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Abstract
Tricolor automata are extensions of finite state automata,
intended for the comparison of two regular languages; states
and arcs in the automaton are colored to indicate whether they
are peculiar to one language or the other, or common to both.
Their design represents a simple application to practical
purposes of ideas derived from the work of Glushkov and
Brzozowski. Examples are given to show how tricolor automata
can be used to visualize the intersection, union, and set
difference of two languages, and algorithms for constructing
them are given.
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   Tricolor automata

The problem
Background
Complex public vocabularies sometimes come in multiple flavors
(such as the Transitional and Strict variants of HTML 4.0, or the
Archiving, Publishing, and Authoring variants of the Journal Archiving
Tag Suite [JATS]); any vocabulary that is used long enough is likely
to come in multiple versions (as do HTML, JATS, DocBook, TEI, and
others).  Since many public vocabularies are designed to be
customizable for a given use (and any vocabulary at all may be
customized, whether designed for it or not), they will also come in
customized and non-customized forms.
Users (and maintainers) of such vocabularies will from time to time
wish to understand just how two variants of a vocabulary resemble each
other and how they differ from each other.  Those preparing a new
version of a vocabulary may wish to verify that all documents valid
against the old version remain valid, or to see concisely exactly
which have been invalidated; those working with a customized
vocabulary may wish to understand better just how it differs from the
base vocabulary.  And so on.  In practice, such understanding seems to
require the pairwise comparison of corresponding declarations in the
two schemas.
We can of course compare the two declarations textually.  This
sometimes turns out to be less helpful than one might wish.  Here is
the declaration of the body element in one
customization of the TEI (reformatted for legibility):
<!ELEMENT body ((%model.global;)*,
                ((%model.divTop;),
                 (%model.global;|%model.divTop;)*)?,
                (_DUMMY_model.divGenLike,
                 (%model.global;
                 |_DUMMY_model.divGenLike)*)?,
                (((%model.divLike;),
                  (%model.global;
                  |_DUMMY_model.divGenLike)*)+
                 |(_DUMMY_model.div1Like,
                  (%model.global;
                  |_DUMMY_model.divGenLike)*)+
                 |(((%model.common;),
                    (%model.global;)*)+,
                   (((%model.divLike;),
                     (%model.global;
                     |_DUMMY_model.divGenLike)*)+
                    |(_DUMMY_model.div1Like,
                      (%model.global;
                      |_DUMMY_model.divGenLike)*)+)?)),
                ((%model.divBottom;),
                 (%model.global;)*)*)>


And here is another:
<!ELEMENT body ( (%model.global;)*,
                 ( (%model.divTop;), 
                   (%model.global; | %model.divTop;)*
                 )?,                 
                 ( ( (%model.divLike;), 
                     (%model.global;)* )+ 
                 | ( ( (%model.common;), 
                       (%model.global;)* )+,
                     ( ( (%model.divLike;), 
                         (%model.global;)* )+ )? ) 
                 ),
                 ( (%model.divBottom;), 
                   (%model.global;)*
                 )*
               ) >


So many details are hidden behind the parameter entities (or in a
Relax NG schema behind the named patterns, or in an XSD schema behind
the named types, type inheritance, and named model groups) that it is
difficult to see, from the textual form of the declaration, just where
the two content models are the same and where they differ.
If we expand the content models, with content models this complex,
the situation does not become better.
Drawing a finite-state automaton (FSA) of a content model can sometimes
make the structure clearer (although in the case of complex models
like these, there are so many states in the automata that careful
study may be needed).  Here is the first declaration, in FSA form:
Figure 1
[image: ]



Here is the FSA for the second declaration:
Figure 2
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The FSAs may be easier to understand, in some ways, than the textual
declarations, but comparing them does not seem materially easier.
Can we do better?[1]


Desiderata

Informally, the problem is: given two regular expressions 
A and B,
draw a circle-and-arrow diagram which allows the user to see as
clearly as possible what the FSAs look like for languages
L(A), 
L(B),
L(A∩B), and 
L(A∪B).


