[image: Balisage logo]Balisage: The Markup Conference

Automatic XML Namespaces
Liam R. E. Quin
XML Activity Lead
W3C

<liam@w3.org>

Balisage: The Markup Conference 2009
August 11 - 14, 2009

Copyright © 2009 Liam R E Quin. Used by permission.

How to cite this paper
Quin, Liam R. E. "Automatic XML Namespaces." Presented at: Balisage: The Markup Conference 2009, Montréal, Canada, August 11 - 14, 2009.  In Proceedings of Balisage: The Markup Conference 2009. 
        Balisage Series on Markup Technologies vol. 3 (2009). https://doi.org/10.4242/BalisageVol3.Quin01.

Abstract
XML, originally called Web SGML, was designed as a subset of SGML
      suitable for use on the World Wide Web. Shortly after the publication of
      XML, the Names in XML specification, better known as Namespaces, was
      published. One of its primary purposes was to facilitate the exchange of
      RDF metadata in XML. XML Namespaces are somewhat clumsy and unwieldy,
      under-specified, and incomplete. They have gained considerable adoption
      within XML vocabularies, often with reluctance, but have met with
      resistance from the Web community.
This paper explores some of the difficulties (whether real or
      perceived) with Namespaces, suggests ways to address some of those
      difficulties, and also suggests ways to attempt some reconciliation with
      the Web developer community.



Balisage: The Markup Conference


      Automatic XML Namespaces

      
         Table of Contents

         
            	Title Page

            	Introduction

            	XHTML and Namespaces

            	HTML 5, XML and Namespaces

            	Other XML Environments where Namespaces may be Suboptimal

            	Requirements for a Solution

            	Existing and Proposed Technologies
                  	Default (#FIXED) attributes in a DTD

                  	Information Technology — Document Schema Definition Languages
                        (DSDL) — Part 8: Document Semantics Renaming Language (DSRL)

                  	JavaScript-based solutions

                  	Disruptive Approaches

               

            

            	Proposal: Automatic Namespaces
                  	The Automatic Namespace Definition
                        	Attributes

                        	Namespace Prefixes

                     

                  

                  	Changing DSRL

                  	Conclusions and Ongoing and Future Work

               

            

            	About the Author

         

      
   Automatic XML Namespaces

Introduction
The XML community has lived with XML namespaces for a decade. They
    are useful to the point of seeming indispensable, they are ubiquitous, and
    yet they are at the same time unwieldy and flawed. Namespace declarations
    can be inconvenient to remember, and errors in them are frequently the
    source of subtle and hard-to-diagnose errors. From a programming
    perspective, namespaces provide scope and disambiguation; from a document
    authoring perspective, namespaces provide headaches. For an HTML author,
    working in a world in which the browsers tend to suppress or auto-correct
    errors, and in which MathML, XHTML, SVG, XForms, Dublin Core and more each
    have their own namespace URI, the need to pre-declare large sets of
    namespaces quickly becomes onerous.
In this paper the author proposes a simple system to simplify
    namespace declaration, and to enhance namespace functionality considerably
    by introducing a single new feature, without losing the existing benefits.
    The paper first describes in more detail some of the issues, then
    summarises the issues with requirements for change, then discusses other
    proposals, and finally makes a concrete proposal.

