characters to be escaped are the control
 characters #x0 to #x1F and #x7F (most of which cannot appear
 in XML), space #x20, the delimiters '<' #x3C,
 '>' #x3E and '"' #x22, the unwise characters '{'
 #x7B, '}' #x7D, '|' #x7C, '\' #x5C, '^' #x5E and '`' #x60,
 as well as all characters above #x7F. Since escaping is not
 always a fully reversible process, it MUST be performed only
 when absolutely necessary and as late as possible in a
 processing chain. In particular, neither the process of
 converting a relative URI to an absolute one nor the process
 of passing a URI reference to a process or software
 component responsible for dereferencing it SHOULD trigger
 escaping. When escaping does occur, it MUST be performed as
 follows: 1. Each character to be escaped is represented in
 UTF-8 [Unicode] as one or more bytes. 2. The resulting bytes
 are escaped with the URI escaping mechanism (that is,
 converted to %HH, where HH is the hexadecimal notation of
 the byte value). 3. The original character is replaced by
 the resulting character sequence. […]

— World Wide Web Consortium

	XLink as for XInclude, refers to a node supposed
 to contain XLink related attributes (see [3]); the
 specific href attribute from the XLink namespace is an URI. The general
 semantics constraints of XLink are captured by this descriptor.

	XPointer describes a very rich mechanism (see
 [11, 12]),
 based on URI and possibly using various selection languages (so-called
 schemes), one of them, most notably, extending
 XPath in order to designate one or several fragments of an XML document
 tree including segments in text nodes.

 Each such descriptor is associated with a locator, that is, an expression of
 a node selection language that defines where the link should be located in the
 document instances under consideration. Note that these XPath may use various
 namespaces, provided they are consistently declared thanks to a special element
 called ns (the same mechanism is used inside Schematron
 specifications [18])
 The Figure below illustrates how our method can be used to describe links in
 any XHTML compliant document [1].
Figure 1: a link description for XHTML

<links id="xhtml-1.0" ns="http://www.w3.org/1999/xhtml">
<!-- XHTML 1.0 -->

<tags>image-locator source-locator code-locator
 header links descriptor citation doc-base</tags>

<group tag="header" locator="/html/head">
 <iri locator="/@profile"/>
 <iri tag="doc-base" locator="/base/@href" />
 <iri tag="links" locator="/link/@href"/>
 <uri tag="source-locator code-locator" locator="/script/@src"/>
</group>

<iri tag="descriptor" locator="//iframe/@longdesc"/>
<iri tag="source-locator" locator="//iframe/@src"/>
<iri tag="image-locator" locator="/body/@background"/>

<group tag="citation">
 <iri locator="//blockquote/@cite"/>
 <iri locator="//ins/@cite"/>
 <iri locator="//del/@cite"/>
 <iri locator="//q/@cite"/>
</group>

<group tag="references">
 <iri locator="//a/@href"/>
 <group locator="//object">
 <iri locator="/@classid"/>
 <iri tag="code-locator" locator="/@codebase"/>
 <iri locator="/@data"/>
 <iri locator="/@archive" list="yes"/>
 <iri locator="/@usemap"/>
 </group>
 <iri tag="code-locator" locator="//applet/@codebase"/>
</group>

<group locator="//img">
 <iri tag="image-locator" locator="/@src"/>
 <iri tag="descriptor" locator="/@longdesc"/>
 <iri locator="/@usemap"/>
</group>

<iri locator="//area/@href"/>
<iri locator="//form/@action"/>
<iri locator="//input/@src"/>
<iri locator="//input/@usemap"/>

</links>

An example of a generic link description for XHTML. The descriptors
 can be further reused for other operations through a tag based
 designation mechanism

Link Validation
The link verification is specified in a dedicated section called
 validate which contains at least the reference on a link
 description section, as detailed above (this reference is an URL), which can be
 located inside or outside the document containing the validate
 section. If no other information is specified, all links should be checked with
 respect to the specified semantics. This means that when the verification is
 executed on a given target XML instance, the links are extracted thanks to the
 localization information and are examined in accordance with their type as detailed
 in the previous section.
 Additional constraints can be provided through one or many “properties”
 subsections.
 Each properties subsection applies to one or several link subsets designated
 through a list of one or several tags. Each tag may designate one or several links,
 depending on the link description section, as explained above. Each properties
 subsection is optionally identified through a unique identifier.
The properties are specified through one or several descriptors as listed
 hereafter:
	
 scheme defines the expected scheme, e.g. “http”, “ftp”
 or “mailto”

	
 absolute expresses that an absolute link is expected
 (the scheme and server location are provided)

	relative expresses that a relative link is expected
 (the path, resource name and optionally the fragments are provided; the
 scheme and server location are those of the base URI of the target instance,
 as specified in [1])

	
 matches(p) expresses that the link content must match
 the provided pattern p. This pattern is expressed according to the method
 described later.