This is informal because as clearly as possible implies some
sort of optimization, and we don't have a clear notion of optimality.
Intuitively,
	Fewer states is better than more states.  (Ditto arcs.)

	Determinism is better than non-determinism.

	Having the Glushkov property (see below) is better than not having
it.

	Having a relatively clear and simple relation between the
circles of the diagram and (preferably contiguous) portions of the 
regular expression (or content model) is better than having a
more complex relation.





We know from automata theory that these desiderata may conflict:
Glushkov automata are often not minimal, and determinizing an NFSA
sometimes adds states.  In the general case, then, there may be
multiple forms of optimality based on different priorities among these
three desiderata.


The Glushkov Property

The term Glushkov property is not standard, so
it should be explained.  The Russian mathematician V.M. Glushkov
described an algorithm for making an FSA from any regular expression,
with n+1 states, 
where the regular expression contains n letters
[Glushkov 1961].
(Or in SGML/XML terms, where the content model contains n primitive
content tokens — #PCDATA or a generic
identifier.)  Anne Brüggemann-Klein and D. Wood pointed out that the
ambiguity rule of SGML amounted to this: the Glushkov Automaton built
from a content model must be deterministic
[Brüggemann-Klein 1993a], [Brüggemann-Klein 1993b], [Brüggemann-Klein/Wood 1998].  
If it's not, there is what SGML describes as an ambiguity error.


Now, since in a Glushkov automaton we have one state per letter in the
regex, we can simply say the states of the Glushkov automaton
are the letters (i.e. the letter tokens) in the regex.
So each state is a token in the regex.  And every incoming transition
to a state q is labeled with the 
type of q.  So the content model
(a, (b|c)*, d) has five states: one start state 
and one state for each of the tokens
a, b, c, and d.  
There is a transition from a to b, labeled
b, and a transition from a to
c, labeled c.
And (because the choice of b and c
has an asterisk as its occurrence indicator), there is 
also a transition from a to d,
labeled d.
There are also 
transitions from b and c
to b and c, labeled
b and c.  
And from the same two states there is a transition to d,
labeled d.
Figure 3
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Note that every incoming transition to
b carries the same label, namely b,
and similarly for nodes c and d.


Since in a Glushkov automaton every incoming transition to a state q
is labeled with the type of q, it follows that when we draw Glushkov
automata, we can label the states and leave the transitions unlabeled.
Figure 4
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We know what label a transition has, because we can read it from the
target state.
Some readers may find that Glushkov automata remind them a
bit of Moore machines.  In each cases each state in the automaton is
associated with a single symbol:  an output symbol, in the case of a
Moore machine, and an input symbol, in the case of the Glushkov
automaton.

In general, however, FSA edges may be labeled with more than one
symbol.  A minimal FSA for the expression 
(a, (b|c)*, d) will have only three
states, not five:
	q0 (the
start state)

	q1 (reached after any a, b,
or c in matching input)

	q2 (the final state, reached after d in matching
input)



The FSA will have the
following arcs:
	q0
→ q1 on
a

	q1
→ q1 on
b or c

	q1
→ q2 on
d



Figure 5
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The cycle on state q1 is labeled b | c; 
the alternative is to have two arcs, one for each label, but the
figure is less cluttered if there is only one arc between
any two states; that arc may be labeled with a set of symbols, not
a single symbol.


We say that such an FSA has the Glushkov property if for
any state q, all of q's incoming arcs have the same set of labels.
Thus (just as for a Glushkov automaton), we can label each state q
with the set of symbols that can reach q from some other state (more
formally: the set of symbols which can appear as the last symbol in a
sequence that starts at the start state and ends at q).

