[image: Balisage logo]Balisage: The Markup Conference

The Kiln XML Publishing Framework
Paul Caton
Research Analyst, King's Digital Laboratory
King's College, London

<paul.caton@kcl.ac.uk>

Miguel Vieira
Software Engineer, King's Digital Laboratory
King's College, London

<jose.m.vieira@kcl.ac.uk>

XML In, Web Out: International Symposium on sub rosa XML
August 1, 2016

Copyright © 2016 by the authors. Used with permission.

How to cite this paper
Caton, Paul, and Miguel Vieira. "The Kiln XML Publishing Framework." Presented at: XML In, Web Out: International Symposium on sub rosa XML, Washington, DC, August 1, 2016. In Proceedings of XML In, Web Out: International Symposium on sub rosa XML.
 Balisage Series on Markup Technologies vol. 18 (2016). https://doi.org/10.4242/BalisageVol18.Caton01.

Abstract
Kiln, previously known as xMod, is an open source multi-platform framework for building
 and deploying complex websites whose source content is primarily in TEI/XML. It brings
 together various independent software components into an integrated whole that provides the
 infrastructure and base functionality for such sites. Separation of roles is central to
 Kiln's design, allowing people with different backgrounds, knowledge and skills to work
 simultaneously on the same project without interfering with one another’s work. Developed
 and maintained at King’s College London it has been used to generate more than 50 websites
 for digital humanities research projects which have very different source materials and
 customised functionality.

Balisage: The Markup Conference

 The Kiln XML Publishing Framework

 Table of Contents

 	Title Page

 	Overview

 	Origins of Kiln

 	Kiln - the principle components

 	Kiln - as the user sees it

 	Kiln's templating system

 	Kiln introspection

 	RDF / Linked Open Data

 	Future for Kiln

 	About the Authors

 The Kiln XML Publishing Framework

Overview
Kiln[1], previously known as xMod,[2] is an open source multi-platform framework for building and deploying complex
 websites whose source content is primarily in TEI/XML. It brings together various independent
 software components into an integrated whole that provides the infrastructure and base
 functionality for such sites. Kiln has two competing design goals: to support the development
 of unique, complex web applications; and to provide an out-of-the-box system suitable for a
 single non-technical person to publish a TEI-based site. The former requires the
 customisability of every default component and the flexibility to integrate external
 components as necessary; the latter requires a large amount of built-in behaviour that can be
 easily tweaked in isolation, and excellent documentation. Kiln’s documentation includes a
 tutorial showing how to customise each of the major elements of a site, as required beyond the
 provided defaults. Separation of roles is central to Kiln's design, allowing people with
 different backgrounds, knowledge, and skills to work simultaneously on the same project
 without interfering with one another’s work.
Kiln is the latest iteration of work begun by a team at the Centre for Computing in the
 Humanities (CCH) - later the Department of Digital Humanities (DDH) - at King’s College,
 London (KCL). Further development and maintenance of Kiln is now under the auspices of the
 recently-formed King's Digital Laboratory at KCL. Over the past years and over several
 versions, Kiln has been used to generate more than 50 websites for digital humanities research
 projects[3] which have very different source materials and customised functionality.

Origins of Kiln
Kiln originated at CCH around 2004 as a framework called xMod. CCH was collaborating with
 academic partners in text-based projects where primary sources were encoded using markup from
 the TEI Guidelines. From this work three things became clear: 	Even for relatively simple, straightforward digital resources academics needed to
 come to CCH/DDH to have the resource built.

	Multiple projects shared a core set of requirements.

	In most cases, as well as the core set of requirements projects also had their own
 very particular and often quite complex needs.

 And from them arose corresponding needs: 	The need to give non-technical people a way to set up a basic digital resource that
 allowed web page display of XML-encoded source files.

	The need to set up for ourselves a quick, dependable, consistent way of getting the
 core requirements dealt with to maximize time available for the project-specific
 work.

	The need to be able to meet the particular requirements while still using the shared
 approach to basics.

 Those needs pointed towards the best solution being a framework that enables a
 phased approach, where the initial phase involves quickly and easily setting up a basic
 digital resource which displays texts and offers basic browse and search functionality.
 Subsequent phases could involve any or all of the following: customizing the look and feel;
 expanding the browse and search capability; integrating with other things to create a larger
 whole (eg. having a CMS front end). This approach avoids making users choose between "simple"
 and "complex" versions of a framework.