XHTML and Namespaces
Consider a typical XHTML document that also uses XForms, SVG,
    MathML, and has some metadata using the Dublin Core and FOAF. Already we
    are up to six namespace declarations (including the one for XHTML) and we
    have hardly begun. SVG uses XLink adding another, and so it continues.
    Documents with twenty or more declarations are sometimes seen.
Of course, many of these documents are generated automatically
    rather than hand-authored. Even there, the burden of maintaining the
    declarations should not be underestimated. To XML people familiar with the
    mechanisms and overhead of the namespace syntax there may seem (at least
    at first sight) no problem, but to HTML authors the difference is
    startling. Is it necessary?
Recall that namespaces are serving two primary functions: they are
    associating names with the specifications that define them, and they are
    disambiguating in the case that two specifications define the same name.
    In practice, conflicts where the same name is defined by multiple
    specifications are rare (although still important enough to need
    addressing). For XHTML, the DOCTYPE declaration already is sufficient to
    bestow HTML-ness, and, within the context of HTML, an svg
    element only has one plausible interpretation. A significant motivation
    driving the use of XHTML is that XML tools can be used with the document,
    and for these tools, SVG-ness is not associated with any particular
    element name. One could use #FIXED attributes in a document
    type definition, but we will see later why this is not a satisfactory
    approach. The HTTP MIME Content Type can also be used to indicate
    combinations (application/xml+svg+mathml) but since every combination must
    be registered with IANA, this does not scale; it also doesn't work on a
    local file system.
A major goal of the work described in this paper, then, must be to
    eliminate as much syntax as possible without losing the benefit of being
    able to combine namespaces at will and have both XML and Web tools operate
    on the result.
The XML community will not be motivated to support a new
    specification merely to satisfy the needs of some other community. We
    would need to do more. Happily, there is more to be done. Extensive use of
    namespaces has demonstrated a need for an easy way for users to define
    their own namespaces that are a mixture of existing namespaces and their
    own elements, and to check that 

HTML 5, XML and Namespaces
In the last couple of years, a number of individuals have gathered
    support for renewed work on non-XML versions of HTML. These are also not
    based on SGML, but instead are an SGML-inspired format. Avowed dislike of
    XML appears to have stemmed at least in part from misunderstandings and in
    part from the stricter and more verbose syntax. For these people,
    robustness, accuracy, error detection and correctness are relatively
    unimportant: all that matters is that the Web browser render an acceptable
    result. At the time of writing, the HTML Working Group is considering
    hard-wiring MathML and SVG namespaces into the HTML specification, so that
    an svg element would automatically be placed into the SVG
    namespace. This would make it harder to process the documents with other
    tools, for example it's tricky to match SVG elements with XPath or with
    XSLT match expressions if you don't know in advance whether there will be
    a namespace declaration, and, if there is, whether it will be correct. In
    fairness it should be noted that, since HTML 5 processors are expected to
    auto-correct certain classes of syntax errors which XML processors are
    required not to attempt to correct, one cannot in general expect to
    process HTML 5 documents with XML tools. None the less it is reasonable to
    be able to expect to generate HTML documents from XML, and also to use
    JavaScript, XPath and other tools on the HTML DOM.

Other XML Environments where Namespaces may be Suboptimal
Anywhere that users have to declare a large number of mostly
    orthogonal (non-overlapping) namespaces is a candidate for improvement: it
    is particularly unfortunate that users cannot themselves combine
    namespaces to make new amalgamated ones, such as XSLT plus SVG plus
    HTML.
Some difficulties when using multiple namespaces today
    include:
	The need to remember long URIs: people often use copy and paste,
        which can result in extra declarations being pasted in and later
        causing problems; or, they re-type the URI by hand and make errors,
        with the result that software later doesn't recognise the namespace
        correctly.

	The need for humans to remember which namespace defines which
        element or attribute, even where there's no clear functional gain. For
        example, remembering that href comes from XLink in SVG,
        and from XHTML in some other vocabulary.

	Matching mixed-namespace documents with XPath, whether for XSLT
        or for XQuery or (hardest of all) stand-alone XPath, is distressingly
        exciting. The most commonly asked questions on XML support channels
        are about processing namespaces.



Requirements for a Solution
	Freely Available
	If you need to pay for the spec, the Web developer community
          is not interested.

	Freely Implementable
	There should be no patent encumbrances; since this is in
          practice not determinable, at the very least the people developing
          the specification, and the organisation publishing it, mast make
          effort to ensure that people using or implementing the specification
          won't suddenly be asked to pay royalties.