Note that all Glushkov automata have the Glushkov property, but not
all automata with the Glushkov property are Glushkov automata.  The
two FSAs for customizations of the TEI body element shown
above, for example, have the Glushkov property, but each or-group in
the content model is represented by a single state, rather than one
state for each primitive content token in the or-group.  This
dramatically reduces the size and complexity of the FSA for some
content models, and makes the FSA more legible.  Just as with any FSA,
if any two equivalent states in a Glushkov automaton are merged, the
resulting FSA will recognize the same language as the original.  To
retain the Glushkov property, however, we must impose the additional
constraint that the two states must not only be equivalent (both in or
both outside the set of final states, and both with transitions to the
same set of following states), but also have incoming transitions from
the same set of preceding states.


The reason we want the Glushkov property is that it makes the drawings
easier to draw and (so it seems) easier to understand.  This may be
related to the apparently common view that Moore machines are easier
to understand than Mealy machines, even though they may have more
states.



Tricolor automata
Tricolor automata are an attempt to solve the problem outlined
above.  The basic idea is to draw an FSA (or more precisely: a
circles-and-arrows diagram),[2]
in which each state and each transition arc is colored: white states
and black arcs are reachable or traversible in both languages (i.e. in
L(A∩B)), red states and arcs belong 
to L(A) but not to L(B),
and blue states belong to L(B) but not to L(A).


If when generating or walking through a string, or the content of an element,
we stick to the white states and end in a state drawn with a black
double circle, then the string or element is in both L(A) and 
L(B).
If the path we trace touches only white states and red states, 
including at least one red state or red arc,
and ends in a state with a black or a red double circle, then 
the string or element is in L(A) but not in L(B). 
And 
if the path we trace touches only white states and blue states, 
including at least one blue state or arc,
and ends in a state with a black or a blue double circle, then 
the string or element is in L(B) but not in L(A). 
(And of course if the string or element doesn't match any path
through the FSA, then it is in neither language.)


There are at least two ways to draw diagrams with these properties,
which I call the tainted-string 
and color filter approaches.

The tainted-string approach

The tainted-string approach draws an FSA in which we can traverse from
white states to red or blue states, but not vice versa: once we are in
a red state we are always thereafter in red states, and similarly for
blue states.  (This might be called the McCarthy principle: once a
red, always a red.)


For example, let A = (a|x)*, z:
Figure 6
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Let B = (b|x)+, z. 
Figure 7
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A simple algorithm for translating from content models to tricolor
automata will produce
something like the following:
Figure 8
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There are two problems with this, however: First,  in state
q0, symbol
x is non-deterministic: it can go to any of three places.  If we want
blue and red to mean B-only and A-only, we don't want 
x going
to red or blue states.  One way to fix this 
would be to label the arcs and not the states:
Figure 9
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It is perhaps only a subjective view, but speaking for myself
I find that harder to read, and in more complicated cases — as illustrated
by almost any content model from a real public vocabulary — it's even worse.


And the automaton has now lost the Glushkov property:  the node
labeled a|x has two incoming arcs labeled a
and a third incoming 
arc labeled a|x; the node 
labeled b|x has similarly inconsistent labels on incoming arcs.
We can
regain the Glushkov property and get back to labeling states by
adding new states:
Figure 10
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This is a reasonably clear graph.  It's deterministic, and it has the
Glushkov property, and it is the smallest FSA I have found that has
those properties. Its treatment of the three final states illustrates
very nicely the tainted-string approach: we cannot use a single state
for z, because the taint approach says that from a red
state, only red states are reachable.


The color-filter approach

If we relax the McCarthy principle and allow transitions from red or
blue states to white states, in order to reduce the size of the
automaton, the first cut looks like this:
Figure 11
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However, this is again non-deterministic.  What I think we want is
something like this:
Figure 12
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Note that this example shows that in the color-filter approach,
coloring the arcs is necessary,
because q0 → z is only legal in L(A));
in the tainted-string approach, arcs need not be colored.