Kiln - the principle components

 Architecture: Figure 1 - Kiln Architecture
[image:]
Kiln has been developed around the concept of the separation of roles, allowing
 people with different backgrounds, knowledge and skills to work simultaneously on the
 same project without overriding each other’s work. The parts of the system used by
 developers, designers and content editors are distinct; further, the use of a version
 control system makes it simpler and safer for multiple people with the same role to work
 independently and cooperatively.

 Given the needs we described above, Apache Cocoon[4] is a natural choice to sit at the heart of Kiln because the Cocoon
 sitemap+pipeline system is very flexible and powerful. At the basic level it is easy to create
 default paths and behaviours which are available to users after a few simple steps, thus
 meeting needs (1) and (2). Then, if desired, we can set up processing sequences of increasing
 complexity and/or granularity which supplement the defaults rather than replacing them -
 thereby satisfying need (3).
The Solr search platform[5] is a good complement to Cocoon. At the basic level we can have simple indexing
 pipeline to provide a free text search facility (see next section, below). As our needs become
 more complex - when, for example, we might want to incorporate into the index data from
 non-primary sources such as authority files, bibliographies, and so on - we can use Cocoon's
 aggregation mechanism to bring the disparate sources together and channel them into a single
 indexing transformation. By using internal Cocoon URLs we can pre-process some of the
 secondary sources and channel the output into the aggregation. And because Solr has numerous
 faceting features built-in we can easily add faceted browsing functionality to the resource;
 indeed this step is so straightforward that even a site admin with relatively modest technical
 knowledge can implement it.
Earlier versions of Kiln - then named xMod - used XML databases such as eXist for storing
 and indexing structured textual data and queried the databases using XQuery requests.
 Perfomance issues with XML databases led to our adopting Solr and since then we have had no
 compelling use case for XQuery so it is not included in the 'off-the-shelf' Kiln
 package.
Kiln comes bundled with the Jetty web application server[6] thus allowing Kiln to be a completely standalone application (beyond the user
 having the Java language installed on their machine). For a larger-scale production
 environment it is also easy to install Kiln as a WAR in, for example, an Apache
 Tomcat[7] setup.
The last main component of Kiln is the Sesame RDF framework[8], about our use of which we say more below.
One small convenience which this component set offers is that the parts that a user with
 limited technical knowledge might want to tinker with - ie. Cocoon sitemaps; Solr schema; XSLT
 stylesheets - are all in XML and the user is at least likely to be familiar and comfortable
 with its syntax and rules (assuming they are also responsible for the TEI content
 files).

Kiln - as the user sees it
After dowloading it or cloning it from GitHub, the user can start Kiln from the command
 line with ./build.sh (there is a .bat version for Windows) to use the built-in Jetty server or
 alternatively can associate it with an existing Tomcat server. The default port is 9999 and on
 going there the user will see the default home page (Figure 2). Obviously this is intended to
 serve only as a place holder until the user 'finds their feet' and feels confident enough to
 begin shaping the site themselves. To that end the page offers suggestions about next steps
 and has a link to the online documentation which includes a tutorial that walks users through
 initial setup and common tasks.
Users can see a barebones display of their XML texts simply by adding them under ROOT/ as
 content/xml/tei/*.xml. The 'Texts' link which is already present in the navigation bar brings
 up an index list of files available, showing for each file some simple metadata extracted as
 part of the pipeline processing for the 'Texts' URL. This is default behaviour so the index
 list is always current without the user having to restart the server.

 Welcome: Figure 2 - Kiln default home page
[image:]
Kiln's default home page offers suggestions as to what the user should do
 next.

 The most common need users have after being able to view their texts is for search
 capability. To enable this users go to the Admin page where a button lets the user run a Solr
 indexing process (Figure 3); when complete the user can perform simple text searches over the
 XML files.

 Admin: Figure 3 - Kiln admin page
[image:]
Kiln's admin page allows users to perform basic content processing
 operations.

Beyond this point a user wanting more advanced features such as faceted browsing will have
 to start editing application files. While the documentation provides guidance and the steps
 are not particularly complex, we do expect the user here to be at least comfortable with XML
 configuration files and XSLT stylesheets.

Kiln's templating system
Where TEI-encoded XML files constitute the main source content, an XSLT transformation
 remains the crucial gateway through which content must pass as it is fetched from the back end
 to be displayed on the front end. The approach we adopt to this part of the site workings is
 guided by the needs outline earlier. Ideally: 	It should be clear to non-technical users how displays are assembled.