	
 path(p) expresses that the “path” part of the link (see
 URI syntactic structure in [1]) must match the given
 pattern p.

	
 fragment(p) expresses that the “fragment” part of the
 link (see [1]) must match the given pattern p.

	query(p) expresses that the “query” part of the link
 (see [1]) must match the given pattern p.

	
 target() expresses that the target reference is
 available at the time of the verification; one of several sub-descriptor can
 be specified, in order to make-it more precise:
	
 mime-type This is a standardized notation for
 indicating the type of internet resources (see [15])

	
 namespace(ns) (makes sense only if the
 mime-type is text/xml or derived).

	
 condition(p) ; as for previous item, this
 condition needs a parsable XML content ; requires checking if
 conditions p holds (p is a XPath qualifier expression)

 Note that points 8.2 and 8.3 above
 require solving the reference at verification time, and also possibly XML
 decoding and/or parsing.

If no descriptor is specified, only standard verifications related to the nature
 of links are conducted.
 An additional error message can be specified within each property descriptor,
 that will be used to report any property violation (e.g.
 matches(http://{*}:{*}/{*},”an explicit port number is expected”) will display the
 error message for non-matching link such as
 http://barnum/circus.jpg)
The following example illustrates the method when applied to an XHTML document
Figure 2: A link validation specification

<validate link-description="../schemas/html.xrm.xml#xhtml-1.0">

 <property of="code-locator" xml:id="code1">
 <relative>references to code-related objects
 are expected to be relative</relative>
 <fragment> references on code location
 cannot point to document fragments </fragment>

 <matches normalize="yes"
 pattern="http://bonobo:{*}/code/{*}"/>
 </property>

 <property of="image-locator">
 <relative/>
 <query>
 references to images cannot contain query
 </query>
 <matches pattern="http://bonobo:{*}/image/{*}"/>
 </property>

</validate>

This specification reuses the generic description of XHTML links as shown
 Figure 1

Link Transformation
 Link transformations are specified in a dedicated section called “rewrite” which
 comprises a header having the following attributes: 	link-description: the name of a link description
 section, against which link tags will be interpreted (mandatory)

	normalize: take the value yes or no (defaults to
 yes if omitted); if set to yes, the relevant normalization process will
 be performed on all links before applying matching operation (the exact
 nature of normalization operation depends upon the nature of link); if
 set to no, the pattern matching operation will be applied on the
 original link [2];

	resolving-base: optionally specifies an URI that
 will be considered as the reference URI for solving relative link. It
 supersedes the xml:base information, if present, or the static-base-uri
 of the original document.

Beside header attributes, this section is composed of zero or many rewriting
 descriptors possibly embedded inside a base descriptor. Each base descriptor has
 	an optional “location” attribute which expresses where an xml:base
 attribute must be inserted inside the transformed document. When
 omitted, the xml:base attribute is inserted into the root node (of
 course, in any case, it is an inconsistency error if several base
 descriptors are allocated to the same node).

	a “value” attribute which defines the content of the xml:base
 attribute. This must be an absolute URL in accordance with the standard
 [5]; if omitted, the static-base-uri is used.

 Each rewriting descriptor may have 	a tags attribute, which is a list of tag name
 corresponding to the links to be selected as candidates (all link
 descriptors are considered if the tags attribute is omitted)

	a condition attribute, which optionally specifies
 an additional condition to be checked before trying to apply the
 rewriting (typically, an XPath expression)

	a from attribute, which optionally specifies a
 pattern matching expression that must be successfully applied in order
 to rewrite the link ; such pattern may define matching variables (see
 the subsection 3.4 “Specification of Patterns” for the whole description
 of the link pattern language).

	an into attribute, which optionally specifies a
 new value for the link. This value may partially or totally reuse the
 pattern variables defined inside the from pattern (see the subsection
 3.4 “Specification of Patterns”) if any.