A complication
Consider the two expressions
A = (a|x)*, z
and 
B = (b|x)*, z?.
(That is, A is as above, and B is modified by
making the closing z optional.)
The diagrams we want will be very similar to the final
versions of the tainted-string and color-filter diagrams
shown above, but they must change to reflect the fact
that the states b, x, and
b | x are 
all now final states in expression B.
This forces us into a choice.  In the 
examples given above, both of the following rules hold
true:
	Any state has one color, and is either a 
final state or not.  The final or non-final status
of the state is independent of its color.

	It for each tricolor automaton, we have been
able to construct an equivalent tricolor automaton
which is deterministic and has the Glushkov
property.



This example seems to allow us to retain at most one
of these generalizations.
If we retain the first and abandon the second,
we will end up with a diagram like this for the
tainted-string approach:
Figure 13
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For the color-filter approach, we get:
Figure 14
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Note that in both cases, we have lost determinism:  an initial
x goes either to the white state x
or the blue final state b | x.
We can retain determinism if we adopt the convention that
a white state can be marked final either in black (as above),
or in red or blue.  In the latter case, it means that the state
is a final state for L(A) but not
L(B), or vice versa.
On this principle, the
tainted-string approach gives us a diagram like this:
Figure 15
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And the color-filter approach produces:
Figure 16
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At the beginning of this section, I said we must choose
between determinism and the rule that finality of a state is
independent of color.  Actually, we do not have a real choice,
as should be clear from consideration of the pair
A = (a|x)*, z?
and 
B = (b|x)*, z.
Here the initial state is final in A, but not in B.
Unless we want to assume multiple possible initial states
(and rewrite as much of standard automata theory as necessary
in order to deal with the change), we must have
a way to indicate that a state may be visited by strings
in either L(A) or L(B), but is final in only one of those
languages.

Interpreting the diagrams

So, what does this circle-and-arrow diagram mean?  I believe it
describes, concisely, how to construct strings in:
	L(A):  visit only red or white
states along red or black arcs; end in a 
state marked final in red or black.

	L(B):  visit blue or white
states along blue or black arcs;
end in a state marked final in blue or black.

	L(A∩B):  visit only white
states, using only black arcs; end in a state marked
final in black.

	L(A∪B):  use no more than two colors of state or arc
(red + white or blue + white — we cannot construct any
just-red-and-blue paths because the start state is black/white).
End in a state marked final in one of the two colors.


	L(A) \ L(B):  
use only white and red states; use at least one
red arc; end in a state marked final in red or
black.

	L(B) \ L(A): 
use only white and blue states; use at least one
blue arc; end in a state marked final in blue or
black.





Note that if we ignore colors entirely, the circles-and-arrows
diagram describes an FSA for an expression something like (a | b | x)*,
z.[3] 
This is not the union 
of L(A) and L(B) (it's
larger), but it is close to what some document designers
(including me) would probably write, if someone asked for a grammar
that would accept both A documents 
and B documents and also would
look like a rational document grammar.  In some real-world cases,
effective content models like ((a|x)*, z) and
((b|x)+, z) arise as expansions of
((%some-element-class;)*, z) and
((%some-element-class;)+, z): the two effective models
differ because (a) the two versions have customized the
some-element-class class differently and (b) vocabulary
B has required at least one occurrence of an element in the class
(or, possibly, A has made it optional).  The natural union schema
for A and B in this case would define the class
some-element-class to include a,
b, and x (the union of its members in
vocabularies A and B), and define the content model as
((%some-element-class;)*, z), which would expand to
(a | b | x)*, z.


The one catch is that this is not, strictly speaking, an FSA.  The
characteristic of an FSA is that the only memory it has is the
identity of its current state.  When a string ends, we are allowed to
ask Is the current state a member of the set of final states?
and that's it.  Keeping track of what colors we have seen along the
way requires memory that goes beyond keeping track of the current
state.


It's clear, however, that from such a graph we can readily construct
an FSA for the first four of the languages identified above, by
dropping out the states and arcs that are outlawed in the rule for
that language. For the last two languages listed, it may not be
straightforward to construct a free-standing FSA; that it is possible
is a straightforward fact of automata theory.


