[image: Balisage logo]Balisage: The Markup Conference

Using Excel Spreadsheets to Communicate XML Analysis
Betty Harvey

Balisage: The Markup Conference 2018
July 31 - August 3, 2018

Copyright © Electronic Commerce Connection, Inc.

How to cite this paper
Harvey, Betty. "Using Excel Spreadsheets to Communicate XML Analysis." Presented at: Balisage: The Markup Conference 2018, Washington, DC, July 31 - August 3, 2018. In Proceedings of Balisage: The Markup Conference 2018.
 Balisage Series on Markup Technologies vol. 21 (2018). https://doi.org/10.4242/BalisageVol21.Harvey01.

Abstract
What is the best approach for analyzing large XML datasets? Reading thousands (or
 possibly millions) of pages of raw XML to fully understand the markup constructs?
 This approach is just not feasible. CSS stylesheets are useful for displaying a few
 files of XML data but is not really efficient. I have found creating analysis
 information in Excel spreadsheets is a very useful tool for understanding the full
 XML data constructs. This approach is also understandable to stakeholders when
 trying to convey useful information about their datasets. This paper will describe
 an approach for creating document analysis Excel spreadsheets using XSLT and
 XML.

Balisage: The Markup Conference

 Using Excel Spreadsheets to Communicate XML Analysis

 Table of Contents

 	Title Page

 	Introduction

 	Initial Analysis Spreadsheet
 	Developing the XSLT for Analysis
 	Creating a Template

 	Excel 2003 XML Structure

 	More Analysis
 	Data Cleanup

 	Conclusion

 	About the Author

 Using Excel Spreadsheets to Communicate XML Analysis

Introduction
Consider you are handed hundreds or thousands of XML files in order to process them.
 You may be required to:
	Convert from original SGML or XML to another XML format

	Convert to HTML

	Create PDF files

	Create new datasets or products from the original data

	Populate database(s) with the data

	etc.

Performing data analysis on XML files can be a daunting task. As a data analyst you
 need to pull every trick in your in your bag of tricks
 out. One of the tricks that I almost always use is to create Excel spreadsheets in order
 to accomplish in-depth analysis of the data and tagging in an easy and understandable
 way. The spreadsheets provide quick snapshots of the whole dataset or a slice of the
 dataset.
Depending on what is uncovered by looking at different views of the data, new
 spreadsheets can be created to help delve deeper into the data.
Spreadsheets are also a good way to present data analysis issues for subject matter
 experts (SME). SMEs who may or may not be XML savvy and spreadsheets is an easily
 consumable format to convey information. Almost everyone has dealt with spreadsheets.
Anomalies are easily uncovered with this approach. It is a good way to see how
 prevasive a data problem may be.
For the purposes of this presentation I am going to describe how to create the
 spreadsheet using Excel 2003 XML format. You can also create the same spreadsheets using
 Excel 2007 and beyond. I wrote a paper entitled Convert Excel
 2007 XML to OASIS code lists that describes how to create a 2007 format
 spreadsheet if you are interested. Excel 2007 XML is a more complicated approach to
 creating Excel. It involves multiple XML files and the necessity to create a zip file
 in order to Excel to consume the database. An Excel .xslt file is actually a zip archive file. If you are curious you can
 unzip a file and look through the file structure and look at all the XML files it
 contains.
The Balisage committee has been kind enough to allow me to use papers from the current
 and past Balisage conferences for doing a simple analysis for this paper.

Initial Analysis Spreadsheet
The first spreadsheet that I always run on a new dataset is to create a 3
 worksheet (tab) spreadsheet of all elements and attributes used in the dataset. The
 rationale for creating this spreadsheet is to accurately determine what elements and
 attributes and attribute values are in the entire or subset of the data. I create the
 following worksheets in the spreadsheet. Worksheets are the tabs in spreadsheet.
	List of unique elements and unique attributes for each element

	List of all unique attributes

	List of all unique attributes and attribute values.