In the case where a rewriting descriptor has no “from” and no “into” attribute, it
 may have one or more rewrite sub-descriptor, each of it having a pair of “from/into”
 attribute. The meaning of this list is that each rewriting is tried in order, until
 a matching “from” is found.
Below is an example of link rewriting based on a two-rule sequence to be applied
 on any link tagged as "images" or "scripts"

<rewrite
 link-description=”../schemas/html.xrm.xml#xhtml-1.0”
 tags=”images scripts” >
 <rewriting from=”{{*}}/{name}.jpg” into=”./images/JPEG/{name}.jpg”/>
 <rewriting from=”{{*}}/{name}.js” into=”./javascripts/{name}.js”/>
</rewrite>

 Note that after computing the rewritten link, and if the rewriting descriptor is
 embedded inside a base descriptor, the result is checked against the value of the
 base descriptor, and made relative if required.

<base location=”/html/body”>
 <rewrite
 link-description=”../schemas/html.xrm.xml#xhtml-1.0”
 tags=”images scripts” >
 <rewriting from=”{{A}}/{name}.jpg” into=”{{A}}/JPEG/{name}.jpg”/>
 <rewriting from=”{{A}}/{name}.js” into=”{{A}}/javascripts/{name}.js”/>
 </rewrite>
</base>

The example above will, for instance, change the document below

<html >
 <body>

 </body>
</html>

into

<html >
 <body xml:base=”http://catworld:8080” >

 </body>
</html>

where the xml:base attribute attached to the body element has
 been extrapolated from the static-base-uri of the input document (because no more
 precise information was provided)

Link Dependencies
They are described using a similar mechanism than for link transformation, through
 a dedicated section “dependencies” having the following attributes:
	link-description: the name of a link description
 section, against which link tags will be interpreted (mandatory)

	normalize-input: take the value yes or no (defaults
 to yes if omitted); if set to yes, the relevant normalization process will
 be performed on all links before testing operation (the exact nature of
 normalization operation depends upon the nature of link); if set to no, all
 tests will be applied on the original link[2];

	normalize-output: take the value yes or no (defaults
 to yes if omitted); if set to yes, the relevant normalization process will
 be performed on all links before dumping the dependency (the exact nature of
 normalization operation depends upon the nature of link); when set to no,
 minimal transformation may nevertheless occur[2].

	resolving-base: optionally specifies an URI that will
 be considered as the reference URI for solving relative link. It supersedes
 the xml:base information, if present, or the static-base-uri of the original
 document otherwise.

	sorting: takes one of the following values
 {“document-order”, “content-order”, “tag-order”}, and expresses the method
 used to order the link dependencies dumped into the dependency report. With
 document-order, links are organized in the same order than found inside the
 original input document. Using content-order, links are alphabetically
 classified according to the lexical structure of the URL. The flag mode use
 an alphabetical classification based on the tag name of the link, as defined
 by the link description section. If omitted, the sorting attribute defaults
 to “document-order”.

Note that if no extract sub-descriptor is provided, all links
 found in the input document are dumped into the dependency report.

Conclusion
 We have implemented most of the features described in this proposal through an XML
 syntax from which the examples above are extracted, which comes with a RelaxNG schema.
 An XSLT 2.0 stylesheet (interpreter/compiler front-end) analyzes the specifications and
 generates another XSLT 2.0 stylesheet for each of the three operations (link
 verification, link transformation and link dependencies) ; the link description section
 is only interpreted during the compilation phase in order to produce the adequate code.
 A dedicated, home-made XSLT 2.0 library defines common operations (such as pattern
 matching functions), and is reused by all stylesheets including the front-end analyzer.
 The compiled stylesheet can be dumped for later use, or directly executed through the
 on-the-fly invocation mechanism offered by the Open Source Saxonica Engine [17].
 Our experimental results demonstrate that the approach is realistic, useful and leads
 to realistic performance levels (no particular implementation issue raised).
Evaluation of the qualitative aspect of such a proposal is always a difficult issue,
 because strongly related to usability and far from being objective matter.
From this point of view, we were happy to observe that the verbosity of specifications
 turned out to be nicely under control, mainly thanks to the clear conceptual separation
 between link descriptors and operations, and also because we designed well-targeted
 default parameters and behaviors. An other fruitful principle we tried to follow was
 trying to capture as much as possible common and simple operations into simple
 abstractions, and to scale up most complex operations toward adding attributes or
 embedding additional information inside the element content (e.g. a simple rewrite
 operation can use the "from" and "into" attributes whereas a more complex rewrite
 operation can be decomposed into a sublist of ordered rewriting rules to try
 sequentially)
Regarding the expressive power, it turned out to be adequate for the cases we had to
 analyze. Of course, the difficult point is to extrapolate to cases we did not forecast.
 What we can say is that the methodology we have adopted allowed us to abstract over
 applications and to focus as much as possible on the functions associated with
 referential objects
We now consider opening the technology and related tools to a larger technical
 community as a service accessible through a corporate web portal, and thus to understand
 if it triggers interest, and hopefully to understand in a deeper way the potential
 enhancements and evolutions we could envision.