Formal definition
We are now in a position to define a tricolor automaton
more formally.
A tricolor automaton is a triple
(A, Χ, Φ), where
	A is the underlying finite state automaton
(Q, Σ, δ,
q0, 
F),
where 
	Q is a set of
states

	Σ is an input alphabet

	δ is a transition function 
mapping from Q × Σ to
Q

	q0
∈ Q is the start state

	F ⊆ Q
is the set of final states




	Χ is a chromatic
function[4]
mapping from Q ∪ δ to the colors
{red, white, blue}.

	Φ is a chromatic function
mapping from F to the colors {red, white, blue}.




Given the intended uses of tricolor automata as
outlined in the preceding section, some possible
chromatic functions will make no sense
in practical applications.  
Arcs connecting red and blue states,
red arcs incident to blue states,
blue arcs incident to red states,
white arcs connecting pairs of red or pairs of blue states,
can play no role in the strings of any of the languages
of particular interest.  
Similarly if a red state is mapped by Φ to 
any color but red, the conventional implication is that the state
is final in B, but the state cannot be reached by
any string in L(B), so the mapping in Φ has no effect
on any language except that of the base FSA.
(And analogously for any blue states mapped by Φ to 
any color but blue.)


In practical applications, therefore, the chromatic  
functions Χ and Φ will normally obey the consistency
constraints that
	For any two states 
q1 and
q2 
connected by an arc a from 
q1 
to q2:
	{Χ(q1), 
Χ(q2)} ≠ {red, blue}
(no arcs connect red and blue states directly).

	If red ∈
{Χ(q1), 
Χ(q2)},
then Χ(a) = red (any arc incident to a red state
is red).

	If blue ∈
{Χ(q1), 
Χ(q2)},
then Χ(a) = blue (any arc incident to a blue state
is blue).





	If Χ(q) =
	      red, then Φ(q) ∈
	      {red}.

	If
	      Χ(q) = white, then
	      Φ(q) ∈ {red, white,
	      blue}.

	If
	      Χ(q) = blue, then
	      Φ(q) ∈
	      {blue}.





How to create tricolor automata
The simplest way to create a tricolor automaton is to extend the
rules for creating an FSA from a regular expression using Brzozowski
derivatives [Brzozowski 1964].[5]

As some readers will recall, given a regular expression E, the
derivative of E with respect to some symbol (or string) s is an
expression E′ such that
L(E′) is 
the set of strings t such that
concat(s,t)
is 
in L(E).  Informally, E′ is an
expression that records what we still expect to see in the string,
after s, if the string as a whole is going to match the original
expression E.
Note that the derivative E′ may be
∅, 
meaning that 
there is no string t which can be concatenated with s
to form a string in L(E)


Brzozowski's method of building an FSA is: start with the original
expression E, and take the derivative of E with respect to each
symbol in the alphabet.  Simplify and normalize those expressions.
Remove duplicates, and remove any that match any expression already
seen (like E itself).  Continue until you have taken the derivative
of F with respect to s for 
each expression F in the set of
expressions seen so far and each symbol s in the alphabet.
Brzozowski proves that this process terminates, even if the process of
detecting and removing duplicates is slightly imperfect; he provides a
set of simple equivalences which are not exhaustive but suffice to
guarantee termination.


Now, the FSA is built this way: Each expression in the resulting set
of expressions becomes a state in the FSA. The original expression E
is the start state.  An expression is a final state if and only if it
accepts the empty string.  And for any two states F and G, the
transition function includes the transition F → G on some
symbol s if and only if 
the derivative of F with respect to s is
G.


We modify this algorithm in two ways, so as to ensure that result is a
tricolor automaton and has the Glushkov property.


First: instead of starting out with a single expression E, we start
with the two expressions A, B,
A and B, A or B.  
Accordingly,
instead of a set of regular expressions, what we generate is a set of
pairs (DA, DB), 
where DA is an expression derived ultimately
from A, DB 
from B.  Working with pairs of expressions allows us
to associate the appropriate color with each state and arc: states in
which both DA and DB define some non-empty language (accept at
least one sequence of input) are white; states in which DA is
non-empty and DB is {} (the empty set) are colored red, and states
in which DA is {} and DB is non-empty are colored blue.  (States
of the form ({}, {}) are error states and are omitted for compactness
of the resulting FSA.)