This spreadsheet provides information the data that you need to look further into. For
 example, let's say you are working with files from Docbook or DITA. We know that both
 standards have hundreds of elements and attributes and attribute values. Most datasets
 only use a subset of the entire standard. For instance if your dataset doesn't use the
 element <procedure> then you can ignore doing any analysis or
 downstream processes on this element.
Also, both DocBook and DITA use the role attribute to
 further define many elements. The role attribute is
 defined in the schema as text which means that there can be many role values and
 some may be misspelled. Unless the authoring system restricts the values of the this
 and other attributes it would be impossible to accurately accomplish downstream
 processes based on each value.
The Balisage paper data is about the cleanest data I have had the honor to look at.
 However, the element/attribute analysis did provide a few interesting facts. There are 2
 elements in the data that are currently not in the latest version (1.2) of the Balisage
 schema (lineage and para.level). This probably means that these elements have been
 eliminated from the schema but we still need to know about these elements in order to
 process them.
The second worksheet is used to get a list of all attribute name. This is useful to
 determine which attributes should be looked at further for their unique values.
 Obviously you don't want to get a list of attribute values for attributes such as
 identifiers, table and figure dimensions because that would be to much data and not
 useful to the analysis. Attributes such as 'role', 'class', 'type', etc. will provide
 important insight into the data.
The Balisage papers contain a total of 38 unique attributes. I chose the following
 attributes to look further at.
Table I
	Attribute	Attribute Value
	align	center left right
	role	author bital bold ital rom under
	numeration	arabic loweralpha lowerroman
	spacing	compact

There isn't anything that jumps out with these values except that the 'upperalpha' and
 'upperroman' values are not used for the 'numeration' attribute, 'justify' and 'char'
 are not used for 'align' attribute and finally, the 'spacing' attribute is no longer in
 the schema. This means that we don't have to take these values into account with the
 current dataset.
Developing the XSLT for Analysis
Creating an XSLT for data analysis is really relatively easy. Looking at the code
 it might seem a little 'daunting' at first but the most difficult part is accurately
 iterating through the data to extract the information that is helpful.
Creating a Template
If this is the first time that you will be creating an Excel spreadsheet using
 XSLT, the easiest way to start is to create a template in the Excel application.
 The template should include all the columns that you will need and a single row
 of dummy data. You can also create multiple worksheets (tabs) in your template.
 Below is sample of what the template looks like.
Figure 1: Sample Excel Template
[image:]

If you want to be able to filter the data or freeze the columns set this
 capability inside the template. Once the template is completed save the template
 as Excel 2003 XML.
Figure 2: Save Template
[image:]

That is all there is to it. Now you are ready to create your XSLT around the
 template you just created. Open the template in your favorite XSLT
 editor.

Excel 2003 XML Structure
There are some modifications to the template that will be required because
 Excel. First, let's talk about the different sections in the XML. Below is XML
 file for the template created by Excel. For the most part you will only need to
 care about the second row because this is where the data will be populated.
<Workbook xmlns="urn:schemas-microsoft-com:office:spreadsheet"
 xmlns:o="urn:schemas-microsoft-com:office:office"
 xmlns:x="urn:schemas-microsoft-com:office:excel"
 xmlns:ss="urn:schemas-microsoft-com:office:spreadsheet"
 xmlns:html="http://www.w3.org/TR/REC-html40">
 <DocumentProperties xmlns="urn:schemas-microsoft-com:office:office">
 <Author>Betty Harvey</Author>
 <LastAuthor>Betty Harvey</LastAuthor>
 <Created>2018-06-12T20:30:38Z</Created>
 <Version>16.00</Version>
 </DocumentProperties>
 <OfficeDocumentSettings xmlns="urn:schemas-microsoft-com:office:office">
 <AllowPNG/>
 </OfficeDocumentSettings>
 <ExcelWorkbook xmlns="urn:schemas-microsoft-com:office:excel">
 <WindowHeight>6648</WindowHeight>
 <WindowWidth>19200</WindowWidth>
 <WindowTopX>32767</WindowTopX>
 <WindowTopY>32767</WindowTopY>
 <ProtectStructure>False</ProtectStructure>
 <ProtectWindows>False</ProtectWindows>
 </ExcelWorkbook>
 <Styles>
 <Style ss:ID="Default" ss:Name="Normal">
 <Alignment ss:Vertical="Bottom"/>
 <Borders/>