Appendix A. The pattern matching language
The pattern matching language we propose hereafter is based on the “{” and “}”
 characters to serve as delimiters of pattern variables. Those characters have no precise
 meaning (see the URI specification [1]) and do not belong to the
 standard alphabet or separator sets. Variables are named through using any identifier
 built from any alphabet excluding the braces and the star “*”. A label can only be used
 once in a given pattern. If a star is used instead of a name (e.g. “{*}”), it just means
 that the matching substring is not stored. Double braces mean that the longest matching
 substring is expected, whereas the shortest match is returned for single braces.
 The table below illustrates the various pattern matching mechanisms:
Table I
	Pattern	Value	Result
	http://{server}:{*}/{*}.jpg	http://barnum:80/circus/jumper.jpg	Matches=yes ; server=”barnum”
	http://barnum:80/circus/acrobats/juggler.jpg	Matches=yes ; server=”barnum”
	https://barnum:80/circus/jumper.jpg	Matches=no
	http://{server}/{{path}}/{object}	http://barnum:80/circus/jumper.gif	Matches=yes server=”barnum:80” path=”circus” object=”jumper.gif”
	http://barnum:80/circus/acrobats/juggler.jpg	Matches=yes server=”barnum:80” path=”circus/acrobat” object=”juggler.gif”

	http://{server}/{path}/{object}	http://barnum:80/circus/jumper.gif	Matches=yes server=”barnum:80” path=”circus” object =”jumper.gif”
	http://barnum:80/circus/acrobats/juggler.jpg	Matches=yes server=”barnum:80” path=”circus” object =”acrobats/juggler.jpg”

Appendix B. Verification and execution of XRM specifications (principles)
Our descriptions can be expressed through XML or any appropriate language. If the
 language is not based on XML, a bidirectional, lossless, translation to XML could be
 provided (this technique is used by the RelaxNG [14]
 schema language, which provides both an XML based syntax and a so-called “compact
 syntax”, strictly equivalent).
In order to be consistent and usable, our link descriptions must comply with specific
 properties that can be checked in order to assess the correctness of the specifications:
	Wellformedness of the logical structure (correct occurrence of sections,
 subsections and attributes)

	Correct use of tags (no dangling tag references, coherence of tag declarations
 if any)

	Correct structure of URI (reference on link descriptions)

The execution model of any processing component functionally encompasses 3 stages
 (points 1, 2, 3 below all
 cover the third stage, depending on the active operation):
	Performs the XML parsing

	Extracts of the so-called base-uri (the URL that describes
 the localization of the instance to be processed)

	For each link specified into the link validation description,
	Extracts the link value, using the localization information described
 in point 1.a above, and accessed through the tag designation
 mechanism

	Perform a partial normalization of the link, according to information
 provided (deals only with escaping issues, depending on the kind of
 reference, as specified)

	Verifies if the lexical structure of link meets the validation
 requirement, depending on those:
	The link structure is compliant with the declared link
 type

	The link is verifying the condition (if provided)

	The link is matching the pattern (if provided)

	The link target is available (if this constraint is
 specified)

	The link target verifies the expected properties, if any such
 is specified (namespace, node selection condition)

	For each link specified into the link transformation description,
	Extracts the link value, using the localization information described
 in point 1.a above, and accessed through the tag designation
 mechanism

	Normalizes the link, according to the information provided by the
 normalize attribute of the link transformation
 section (if normalize is set to true, solves the relative references
 into absolute references, in accordance with the XML Base standard
 [5] ; deal with escaping issues, depending on
 the kind of reference, as specified)

	Applies the rule logic as described above for rewriting
 descriptors

	Normalizes the resulting link, with respect to xml:base mechanism, if
 required

	Handle forbidden characters inside link content, as required by its
 type (use escaping mechanisms defined in [1], e.g. a
 space “ “ is escaped into “%20”)

	Inserts the resulting link into the output document in replacement of
 the original link

	For each link specified in the dependencies section,
	extracts all relevant link values satisfying the filtering conditions
 (prior normalization if required)

	normalize the link (if required by the extract sub-descriptor) and
 orders the links according to the specified ordering policy

	creates an output report with the relevant meta-information: for
 instance the date and time of the dependency extraction operation ; the
 URL of the input document, the URL of the link dependencies
 specification interpreted by the operation

	dumps the links in the right order inside the report with the relevant
 meta-information as specified by show-tag and show-location
 attributes

References
[1]
 Uniform Resource Identifier: Generic syntax (URI), IETF - RFC 3986
 T. Berners-Lee, R. Fielding, L. Masinter, January 2005 rfc content

[2]
 XML Catalogs, OASIS Committee specification, August 2001 specification

[3]
 XML Linking Language W3C Recommendation, June 2003, recommendation

[4]
 Extensible Markup Language (XML) 1.0 (Second Edition) World Wide
 Web Consortium, 2000, specification

[5]
 XML Base W3C Recommendation, June 2001, recommendation

[6]
 How to Write an XML Catalog File Bob Stayton, In “DocBook XSL: The
 Complete Guide”, Part 1, Chapter 5 article

[7]
 XML Path Language (XPath), version 1.0 W3C recommendation, 16
 November 1999, recommendation

[8]
 Internationalized Resource Identifiers (IRIs) IETF – RFC 3987,
 Duerest and Suignard, January 2005, rfc content

[9]
 XML Inclusion 1.0 (XInclude - Second Edition) W3C recommendation,
 15 November 2006, recommendation

[10]
 Extensible Markup Language (XML) 1.1 W3C recommendation, 4 February
 2004 recommendation (ext. entity)

[11]
 XPointer xpointer() Scheme W3C Working Draft 19 December 2002 working draft

[12]
 XPointer Framework W3C Recommendation, 25 March 2005 recommendation

[13]
 XML Namespaces Wikipedia, the free Encyclopedia article

[14]
 RelaxNG Wikipedia, the free Encyclopedia article

[15]
 Mime Media Types IANA (Internet Assigned Numbers Authority) specification

[16]
 Mime Types File References non normative list of mime media types
 and usual associated file name extensions http://www.mimetype.org/

[17]
 Saxonica, XSLT and XQuery processing Michael Kay, http://www.saxonica.com/

[18]
 ISO Schematron, a language for making assertions about patterns found in XML
 documents, Topologi , web site

[1] All XPath expressions are here interpreted inside the default
 namespace specified in top-level element "links" through the "ns"
 attribute.
[2] Some normalization operation may nevertheless occur due to standard XML
 processing, such as interpretation of escaping sequences and expansion of
 reference entities.

Balisage: The Markup Conference

Managing XML references through the XRM vocabulary
Jean-Yves Vion-Dury
Senior Scientist
Xerox Research Centre Europe

<jean-yves.vion-dury@xeroxlabs.com>
Jean-Yves Vion-Dury holds an CS engineering degree from the “Conservatoire National des Arts et Metiers, France” (1993) and graduated with a PhD in CS from Universite Joseph Fourier, Grenoble in 1999. He has been working at Xerox Research Centre Europe (in Grenoble, France) since 1995, as a research scientist; he has also been on a two year sabbatical with Vincent Quint’s team at INRIA in 2002-2004. His research interests relate to various aspect of XML including models, the impact of standards, validation/transformation languages and architectures, with theoretical background in programming languages, compilation, type systems and formal logics.
Jean-Yves was Program Chair of DocEng (ACM Document Engineering Symposium) in 2004, has been a member of its Program Committee since 2003, and a member of its Steering Committee since 2005.

Balisage: The Markup Conference

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