Second: instead of making a state for each distinct pair of
expressions we encounter, we distinguish states based on a triple
(s, DA,
DB), 
where s is a set of symbols in the input
alphabet, and DA and DB are 
as described above.  It's easiest to
follow examples (and implement) if we assume the symbol sets are all
singletons, but in practice we want to take the largest sets we can in
order to have fewer states in the result, so after generating an
initial tricolor automaton, we will merge states which can be safely
merged.

The tainted-string approach
The simplest case uses the tainted-string approach.  Here, we
identify states based on the strict identity of the triple.  We can
describe the algorithm as follows.  We keep a list of triples
seen so far, and mark each triple when it is processed.
In what follows, it will be convenient to define the derivative of
a triple 
(s1, 
DA, DB) 
with respect to some input symbol s as the
triple (s, DA′, 
DB′), where DA′ is the result of
simplifying the derivative of E with respect 
to s and DB′
is the result of simplifying the derivative of DB with respect to
s.
	Initially, the triple list contains the single triple 
('', A, B), 
where A and B are the expressions for
which we are creating the tricolor automaton.

	Consider the first unprocessed triple in the list.  
Call it T; calls its two expressions
TDA
and
TDB.

	For each symbol s in the input alphabet:
	Calculate T′, 
the derivative of T with respect to s;
it will take the form 
(s,TDA′,
TDB′).

	If the triple 
(s, TDA′, 
TDB′) is already in the
triple list, do nothing.

	Otherwise add it to the end of the triple
list.





	If there are any unprocessed triples in the list,
return to step 2.

	Otherwise,
stop.


The process is guaranteed to terminate, because the 
number of non-equivalent DA and DB which can be
generated from A and B is
finite.
The resulting tricolor automaton and its underlying finite state
automaton A can be described thus:
	The states Q 
of A are the entries in the triple list upon
termination of the process.

	The alphabet Σ of A 
is the union of the alphabets of A
and B.

	For any states 
q1 
and q2 
and any symbol s, the transition
function δ of A has an arc from 
q1 to 
q2 if and only if
q2 is the derivative of
q1 with respect to
s.

	The initial state 
q0 of 
A is the triple ('', A,
B).

	The final states 
F of A are those 
triples (s, DA, DB)
for which either DA or DB is nullable (accepts the empty
string).

	The chromatic function Χ maps states 
q = 
(s, DA, DB)
to colors in this way:
	If DA ≠
∅ 
and DB = ∅, then
Χ(q) = red.

	If DA = ∅ 
and DB ≠ ∅, then
Χ(q) = blue.

	If DA ≠
∅ 
and DB ≠ ∅, then
Χ(q) = white.


 Χ maps all arcs that begin or end in a red state to red,
all arcs that begin or end in a blue state to blue, all others to
white (which, perhaps confusingly, is here drawn in black).


	The chromatic function Φ maps final states 
q = (s, DA,
DB) to colors in this way:
	If Χ(q) ∈ 
{red, blue}, 
then Φ(q) =
Χ(q).

	If Χ(q) = white, then:
	If DA accepts the empty string, 
and DB does not, then
Φ(q) = red.

	If DB accepts the empty string, 
and DA does not, then
Φ(q) = blue.

	If both DA and
DB 
accept the empty string then Φ(q) =
white.


 
Note that the case where neither DA nor DB accepts the
empty string cannot arise, because such states are not in the set F
of final states.