	There are commonly required types of displays, so these should be 'pre-assembled'
 and offered by default.

	We also want to be able to adapt/add to/replace defaults to provide project-specific
 displays.

 In addition to the desiderata just listed, we know that very often the person
 with the skills to write templates that find and handle parts of the source XML is not the
 person with the skills to organise the output into a functional, ergonomic, and aesthetically
 pleasing display - so we want our approach to allow for that. As far as is possible the XSLT
 specialist and the UI/UX specialist should be able to do their respective work concurrently
 and independently. Kiln handles these concerns by using a distinctive XSLT-based templating
 system. To show how this system works we'll follow a request for an XML source file to display
 as an HTML page.

 	A request for texts/**.html goes to ROOT/sitemaps/main.xmap, is matched by a
 template.

	That template:	Firstly, creates an aggregate, which includes this: <map:part
 label="tei" src="cocoon://internal/tei/preprocess/{1}.xml" />
 	That preprocess call runs the XML through two stylesheets under
 ROOT/kiln/stylesheets/tei with the aim of
 identifying some known potentially troublesome features in the source XML
 and 'preparing the ground' for the final display stylesheet to deal with
 them. 	One aggregates the content of div elements that are linked via
 "next" and "prev" attributes. Supposing an input markup structure like
 so:
<body> <div xml:id="div_1" next="#div_2">
 <p>content of div 1</p> </div> <div
 xml:id="incidental"> <p>intervening unwanted
 content</p> </div> <div xml:id="div_2"
 prev="#div_1"> <p>content of div 2 that continues div
 1</p> </div> </body>
the output structure would be:
<body> <div xml:id="div_1" next="#div_2">
 <p>content of div 1</p> <anchor xml:id="div_2"/>
 <p>content of div 2</p> </div> <div
 xml:id="incidental"> <p>intervening unwanted
 content</p> </div> </body>

	The other moves pagebreak markers that occur in certain structural
 contexts into a different structural context (to stop what should be a
 single block display being broken up); and adds some kiln-namespaced attributes:	To block level elements saying whether or not they contain
 only inline material.

	To link elements saying whether or not they are nested
 inside another link element.

 These attributes allow for allocation of CSS class
 markers that will help adjust the display formatting according to
 context.

	Secondly, runs a transform on the aggregate with this call:
 <map:transform src="cocoon://_internal/template/tei.xsl" />.
 The important thing here is that tei.xsl does not exist as an actual
 stylesheet. Instead, the cocoon URL pattern is matched in /ROOT/kiln/sitemaps/main.xmap as
 "_internal/template/**.xsl" by a template which:	Looks for a template XML file which matches the wildcard value (in this
 case it would be "tei", so it looks for tei.xml).

	On the template XML file it runs: <map:transform
 type="xinclude"/> to grab anything referenced with an xinclude.
 So for example it acts on <xi:include href="base.xml"/>
 to bring in a template file which sets up the overall default HTML page
 framework.

	Then on the template XML file it runs: <map:transform
 src="../stylesheets/template/inherit-template.xsl" />;
 inherit-template.xsl is an actual stylesheet which creates what is
 effectively a virtual stylesheet as its output - and that output functions
 as 'tei.xsl', applies the templates defined within itself, and thereby
 completes the transformation call that originated with
 <map:transform
 src="cocoon://_internal/template/tei.xsl"/>.

	Finally the output from 'tei.xsl' is serialized as HTML by a
 <map:serialize/> instruction. (Note that the default type of
 serializer is set to be HTML in sitemap.xmap, so no @type is specified.)

The processing sequence outlined above allows a designer to shape the structure of output
 web pages by putting HTML directly into the template XML files. They don't need to know
 anything about writing XSLT templates because they never need to edit an XSLT stylesheet. An
 inheritance system based on named blocks means all parts of a page can be customized and at
 different levels of granularity. Each template file has as its first element
 <kiln:parent>, with an XInclude child that brings in the base.xml
 template. This template is an hierarchical structure of named <kiln:block>
 elements which by itself supplies all the necessary elements of a web page. The idea is that
 the calling template (tei.xml in our example) declares named <kiln:block>s
 each of which overrides part-or-all of the equivalent <kiln:block> in
 base.xml. If the named <kiln:block> in the calling template has a
 <kiln:super>as its first child element, that imports all the content and
 functionality of the corresponding named block in the parent template. The user can then add
 elements according to what they wish to override from the parent. With this templating
 mechanism overriding can occur from a very granular level all the way up to the top-level
 <kiln:block name="html">. This means the user can easily create a page
 that looks different in almost every way from their other pages but that is still a regular
 page as far as the framework is concerned.