 <Interior/>
 <NumberFormat/>
 <Protection/>
 </Style>
 <Style ss:ID="s68">
 <Font ss:FontName="Calibri" x:Family="Swiss" ss:Size="11" ss:Color="#FFFFFF"
 ss:Bold="1"/>
 <Interior ss:Color="#305496" ss:Pattern="Solid"/>
 </Style>
 </Styles>
 <Worksheet ss:Name="List of Attributes">
 <Names>
 <NamedRange ss:Name="_FilterDatabase" ss:RefersTo="=Sheet1!R1C1:R1C2"
 ss:Hidden="1"/>
 </Names>
 <Table ss:ExpandedColumnCount="2" ss:ExpandedRowCount="2" x:FullColumns="1"
 x:FullRows="1" ss:DefaultColumnWidth="50.4" ss:DefaultRowHeight="14.4">
 <Column ss:AutoFitWidth="0" ss:Width="87.9"/>
 <Column ss:AutoFitWidth="0" ss:Width="115.80000000000001"/>
 <Row>
 <Cell ss:StyleID="s68"><Data ss:Type="String">List of Elements</Data><NamedCell
 ss:Name="_FilterDatabase"/></Cell>
 <Cell ss:StyleID="s68"><Data ss:Type="String">List of Attributes</Data><NamedCell
 ss:Name="_FilterDatabase"/></Cell>
 </Row>
 <Row>
 <Cell><Data ss:Type="String">element1</Data></Cell>
 <Cell><Data ss:Type="String">attributes for element1</Data></Cell>
 </Row>
 </Table>
 <WorksheetOptions xmlns="urn:schemas-microsoft-com:office:excel">
 <PageSetup>
 <Header x:Margin="0.3"/>
 <Footer x:Margin="0.3"/>
 <PageMargins x:Bottom="0.75" x:Left="0.7" x:Right="0.7" x:Top="0.75"/>
 </PageSetup>
 <Selected/>
 <FreezePanes/>
 <FrozenNoSplit/>
 <SplitHorizontal>1</SplitHorizontal>
 <TopRowBottomPane>1</TopRowBottomPane>
 <SplitVertical>1</SplitVertical>
 <LeftColumnRightPane>1</LeftColumnRightPane>
 <ActivePane>0</ActivePane>
 <Panes>
 <Pane>
 <Number>3</Number>
 </Pane>
 <Pane>
 <Number>1</Number>
 </Pane>
 <Pane>
 <Number>2</Number>
 </Pane>
 <Pane>
 <Number>0</Number>
 </Pane>
 </Panes>
 <ProtectObjects>False</ProtectObjects>
 <ProtectScenarios>False</ProtectScenarios>
 </WorksheetOptions>
 <AutoFilter x:Range="R1C1:R1C2" xmlns="urn:schemas-microsoft-com:office:excel">
 </AutoFilter>
 </Worksheet>
</Workbook>

Style Section
You shouldn't need to modify the style section. However, if you decide
 that you want to add columns to your spreadsheet and you copy and paste the
 new cell parameters from a temporary template, the style identifier may not
 be the same as the style in your original template. Excel is sneaky about
 changing style identifiers.
There is always a default style. If the <Cell> element has no style
 attribute then it uses the default style or no style. A cell that has styling
 uses the ss:StyleID, "<Cell
 ss:StyleID="s68">". The value associates with a style in the
 <Style> section. You can modify the styles in the XML file, if
 necessary.