 
The logic of the coloring scheme is this.  Any state in which
DA = ∅ is outside the language of A, so it's B-only, and any
state with DB = ∅ is outside the language of B, so it's
A-only.  We color them blue and red, respectively.  Any state with
neither DA nor DB = ∅ is at least potentially in the
intersection, so it's white.  And any state with DA = DB = ∅
is of no interest so we drop it.
Since any state with DA ≠ ∅ is colored white or red,
any path restricted to white and red states and arcs

A similar technique can be used to create a tricolor automaton from
two FSAs instead of two regular expressions.  It resembles the usual
algorithm for calculating an FSA for the intersection of two languages
recognized by FSAs, but its states are again triples, which consist of
an input symbol, a state from the first FSA (or a flag indicating that
there is no applicable state), and a state from the second FSA (or a
not-applicable flag).

An example

The algorithm can be illustrated by applying it to the example used
above.

	A = (a|x)*, z

	B = (b|x)+, z

	Σ = {a, b, x, z}




At the outset, our list of triples has just one entry, for the
start state:
	q0 (start
state) = ('', A,
B)




For the two expressions A and B, the derivatives
with respect to the symbols of the alphabet are as follows:
	deriv(A,a) =
A

	deriv(A,b) =
∅

	deriv(A,x) =
A

	deriv(A,z) =
''

	deriv(B,a) =
∅

	deriv(B,b) =
(b|x)*, z

	deriv(B,x) =
(b|x)*, z

	deriv(B,z) =
∅



Let's give the name B′ to the expression (b|x)*,z, for brevity. 
From these, we can calculate the derivatives of triple q0:
	deriv(q0,a)
= (a, A, ∅)

	deriv(q0,b)
= (b, ∅, B′)

	deriv(q0,x)
= (a,
A,B′)

	deriv(q0,z)
= (z, '', ∅)



Each of these is new and is added to the list:
	q1 = (a,
A, ∅)

	q2 = (b,
∅, B′)

	q3 = (a,
A,
B′)

	q4 = (z,
'', ∅)





The fragment of the automaton thus far constructed is this:
Figure 17
[image: ]





We now take the derivatives of each of these new states:
	q1:
	deriv(q1,a)
=
q1

	deriv(q1,b)
= (b, ∅,
∅)

	deriv(q1,x)
= (x, A, ∅) becomes
q5

	deriv(q1,z)
= (z, '', ∅) =
q4




	q2:
	deriv(q2,a) = (a, ∅, ∅)

	deriv(q2,b) = (b, ∅, B′) = q2

	deriv(q2,x) = (x, ∅, B′) becomes q6

	deriv(q2,z) = (z, ∅, '')  becomes q7





	q3:
	deriv(q3,a) = (a, A, ∅) = q1

	deriv(q3,b) = (b, ∅, B′) = q2

	deriv(q3,x) = (x, A, B′) = q3

	deriv(q3,z) = (z, '', '') becomes q8





	q4:  all derivatives are error states of the form
(s, ∅, ∅).





At this point, we've added several new states 
(q5 through 
q8), and the graph looks like this:
Figure 18
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Calculating derivatives for the new states produces no new states,
but some new arcs:
	q5:
	deriv(q5,a)
= q1

	deriv(q5,b)
= (b, ∅, ∅)

	deriv(q5,x)
= q5

	deriv(q5,z)
= q4





	q6:
	deriv(q6,a)
= (a, ∅, ∅)

	deriv(q6,b)
= q2

	deriv(q6,x)
= q6

	deriv(q6,z)
= q7





	q7:
deriv(q7,s)
= (s, ∅, ∅) for all symbols
s

	q8:
deriv(q8,s)
= (s, ∅, ∅) for all symbols
s





The result of adding the new arcs is shown below. 
Figure 19
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Or, getting rid of the bookkeeping details:
Figure 20
[image: ]





This is almost but not quite the same as the last graph shown
in the introductory section on the tainted-string approach
above.  By the desiderata mentioned at the outset,
it is almost, but not quite, as good:
it has the same number of states, but more arcs.


The color-filters approach

This approach is just like the tainted-string approach, with just one
difference:  after construction of the automaton, we search for
two states of the form (s, 
DA, 
DB) 
and (s DA, ∅)
or (s, DA,
DB) 
and (s ∅, DB).
Each such pair we find is merged by keeping the first (full) form
and dropping the other.