Kiln introspection
Another distinctive feature of Kiln is the ability to see the back end workings via the
 front end. Browser tools such as Firebug can give a lot of information about the current HTML
 page but do not usually reveal how the page got that way. Non-technical
 site owners normally have only a limited grasp of the back-end workings, and if the site is
 complex with multiple sitemap/pipeline files in play then even developers can have a tedious
 time identifying templates and stylesheets responsible for producing a particular page. As a
 development and debugging aid Kiln allows users to view relevant aspects of the processing
 mechanism via three different access routes: 	Match for URL - in a search text field the user
 specifies a root-relative URL from the site - eg. text/myfile.html - and the search
 returns the associated sitemap template

	Match by ID - the user is given a list of sitemap
 template identifier strings - eg. "local-tei-display-html" - and clicks on the name to
 see the template

	Templates by file name - the user is given a list
 of XML template files - eg. tei.xml - and can click on a link to see (via view
 source) the relevant XSLT stylesheet

RDF / Linked Open Data
Kiln includes the Sesame [9] framework for processing and handling RDF data. The framework is composed of two
 web applications, a server web application (openrdf-sesame) to store, parse and infer over RDF
 data, and a client web application (openrdf-workbench) to make queries over the data.
Sesame is built into Kiln via a set of Cocoon pipelines. By default there are pipelines
 for generating and adding RDF to the Sesame store, and pipelines for making SPARQL queries, in
 the sitemap file ROOT/sitemaps/rdf.xmap, which makes use of the basic operations
 - to add, remove, and query the triple store - defined in the internal sitemap
 kiln/sitemaps/sesame.xmap. Because the RDF requirements are very distinct
 across different projects, the default XSLT for adding content to the triple store is
 basically a placeholder meant to be extended and customised as required. The Kiln
 tutorial[10] includes a sample XSLT for converting TEI documents into RDF statements, and that
 can be used as a guide for further customisation work.
The main reasons to include a RDF framework with Kiln were to promote the publishing of
 linked data and also to increase the interoperability between the projects implemented with
 Kiln.

Future for Kiln
When CCH staff first began to shape xMod, they did so to meet specific needs which they
 felt were not being met by any free, open-source XML-to-webpage application available at the
 time. For the technically competent willing to 'get their hands dirty' on the server side
 there was Apache's AxKit[11], but this mod_perl module was not designed with convenience for non-specialists in
 mind (see, for example, Eric Morgan's account of trying to use it in Morgan 2005.)
 The most similar framework in the digital humanities field - the California Digital Library's
 eXtensible Text Framework (XTF)[12] was equally in its infancy at the time. Other existing frameworks such as TUSTEP
 ("TUebingen System of Text Processing Programs")[13] were more specialist in focus - designed to help scholarly editors produce
 editions - and without the same concern for enabling a website from XML-encoded source files.
 Today the landscape is somewhat different, with more applications available that are designed
 and documented with the non-technical user in mind.[14]

Most of the development work that produced Kiln in its current form was done via grant
 funding that ended two years ago. However, KDL still allocates time to maintain and further
 develop Kiln. Plans for the future include the possibility of a replacement for Cocoon, due to
 the lack of active development in Cocoon and also the direction that Cocoon is currently
 heading - its build process has become a lot more complicated with the later versions and it
 would not be possible to package a default version to be used in Kiln without off-loading
 technical work to the users. One possible future step would involve using XProc to handle the
 XML pipeline operations currently performed by Cocoon, but this would require an extensive
 codebase change for which (in the immediate future at least) KDL does not have resources to spare.[15] Another thing we would
 like to explore is adding modular extensions that could be easily 'made live' by the user and
 that would orient the functionality towards a particular content type, for example source
 files encoded according to the EpiDoc[16] guidelines. Tighter integration out-of-the-box with CMS frameworks is also a
 desideratum, as most project websites involve information pages, image galleries, etc. that
 are often more conveniently handled by such frameworks. Whatever is to come in the future,
 Kiln remains the most important tool that KDL uses to build XML-based online resources.