Table Section
If you are familiar with either the OASIS-Open (previously CALS) or HTML
 table models, the table structure of the Excel XML will look pretty familiar
 to you.
You will need to remove the 'x:FullRows'
 and 'ss:ExpandedRowCount' attributes in the
 table. Excel uses these attributes to determine the size of the
 spreadsheet. Excel uses these to determine the number of rows of the
 spreadsheet. If the sizes don't match then Excel will throw an error.
 However, if the attributes are not there Excel calculates the size of the
 table automatically and Excel will open successfully and place these
 attributes into the spreadsheet.
I also remove the 'ss:ExpandedColumnCount' and x:FullColumns even though you don't need to if you don't
 increase the number of columns. I will often add columns to the spreadsheet
 after I have created the template based on information I get when I run the
 initial spreadsheet. Sometimes it is difficult to know where your analysis
 will lead you once you start looking at the data in-depth.
Before Modification

<Table ss:ExpandedColumnCount="2" ss:ExpandedRowCount="2" x:FullColumns="1"
 x:FullRows="1" ss:DefaultColumnWidth="50.4" ss:DefaultRowHeight="14.4">
</Table>
After Modification

<Table ss:DefaultColumnWidth="50.4" ss:DefaultRowHeight="14.4">
</Table>
If you do get an error when opening the spreadsheet up after you create
 your XSLT. Microsoft will point you to a log file. The log file doesn't
 provide a lot of information but should provide some clues about what the
 error is.
Figure 3: Microsoft Error Notice
[image:]

Row Section
The first row in our template is the table header row. You should leave
 this row 'as is'. There is no need to modify this row. The second row in the
 template is the row that you should wrap your XSLT around to create your
 data rows. The <NamedCell> element is
 used for filtering the data.
Header Row

 <Row>
 <Cell ss:StyleID="s68">
 <Data ss:Type="String">List of Elements</Data>
 <NamedCell ss:Name="_FilterDatabase"/>
 </Cell>
 <Cell ss:StyleID="s68">
 <Data ss:Type="String">List of Attributes</Data>
 <NamedCell ss:Name="_FilterDatabase"/></Cell>
 </Row>
Data Row That Gets Modified
The second row is where your data will be created. Below is the original
 output from the template. You will want to remove the 'dummy' data from the
 <Data> element.

 <Row>
 <Cell><Data ss:Type="String">element1</Data></Cell>
 <Cell><Data ss:Type="String">attributes for element1</Data></Cell>
 </Row>

At this point we can create the logic for creating the spreadsheet. There
 are 2 ways to process the data using XSLT. One way of accessing the data is
 using the 'collection()' function. The
 other way of accessing the data is by using 'xinclude'. For the example above I used 'xinclude' in order to look at the data as a whole
 because I want to get unique values. Below is an example of accessing the
 document is put together using xinclude'
 file. Later in this paper I will show an example using the collection() function.

<files xmlns:xi="http://www.w3.org/2001/XInclude">
<file><filename>vol1/xml/Altheim01/BalisageVol1-Altheim01.xml</filename><xi:include href="C:/projects/Presentations/Balisage2018/Papers/vol1/xml/Altheim01/BalisageVol1-Altheim01.xml"><xi:fallback>File not found</xi:fallback></xi:include></file>
<file><filename>vol1/xml/Bauman01/BalisageVol1-Bauman01.xml</filename><xi:include href="C:/projects/Presentations/Balisage2018/Papers/vol1/xml/Bauman01/BalisageVol1-Bauman01.xml"><xi:fallback>File not found</xi:fallback></xi:include></file>
...
</files>

Below is the XSLT snippet that creates the Rows of the Excel
 spreadsheet:

<xsl:for-each select="//*">
 <xsl:variable name="el-name" select="name()"/>
 <Row>
 <Cell ss:StyleID="s63">
 <Data ss:Type="String">
 <xsl:choose>
 <xsl:when test="preceding::*[name() = $el-name]"/>
 <xsl:otherwise>
 <xsl:value-of select="$el-name"/>
 </xsl:otherwise>
 </xsl:choose>
 </Data>
 </Cell>
 <Cell ss:StyleID="s63"><Data ss:Type="String">
 <xsl:value-of select="distinct-values(collection('../Papers?select=*.xml;recurse=yes')/descendant::*[name() = $el-name]/@*/name())"/>
 </Data>
 </Cell>
 </Row>
</xsl:for-each>

Below is a snippet from the output from the above example code.