	Makes life simpler
	Although part of the goal of Automatic Namespaces is to enable
          HTML 5 documents to be namespace-well-formed in memory, it's
          important to remember that this is a motivation for XML people but
          not HTML people. Therefore, to gain adoption, Automatic Namespaces
          must not require the user to understand new concepts. For example,
          the user should not have to declare or use namespace bindings, since
          those are the things that are objected to the most.

	Easy to Implement
	The solution must be easy to implement in JavaScript (for
          example, an experienced JavaScript programmer should be able to
          write a complete implementation in under an hour, including the time
          taken to read the specification). This is partly because otherwise
          no-one will do it, and partly because a JavaScript implementation
          that is more than a few hundred bytes will not be appealing to
          people trying to make Web sites that load quickly. The specification
          must also be easy to implement in XSLT and other
          environments.

	Compatible with Today's Web
	The solution must work in Web browsers that are in use today,
          at least in the vast majority of cases. People won't upgrade their
          Web browsers to view Web pages using namespaces.

	Gives clear benefits to XML people
	I'm not out just to make the HTML 5 people feel vaguely more
          karmic. They can do that all by themselves. I aim to write a spec
          that will mean XML users can benefit too.




Existing and Proposed Technologies
Others have identified a need in this area. A recent discussion on
    the xml-dev list quin2009aelicited an incomplete
    proposal that will be discussed below, together with two other methods,
    #FIXED attributes and ISO DSRL. Private communication has
    also provided a JavaScript-based partial solution that will also be
    described below.
Default (#FIXED) attributes in a DTD
The idea here is to have a document type definition that supplies
      xmlns:svg and so forth as #FIXED attribute values. This
      would be interesting if Web browsers fetched DTDs. One could consider
      JavaScript to fetch the DTD from the W3C servers, but W3C can't afford
      the bandwidth, and there are file access restrictions on JavaScript that
      may make a persistent cache or XML Catalogue approach hard to implement;
      in addition, both the SYSTEM and the PUBLIC identifiers are fixed, so
      one cannot serve HTML documents with server-specific values. This
      DTD-based approach might work fine outside the HTML world, but it turns
      out that today's Web browsers reject documents containing qnames if the
      prefix has not been explicitly bound to a URI. This means that a
      document would not be considered as well-formed without the DTD:
      progressive rendering as the document loads would have to wait for the
      DTD, and an unavailable DTD would prevent the document from loading.
      Worse, since the browsers don't fetch the DTD themselves, the approach
      of defining default prefixes in a DTD can only lead to documents that
      the browsers can't load. Since our goal is to reach out and build
      bridges between HTML and XML worlds and we must (regretfully) dismiss
      this approach.

Information Technology — Document Schema Definition Languages
      (DSDL) — Part 8: Document Semantics Renaming Language (DSRL)
ISO Joint Technical Committee ISO/IEC JTC 1, Information
      Technology, Subcommittee SC 34, Document Description and Processing
      Languages has recently produced a draft of their Document Semantics
      Renaming Language (DSRL) . This document does not appear to make clear
      how a DSRL mapping is located, given an instance document, although
      separate evidence private communication suggests a
      plan to use a processing instruction. Possibly the ISO committee would
      be amenable to an alternative suggestion that is more likely to work in
      HTML-based Web browsers, since processing instructions interfere with
      PHP processing, and also cannot portably appear before the end of the
      document's head element, which may be too late in a world of progressive
      rendering.
The DSRL specification describes a powerful mechanism to map
      elements, attributes, processing instructions and entities (!) in the
      XML document to alternates. You can map any element to a new (namespace,
      element) combination, where the replacement is part of a validating
      schema. This specification is almost certainly too complex to implement
      in the few hundred bytes of JavaScript we can allow ourselves, although
      the possibility of defining HTML entities using an XML syntax is very
      alluring. DSRL uses XPath to specify the context in which remapping is
      to occur. One could thus map every third svg element in the
      document, if desired.
Overall, DSRL seems very promising. It appears to do what is
      needed. But, like a US Congress bill, it comes with a lot of additional
      baggage, some of which is problematic for us, and also is some missing
      functionality we need:
	DSRL files themselves have at least three namespace
          declarations in them. We want something that doesn't need to have
          any additional declarations, if possible.