In our example, this leads to the merger of states
q3 = (x, A, B′),
q5 = (x, A, ∅),
and
q6 = (x, ∅, B′).
It also leads to the merger of the three z-states
q4, q8, and q7.
Figure 21
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Or, without 5-tuples:
Figure 22
[image: ]





This is isomorphic to the graph shown above in the introduction
to the color-filter approach.



Conclusion and further work

We have described (or discovered) the tricolor automaton, a form of
multi-colored FSA.  These differ in two ways from conventional FSAs:
First, arcs and states may be colored in any of three colors (here
red, black/white, and blue). Second, the final states of a tricolor 
automaton each map to one of the colors red, white, or blue
(independently of the color of the state).


From any two expressions (or any two finite
state automata) A and B, we can construct a tricolor automaton.  
The base FSA of the tricolor automaton
defines a language which is a superset of the the union of L(A) and
L(B), and can be used, together with the coloring of the states,
arcs, and final sets, to identify several other languages:
L(A) and L(B) themselves, 
L(A∩B), L(A∪B),
L(A) \ L(B),
and L(B) \ L(A).


By applying standard FSA minimization and determinization algorithms
(with suitable modifications to ensure color correctness), we can make
the graph relatively compact.  We also have an algorithm for building
the graph in such a way that it possesses the Glushkov property.  (The
simplicity with which Brzozowski derivatives can be used to create
automata with the Glushkov property may be what Brüggemann-Klein and
Wood have in mind when they say that there is an intimate relation
between the Glushkov Automaton for an expression and its set of
characteristic Brzozowski derivatives.)

Several avenues for further work appear likely to be fruitful.
First, it would be helpful to have a more formal treatment, specifying
the conditions under which the various desiderata (minimal states,
minimal arcs, determinism, the Glushkov property, and a one-to-one or
many-to-one relation between tokens in the content model or regular
expression and states in the automaton) are compatible and when they
are at odds with each other. When they cannot all be achieved, a clear
formal description of the tradeoffs would be interesting.  It would
also be interesting and helpful to have a formal proof that the
algorithms sketched here produce tricolor automata with the properties
claimed.

An extension to arbitrary numbers of expressions and corresponding
numbers of colors (n expressions and 
2n - 1
colors) is obviously also possible and may be interesting (although
for n greater than two, the number of colors involved probably makes
the resulting diagrams useless for human inspection).
Finally, practical experience using tricolor automata in the
comparison of actual models in published vocabularies will be
necessary to determine whether they actually help address the problems
identified in the introduction.[6]
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[1] This work has been done in connection with the Igel
project to create an interactive interface for the comparison
of document grammars [Sperberg-McQueen et al. 2013].
[2] On the exact
relation between tricolor automata and finite state automata,
see the formal definitions below.
[3] Actually, the language described is more complicated:  it requires
an x between any two instances of a and
b and could be expressed by ((a*|b*), 
(x+, (a*|b*))*).  Perhaps the simplest way to make the
relationship clear is to exhibit a tricolor automaton for
A = (a | b | x)* and
B = ((a*|b*), (x+, (a*|b*))*):
[image: ]
 
The diagram makes obvious that L(B) is a proper
subset of L(A):  there are no blue states or arcs.

[4] By chromatic function
I mean no more than that it is a function which maps
elements of its domain into a set of colors.
[5] Brzozowski
derivatives are defined by [Brzozowski 1964]; some readers may find the recapitulation in
XML terms in [Sperberg-McQueen 2005] helpful, or at least
easier to lay hands on; see also the literature cited there.
[6] All of the diagrams shown here were produced using an automatic
graph-drawing tool (GraphViz), but almost all benefited from layout
hints supplied by hand.  Automatic calculation of useful layout hints
would almost certainly help make diagrams for complex (i.e. realistic)
content models easier to read.
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