<Row>
 <Cell>
 <Data ss:Type="String">abstract</Data>
 </Cell>
 <Cell>
 <Data ss:Type="String"/>
 </Cell>
</Row>
<Row>
 <Cell>
 <Data ss:Type="String">affiliation</Data>
 </Cell>
 <Cell>
 <Data ss:Type="String"/>
 </Cell>
</Row>
<Row>
 <Cell>
 <Data ss:Type="String">appendix</Data>
 </Cell>
 <Cell>
 <Data ss:Type="String">xml:id xreflabel </Data>
 </Cell>
</Row>
. . .

WorksheetOptions and AutoFilter
The last 2 sections of the template setup information for the worksheet.
 The WorksheetOptions section contains standard information about the
 worksheet. You will also find information about freeze panes.
The Autofilter section defines the filtering of the columns. Filtering
 columns provide the capability of having a drop down menu to pick specific
 values in a column.
Autofilter Function

 <AutoFilter x:Range="R1C1:R1C2" xmlns="urn:schemas-microsoft-com:office:excel">

If you add more columns to your spreadsheet increment the 'R1C2' by how
 many columns are in your spreadsheet.
Figure 4: Filtering Example
[image:]

More Analysis
Now that you have the building blocks for creating analysis spreadsheets the sky is
 the limit on what you can gleen from your data. For example, using the Balisage data we
 might want to get a list of all authors. The logic is pretty simple:

<xsl:for-each select="collection('../Papers?select=*.xml;recurse=yes')/doc:article">
 <xsl:for-each select="descendant::doc:author">
 <Row>
 <Cell><Data ss:Type="String"><xsl:value-of select="doc:personname/doc:firstname"/></Data></Cell>
 <Cell><Data ss:Type="String"><xsl:value-of select="doc:personname/doc:surname"/></Data></Cell>
 <Cell><Data ss:Type="String"><xsl:value-of select="ancestor::doc:article/doc:title"/></Data></Cell>
 <Cell><Data ss:Type="String"><xsl:value-of select="substring-after(ancestor::doc:article/descendant::doc:confdates, ', ')"/></Data></Cell>
 </Row>
</xsl:for-each>
</xsl:for-each>

Data Cleanup
At some point you may be required to perform data cleanup. This is a common
 occurrence when dealing with large amounts of data that are coming from different
 sources. You may want to normalize the data especially where attributes such as
 role and class
 are concerned. In order to perform the data cleanup it is important to understand
 what the data looks like and what you may encounter.
If you are cleaning up the data you may want to create a before and after
 spreadsheet just to make sure that your modifications didn't have unexpected
 consequences.
For this paper and demonstration purposes I did a search on the Balisage papers
 for all superscript and subscript elements. I got the value of each superscript and subscript, as well
 as before and after text to provide textual context. For the most part the data that
 came back looked reasonable. However, some values jumped out that may not be valid
 superscript or subscript content. There were 1744 instances of superscript and subscript elements
 in the complete dataset. Below are examples of where I thought the superscript or
 subscript values were problematic.
Figure 5: Suspicious Superscript/Subscript Values
[image:]

Having the ability to filter values in the spreadsheet allows you to drill down into
 problem areas pretty quickly. In a matter of minutes you are able to create a
 spreadsheet, find any problems and come up with the plan for fixing any problems
 that are in the data.
In the first entry above, the closing parenthesis is part of the subscript.
In the other entries, it looks like the superscript is not closed after before the
 para but is closed at the end of the block. It turns out that this data is actually
 a footnote in a table and in order to get the smaller font the author has used
 superscript.
Again, the logic to create this spreadsheet is relatively simple. In this example I
 am using the collection() function to iterate
 through the data.

 <xsl:for-each select="collection('../Papers?select=*.xml;recurse=yes')/doc:article">
 <xsl:for-each select="//*[ends-with(name(), 'script')]">
 <Row>
 <Cell>
 <Data ss:Type="String"><xsl:value-of select="substring-after(base-uri(.), 'file:/C:/projects/Presentations/Balisage2018/Papers/')"/></Data>
 </Cell>
 <Cell>
 <Data ss:Type="String"><xsl:value-of select="name()"/></Data>
 </Cell>
 <Cell>
 <Data ss:Type="String"><xsl:value-of select="."/></Data>
 </Cell>
 <Cell>
 <Data ss:Type="String"><xsl:value-of select="preceding-sibling::text()[1]"/></Data>
 </Cell>
 <Cell>
 <Data ss:Type="String"><xsl:value-of select="following-sibling::text()[1]"/></Data>
 </Cell>
 </Row>
 </xsl:for-each>
</xsl:for-each>

Conclusion
I hope that I have been able to convey how useful spreadsheets can be in the analysis
 of large (or small) data sets. It can provide clarity into the data and help every
 person who is touching the data to understand useful pieces of information. Along with
 other analysis processes the spreadsheet can be an amazing tool.
This approach is not limited to XSLT. The same analysis can be done using XQuery and
 databases. I have created spreadsheets using both technologies.

Citations
[Excel2011] https://www.ibm.com/developerworks/library/x-exceltooasis/index.html

Balisage: The Markup Conference

Using Excel Spreadsheets to Communicate XML Analysis
Betty Harvey
As President of Electronic Commerce Connection, Inc. since 1995, Ms. Harvey
 has led many federal government and commercial enterprises in planning and
 executing their migration to the use of structured information for their
 critical functions. She has helped develop strategic XML solutions for her
 clients. Ms. Harvey has been instrumental in developing industry XML standards.
 She is the co-author of "Professional ebXML Foundations" published by Wrox. Ms.
 Harvey founded the Washington, DC Area SGML/XML Users Group. Ms. Harvey is a
 member of "The XML Guild" and was a coauthor of the book "Advanced XML
 Applications From the Experts at The XML Guild" published by Thomson.

Balisage: The Markup Conference

content/images/Harvey01-004.jpg
r

"

d

2l sortAtoz
il sotztoA
Sort by Color

Filter by Col
Text Filters
Search

¥ (Select All
Vlabstract
Vlaffiliation
¥Iappendix

version xml:base

xml:id
class
xmlid xreflabel

content/images/Harvey01-003.jpg
Problems During Load

Problems came up in the following areas during load:

This file cannot be opened because of errors. Errors are listed in:

C:\Users\harve\AppData\Local\Microsoft\Windows\INetCache\Content. MSO\CDF907FF.log.

OK

content/images/Harvey01-002.jpg
Templatexml - Saved Betty Harvey 7

A = C > projects > Presentations > Balisage2018 > Excel

Template

. XML Spreadsheet 2003 (*xml)
OneDrive - Personal B e,
Save As harvey@eccnet.com

B Name 1 Date modified
Pant This PC

o .

Share

E Add a Place <e> Template.xml

Export

u
Publish

e

Close

6/12/2018 4:32 PM

Browse

D
Account

K
Feedback

-
Options

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

content/images/Harvey01-001.jpg
(Ml List of Elementsf@ List of Attributes [l

2 elementl attributes for element1
2

content/images/Harvey01-005.jpg
ilename M Subscript/$d Value

1

13 vol1/xml/Dichev01/BalisageVol1-Dichev0l.xml subscript 1)
766 |vol13/xml/Braaksma01/BalisageVol13-Braaksma0O1.xml superscript |a) This is the highest allowed |
775 vol13/xml/Braaksma01/BalisageVol13-BraaksmaO1.xml superscript |a) The function body mu
776 vol13/xml/Braaksma01/BalisageVol13-Braaksma0O1l.xml superscript |b) In fact, if the argun