	DSRL appears to lack an inclusion facility. One could use
          XInclude, perhaps, but at the cost of added syntactic complexity
          that we are trying to avoid. An XML-savvy user could create DSRL
          files with XSLT or XQuery, but again, that's a level beyond our
          expectations. We want to be able to combine namespaces to make new
          ones, and DSRL isn't designed to do that.

	DSRL requires an explicit reference from the document to the
          DSRL file, but using a processing instruction. Processing
          instructions can cause problems in Web browser environments: they
          generally work in application/xml documents but in HTML and XHTML
          documents they can be confused with PHP on the server, and can also
          be (incorrectly) displayed by a Web browser: any unrecognised markup
          terminates the HTML HEAD element, so a processing instruction can
          also break stylesheet and script links in older browsers, and may
          even be rendered as text content [[ISO]; 
            [XHTML-C1], Appendix
          C1].



JavaScript-based solutions
The trouble with a purely JavaScript approach is that it works in
      a Web browser but not in a pure XML environment. It is a bridge that
      reaches only one shore of the river. But JavaScript can indeed be part
      of a solution, as we shall see.
First, we should note that, as things stand (April, 2009), HTML 5
      says that certain elements, such as svg and
      math, are to be placed in the namespaces one might expect
      automatically. Unfortunately, existing Web browsers do not behave this
      way. Once HTML 5 becomes a W3C Recommendation one might reasonably
      expect to see implementations, but a great many people will still be
      using older browsers. This also presents an incompatibility with XPath
      used from JavaScript, because older browsers put everything in the
      default (non) namespace.
One can use JavaScript to place elements in the right namespace to
      make older browsers work the same way as newer ones, and this leads us
      towards a possible solution.
We should note, however, that any JavaScript that changes the DOM
      tree representation of the document might break other scripts, so our
      route to a short-term solution is not without problems.
Another compatibility issue is that XPath name test expressions
      with no namespace match only elements in the default namespace; a
      request has been made to bless the idea that they also can match
      elements in the HTML namespace. There is ongoing discussion in this area
      at the time of writing.

Disruptive Approaches
In the interest of completeness, it is worth mentioning an
      approach to changing namespaces that are incompatible with current
      practice. Ian Hickson has suggested [Hixie2006]
      adding micro-syntax within the xmlns pseudo-attribute, after the
      namespace URI, to allow a search path of namespaces. This would cause
      interoperability problems with existing XML software, but does show that
      others have considered this problem space in the past. Private
      communication tells the author that others have also given thought to
      this problem.