Bibliography
[Morgan 2005] Morgan, Eric Leese. "Creating and managing
 XML with open-source software" Library Hi Tech, Vol. 23 Iss: 4, pp.526 - 540.
 doi:https://doi.org/10.1108/07378830510636328

[1] http://kcl-ddh.github.io/kiln/
[2] The name change reflected a major rewrite of the code. 'Kiln" was chosen to call to
 mind a container into which 'raw' source materials go and from which, after processing, 'finished'
 materials emerge.
[3] A list of some of these projects is available at http://kiln.readthedocs.org/en/latest/projects.html. Note that due to the nature
 of humanities grant funding a majority of these project sites remain as they were at point
 of launch. KDL can undertake to keep sites running for an agreed period (usually five
 years from the end of thew funding period) and fix bugs if caused by system
 updates/upgrades, but upgrading a project site to use a later version of Kiln usually
 depends upon the project partners acquiring extra funding.
[4] http://cocoon.apache.org/2.1/
[5] http://lucene.apache.org/solr/
[6] http://www.eclipse.org/jetty/
[7] http://tomcat.apache.org/
[8] http://rdf4j.org/
[9] http://rdf4j.org/
[10] http://kiln.readthedocs.org/en/latest/tutorial.html#harvesting-rdf
[11] http://attic.apache.org/projects/axkit.html
[12] http://xtf.cdlib.org/
[13] http://www.tustep.uni-tuebingen.de/tustep_eng.html
[14] For example, <teiPublisher>, TEICHI,
 Edition Visualization
 Technology
[15] Kiln is, however, open source and interested parties are welcome to contribute to the codebase.
[16] https://sourceforge.net/p/epidoc/wiki/Home/

Balisage: The Markup Conference

The Kiln XML Publishing Framework
Paul Caton
Research Analyst, King's Digital Laboratory
King's College, London

<paul.caton@kcl.ac.uk>
Paul Caton has worked in digital humanities since for two decades. Beginning as
 Electronic Publications Editor for the Women Writers Project he went on to hold posts with
 the TEXTE Project at the National University of Ireland, Galway and with the INKE Project
 at the University of Victoria in British Columbia before going to the Centre for Computing
 in the Humanities at King's College, London in 2010. Now a Research Analyst in the
 recently-formed King's Digital Laboratory he works on multiple projects in both analytical
 and development roles. His research interests include the representation of text by formal
 models and by markup languages; ontologies of personal relations; and models of
 transcription.

Miguel Vieira
Software Engineer, King's Digital Laboratory
King's College, London

<jose.m.vieira@kcl.ac.uk>
Miguel Vieira is Kiln project manager and one of the developers. He has worked in the
 digital humanities area as a developer/software engineer for more than ten years. He is
 currently a software engineer/technical coordinator at the recently-formed King's Digital
 Laboratory, where he is reponsible for the research projects technical architecture, and
 managing the development team. His research interests include analysing and modelling
 humanities and unstructured data, natural language processing, machine learning, data
 visualisation, and linked data.

Balisage: The Markup Conference

content/images/Caton01-001.png
Sesame
R |

Apache Solr

XML/TEI

XSLTs

Kiln
Templating

Web

Search

PDF / ePub

VI

RDF

content/images/Caton01-002.png
Weicome to Kiint +

€) © 1270019999 e Qsearch *B8 93 a od» =

Welcome to Kiin!

Now that you have Kiln up and running, t's time to start building
your project. Start with one of the options listed below and go.

from there.

Add your TEI Customise the templates Read the documentation

Put your TEI fles In webapps/ROOT ‘Change the look of this site by Kiin comes with documentation

/content/xmiftel and see how they modifying the templates in both online and, in source form, in

are displayed. Go o the admin and webapps/ROOT/assets/templates. the docs directory of your

index them for searching. ‘The template for this page s installatio. It explains how you can
index.xm, and it builds on the base modify everything about your Kiin
tempiate base.xm. project.

Powersd by kin

Thome by Foundaton

content/images/Caton01-003.png
Documents

TEI
o L retaron

File Reports Search RDF View

test 01.xml Schematron Missing images Index Harvest View
test 02.xml Schematron Missing images Index Harvest View
test 03.xml Schematron Missing images Index Harvest View

test_04xml Schematron Missingimages Index Harvest View

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