Proposal: Automatic Namespaces
The goals of the Automatic Namespace mechanism are to allow document
    authors to define their own namespace mix-ins in terms of other namespaces
    and to refer to them, and also to minimise the amount of syntax needed for
    declarations—in the case of HTML, ideally, to zero.
The first goal, defining mix-ins, is so that one can have a
    combination such as HTML, MathML and GeoML, using a single URI to refer to
    the definition, and share that definition between many documents. A Web
    browser would act as if a default mix-in had been read; for older Web
    browsers this could be simulated with JavaScript. This means that if you
    want the default HTML 5 behaviour, in almost all cases you don't need to
    do anything at all; but if you want some other combination, or you need to
    extend the HTML 5 set of namespaces, you can do so easily.
The second goal, minimising syntax, is necessary in order to have
    any hope of adoption by HTML and XHTML authors.
People reading a draft of this paper commented that a greater
    barrier to XML adoption in the HTML world was the draconian
    error-handling, which they believed meant that a Web browser must reject
    any document that claims to be XML but is not well-formed. This is an
    unfortunate mis-perception: in fact, the restriction is that the browser
    must not claim such a resource to be a well-formed XML document, but, once
    it is not XML it is outside the scope of the XML specification, and error
    recovery is perfectly acceptable, as long as no claim is made that the
    original document is itself XML. So it seems to this author that the
    barrier is not draconian error handling, but browser writers. So, rather
    than address a problem that appears not to exist, the approach here is to
    address a real difficulty that might be pointed out as a barrier if the
    draconian error-handling straw-man were to be removed. There is no
    possibility of making the unfamiliar familiar without acquaintance, but
    first impressions count for a lot.
The Automatic Namespace Definition
An automatic namespace definition file is a simple XML document.
      It does not itself use a namespace, and does not need a DTD (although
      there is one) or schema (although you can have those too if you like).
      Let's start with a simple example:
<ns>
  <element>
    <name>svg</name>
    <uri>http://www.w3.org/2000/svg</uri>
  </element>
</ns>
The example says that whenever an element called svg
      is encountered, it introduces a new default namespace, with the given
      URI, which will apply both to it and to all its children, unless of
      course they are themselves listed in a namespace file, or unless they
      have explicit namespace bindings in the document.
This much one could do with DSRL, except that we have not used a
      namespace declaration for our namespace definition file itself. We also
      need a way to connect the namespace definition with the document; if we
      are in an HTML document, we could use a link:
<link rel="ns" href="ns.xml" />
This markup would go in the HTML head, although it is only needed
      if your namespace differs from the HTML 5 default, or if you are using
      XHTML. For older (i.e. all existing) browsers we also need to add a link
      to some JavaScript to make it work:
<script type="JavaScript src="ns.js" />
This is more complexity than declaring the SVG namespace, so it's
      hard to imagine people doing it. But what if we define several
      namespaces in one ns file?
<ns>
  <element>
    <name>svg</name>
    <uri>http://www.w3.org/2000/svg</uri>
  </element>
  <element>
    <name>math</name>
    <uri>http://www.w3.org/1998/Math/MathML</uri>
  </element>
</ns>
Now we are starting to make some headway, because although we
      added a lot of garbage, we don't need to change the declarations in the
      document. We could still do this with DSRL, or by putting the namespaces
      right into that JavaScript code. Now suppose we want to add the
      Enterprise Access Control Markup Language (invented for the purpose of
      example), EACML, and that we have a separate eacml.ns file that defines
      its element and namespace. We'll go back to our SVG-only example to keep
      the example listing shorter.
<ns>
  <element>
    <name>svg</name>
    <uri>http://www.w3.org/2000/svg</uri>
  </element>
  <element src="eacml.ns />
</ns>
Perhaps this markup is a little odd, but the idea is to have an
      analogy with HTML script elements. In addition, a non-empty element can
      supply a namespace URI, so that if the software recognises the URI, it
      does not need to fetch the ns file.
For XML documents in general, we could use an attribute on the
      top-level element (or any beneath it):
<mydocument xml:ns="ns.x" />
Such a declaration would need the blessing of the W3C XML Core
      Working Group, and at the time of writing has neither been proposed to
      them nor discussed by them.
Attributes
It turns out that some markup languages need to have some of
        their attributes in a different namespace from their elements. This,
        of course, is because the languages predate the invention of automatic
        namespaces!
<ns>
  <element>
    <name>svg</name>
    <uri>http://www.w3.org/2000/svg</uri>
    <attribute>
      <name>href</name>
      <uri>http://www.w3.org/1999/xlink</uri>
    <attribute>
  </element>
</ns>
Now any href attribute anywhere inside an SVG element (or, more
        precisely, affixed to an element in the SVG namespace) will be put in
        the XLink namespace.

Namespace Prefixes
What if you need to disambiguate an element? Or if you need to
        put a prefixed QName into an attribute?
The first answer is that you really don't want to put prefixed
        names into attribute values. You might think that you do, but you are
        deluded. If you should happen to persist, we will honour your
        delusion. But we will not make it too easy. The answer is that you can
        bind prefixes in just the way you always did, even in the presence of
        namespace files.
The original design of automatic namespaces let you name a
        prefix in the ns file, and use it in the instance, but it turns out
        you can't do that: your document would not be considered well-formed
        by Web browsers, which defeats the purpose. The second attempt was to
        use a prefix character other than the colon, but at that point it
        seems just as easy to declare the namespace. This is an area of
        experimentation at the time of writing.
Note that a DSRL-based approach to disambiguation might be to
        define a rewrite, so that the names of the elements are changed.
        Automatic Namespace Files do not support renaming elements or
        attributes beyond associating namespaces with them, partly because of
        the goal of having documents that work in Web browsers as much as
        possible, and partly because that seems a lot more than just defining
        namespace mix-ins.


Changing DSRL
Since DSRL already exists, it seems reasonable to ask how it could
      be changed to support automatic namespaces.
	Support an implicit link to a DSRL definition, supplied by an
          application (such as a Web browser), rather than requiring a
          processing instruction. We want to allow XHTML documents to be legal
          with a minimum of extra work for their authors.

	Allow a DSRL processor to recognise a default namespace, so
          that DSRL documents do not themselves need to use namespace bindings
          in the most common cases.

	Add an inclusion facility, so that one DSRL document can
          reference another, preferably using a terminology that suggests
          namespace bindings rather than the renaming of elements.

	Ensure that there are royalty-free patent commitments from all
          authors of the specification.

	Ensure that the text of the specification will be freely
          available, and can be freely reproduced in books, tutorials and
          elsewhere.


Although DSRL is not exactly aligned with automatic namespaces, it
      seems worth exploring further.

Conclusions and Ongoing and Future Work
Automatic Namespaces can considerably reduce the amount of syntax
      at the start of XHTML documents. They can also legitimize HTML 5
      parsing, by having a default namespace file that specifies the
      behaviour, a sort of in-browser thought experiment. Automatic Namespaces
      can also help with other XML applications, because although currently
      you'd need to use (say) XSLT to process the namespace file and the
      instance, this is a straight forward thing to do in may pipeline-based
      work flows.
Links to other resources, such as schemas and style sheets,
      human-readable documentation and more could arguably live in the same
      namespace file in the future. The mechanism proposed is easily
      extensible by adding new elements.
A simple mechanism that can be implemented in JavaScript for XHTML
      documents can also be useful for more general XML, and could help to
      give a way to consider HTML 5 documents to have mixed namespaces
      without, in most cases, any need to declare them.


References
[Hixie2006] Hickson, Ian,
    How to make namespaces in XML easier,
    blog entry from 2006-06-29, online at http://ln.hixie.ch/?start=1151612438.
[ISO] ISO, ISO/IEC 19757-8:2008 Information technology -- Document
    Schema Definition Languages (DSDL) -- Part 8: Document Semantics Renaming
    Language (DSRL), online at www.iso.org; €98 fee
    applies for downloading the PDF.
[XHTML-C1] XHTML™ 1.0 The Extensible HyperText Markup
    Language (Second Edition) A Reformulation of HTML 4 in XML 1.0, W3C
    Recommendation 26 January 2000, online at www.w3.org/TR/xhtml1/.

Balisage: The Markup Conference

Automatic XML Namespaces
Liam Quin
XML Activity Lead
W3C

<liam@w3.org>
Liam Quin has been involved with declarative, descriptive markup since the early 1980s. He wrote his open-source text retrieval system and first distributed it in the late 1980s
He has worked at the World Wide Web Consortium since 2001, where he is XML Activity Lead, or, informally, Mrs XML.



Balisage: The Markup Conference

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies





