[image: Balisage logo]Balisage: The Markup Conference

Document lattices:
Equivalence, compatibility, and contradiction in document markup
C. M. Sperberg-McQueen
Founder and principal
Black Mesa Technologies LLC

Yves Marcoux Yves Marcoux
Associate Professor (Professeur agrégé)
École de bibliothéconomie et des
	sciences de l'information, Université de Montréal

Claus Huitfeldt
Associate Professor (førsteamanuensis)
Department of Philosophy, University of Bergen

Balisage: The Markup Conference 2014
August 5 - 8, 2014

Copyright © 2014 by the authors. Used with permission.

How to cite this paper
Sperberg-McQueen, C. M., Yves Marcoux Yves Marcoux and Claus Huitfeldt. "Document lattices:." Presented at: Balisage: The Markup Conference 2014, Washington, DC, August 5 - 8, 2014. In Proceedings of Balisage: The Markup Conference 2014.
 Balisage Series on Markup Technologies vol. 13 (2014). https://doi.org/10.4242/BalisageVol13.Sperberg-McQueen01.

Abstract
If the information conveyed by the markup in a document
 can be identified with the set of inferences we can draw from
 that markup, as has been proposed in earlier work, then the sets
 of inferences licensed by documents form an infinitely large
 lattice, by means of which the relative information content of
 any two documents (equivalence, subsumption, contradiction,
 consistency) can be displayed visually. The sets of inferences
 licensed by markup can be used to test translations from one
 markup language to another for equivalence or information loss;
 a simple example using XHTML and CALS table markup illustrates
 the process.

Balisage: The Markup Conference

 Document lattices:

 Equivalence, compatibility, and contradiction in document markup

 Table of Contents

 	Title Page

 	Introduction

 	Related work

 	Document comparison
 	Relations among documents

 	An algorithm for document comparisons

 	The document lattice

 	Example
 	High-level description

 	In first-order predicate calculus
 	Set S1

 	Set S2

 	Ensuring the identity of individuals (digression)

 	The S1 → S2 translation inference rules

 	The S2 → S1 translation inference rules

 	In Prolog

 	Further work

 	Appendix A. Sentence set
 S1

 	Appendix B. Sentence set
 S2

 	Appendix C. The S1
 	 → S2
 	 translation inference rules

 	Appendix D. The S2 →
 S1 translation
 inference rules

 	About the Authors

 Document lattices:
Equivalence, compatibility, and contradiction in document markup

Introduction

 Practitioners of descriptive markup rely on the ability of
 markup in a document to convey information; earlier work
 has attempted to characterize the nature of that
 information and describe ways to make it manifest in ways
 beyond what is done by conventional processing of SGML, XML,
 and similar systems.[1]
 Among the methods so far suggested is to capture the
 information carried by the markup of the document in symbolic
 logic. It is possible in principle to enumerate the crucial
 inferences licensed by the markup in a document; these
 sentences, together with all the other sentences that can be
 inferred from them, are held to constitute the set of
 inferences licensed by the markup (which in turn is held by
 some to constitute the meaning of the markup).

We offer here an application of that idea to the problem of
 document comparison. Given the sets of inferences licensed by the
 markup in two documents, we suggest a method for determining
 whether the markup in the two documents is semantically
 equivalent, semantically compatible (but richer in one than the
 other), or contradictory.

One consequence of this is that the information in documents
 can usefully be taken to form a lattice, which can in turn be used
 to illustrate the relation among documents.

Related work

 It should be noted at the outset that the kind of document
 comparison we describe here has nothing to do with the problem
 of XML file comparison or diff tools.

 The crucial basis for the current work is provided by a long
 series of papers on markup semantics by various authors
 (including at times the authors of this document, in various
 combinations and with various others). A number of proposals
 for identifying the meaning of markup amount to proposals to
 make that meaning visible and processable by extracting it and
 translating it into some other form. Some proposals are
 agnostic on the target format (e.g. [Sperberg-McQueen/Huitfeldt/Renear 2001a]):
 others target English prose ([Marcoux 2009] and
 [Marcoux and Rizkallah 2009]), first-order predicate calculus
 ([Sperberg-McQueen/Huitfeldt/Renear 2001b], [Sperberg-McQueen et al. 2002],
 [Sperberg-McQueen et al. 2003]), Prolog, the logic of situation
 semantics ([Wrightson 2005], [Wrightson 2007], and [Wickett 2010]), relational systems for
 knowledge management ([Welty and Ide 1999]), RDF, and
 perhaps others.

 One way in which one might motivate the choice of one of these
 target syntaxes over the others would be to show that it makes
 it easier to perform useful tasks with the information carried
 by the markup in the documents. The proposal made here exploits
 the fact that inference is well understood for first-order
 predicate calculus in many different variants, and uses (a very
 simple form) of mechanical theorem proving to perform
 interesting work.

 In 2011, Sperberg-McQueen proposed to use the sets of inferences
 licensed by markup in the field of digital preservation, as a
 way to test the information equivalence of documents before and
 after conversion [Sperberg-McQueen 2011]. We provide a
 concrete illustration of the technique described there,
 generalize the test from equivalence to subsumption,
 compatibilty, and contradiction, and discuss some implications
 of the technique.

Document comparison
Relations among documents
We claim that with respect to the information carried by
 the markup in any two documents
 D1 and
 D2, exactly one of the
 following states of affairs will apply:
 	
	 D1 and
	 D2 are
	 equivalent: all of the information in
	 D1 is present in
	 D2 and vice
	 versa.

	
	 D1
	 subsumes or is an
	 abstraction of
	 D2: all of the
	 information in
	 D1 is present in
	 D2, but the
	 reverse is not true. Equivalently, we say that
	 D2 is
	 a refinement of
	 D1.
	

	D2 subsumes
	 D1.

	Neither D1
	 nor D2 subsumes
	 the other, but they are logically consistent with each
	 other.
	

	
	 D1 and
	 D2 contradict each
	 other.
	

An algorithm for document comparisons
To compare two documents
 D1 and
 D2, we first enumerate
 a set of key inferences from the markup for each document. Let
 us call these two sets
 S1 and
 S2. These take the
 form of sentences in some suitable form of symbolic logic. (In
 the example below, we use a more or less standard first-order
 predicate calculus; in demonstrating that the comparisons can be
 implemented in software, we also use the syntaxes of Prolog and
 Alloy.)
Note that we do not ask for an enumeration of all the
 inferences licensed by the markup in either document; that set
 is by definition closed under inference, and by all conventional
 accounts will be infinite. By an enumeration of key
 inferences we mean some finite set of sentences inferred
 from the document, which suffice to allow the inference of all
 the others (sometimes called a basis for
 the infinite set of inferences). We will refer to the closure
 of S1 under logical
 inference as *S1, and
 the closure of S2
 under inference will be
 *S2.

In the simple case,
 S1 and
 S2 will use the same
 predicates, assume the existence of the same individuals, and
 use the same names for the individuals in the universe of
 discourse. Then establishing the informational equivalence of
 the two documents is simply a case of checking that every
 sentence in S1 is
 present in S2, and
 vice versa. The subsumption relation can similarly be
 established by checking for a subset relation between
 S1 and
 S2.

	In the general case, however, none of these will be true:
	S1 and
	S2 may use different
	predicates; they may assume the existence of different
	individuals in the universe of discourse; even when they
	assume the same predicates or individuals, they
	may use different names for them. A prerequisite for
	comparing the sets
	S1 and
	S2 in practice is
	thus the preparation of rules of inference that allow
	statements in the vocabulary of
	S1 to be inferred
	from statements in the vocabulary of
	S2, and vice-versa.
	We will call these the translation inference
	rules, since their goal is to translate information
	from one vocabulary to another. Some translation inference
	rules map from S1 to
	S2: they allow us to
	infer statements in the vocabulary of
	S2, given other
	statements in the vocabulary of
	S1. We refer to
	these as S1 →
	S2; we refer to the
	translation inference rules mapping in the other direction as
	S2 →
	S1.

Note that in what follows we silently assume that the
 translation inference rules
 S1 →
 S2 and
 S2 →
 S1 are given, and are
 included in the closures
 *S1 and
 *S2, along with other
 general world knowledge.
In this more general situation, we can establish the
 equivalence of D1 and
 D2 by checking that
 every sentence in S1
 is present in, or follows from,
 S2, and vice versa.
 Subsumption, consistency, and inconsistency relations can
 similarly be established on the basis of logical
 implication.
We provide an algorithm for determining which state of
 affairs applies between documents
 D1 and
 D2:
 	From the set
 S1 and the translation
 rules S1 →
 S2, we attempt to
 infer each sentence in
 S2.
If
 we succeed for all sentences in
 S2, then
 S2 is contained within
 the logical closure of
 S1
 (i.e. S2 ⊆
 *S1, and by definition
 also *S2 ⊆
 *S1). Less formally:
 all of the information in
 S2 is present in
 S1 (and similarly for
 D1 and
 D2).
If
 we succeed for some but not all sentences in
 S2, then some but not
 all of the information in
 S2 (and
 D2) is present in
 S1
 (D1).

	Conversely, from the set
 S2 and the translation
 rules S2 →
 S1, we attempt to
 infer each sentence in
 S1. (Or, more
 formally, we test whether
 *S1 ⊆
 *S2.)

	From
 the set S1 and the
 translation rules S1
 → S2, we
 attempt to infer the negation of each sentence in
 S2.
If
 we succeed for any sentence in
 S2, then
 S1 and
 S2 contradict each
 other (as do D1 and
 D2).
If
 we fail for all sentences in
 S2, then
 S1 (and
 D1) are compatible
 (logically consistent) with
 S2
 (D2).

	Again, we perform the same
 task in the other direction, seeking to infer negations of
 sentences in S2 from
 the set S1 and the
 translation rules S1
 →
 S2.

The relation of the documents' information content (as
 given by the markup) is determined by the results of this
 exercise.
 	D1
	subsumes D2 if and
	only if each sentence in
	S1 can be inferred
	from S2 and
	S2 →
	S1.

	D2
	subsumes D1 if and
	only if each sentence in
	S2 can be inferred
	from S1 and
	S1 →
	S2.

	D1
	and D2 are equivalent
	if and only if D1
	subsumes D2 and
	D2 subsumes
	D1.

	D1
	and D2 contradict each
	other if and only if
	¬s1 follows, for
	some sentence s1 in
	S1, from
	S2 and
	S2 →
	S1, or
	¬s2 follows, for
	some sentence s2 in
	S2, from
	S1 and
	S1 →
	S2.

	D1
	and D2 are compatible
	(logically consistent) with each other if and only if neither
	contradicts the other.

That is, the relation between documents
 D1 and
 D2 is determined by
 the subset/superset relations between
 *S1 and
 *S2.

The document lattice
The subset/superset relations among sets of inferences
 licenced by documents constitute a partial order over all
 documents. It is a consequence of this fact that the universe
 of documents forms a lattice, in the mathematical sense of the
 term.
A simple lattice formed by the subset relation over
 the subsets of the {a, b, c} is:
 Figure 1
[image:]

 A similar lattice formed by the subset relation over
 the subsets of the {a, b, c, d, e} is:
 Figure 2
[image:]

Any two points a and b in a lattice (and thus any two
 documents in a lattice of documents) have both a greatest
 lower bound (a point c in the lattice such that c ≤
 a and c ≤ b, and x ≤ c for all x such that
 x ≤ c and x ≤ b) and a greatest lower bound,
 known in lattice contexts respectively as the
 meet and the join of a and b.
 Figure 3
[image:]

 Informally, the meet is the highest point where downward
 paths from a and b meet, the join is the lowest point
 where climbing paths meet.
Since the set of documents is infinite, so is the universal
 document lattice (as we will call the lattice formed
 from the sets of sentences entailed by documents); we will not
 attempt to provide an image of this infinite lattice.
 Instead, we will illustrate document lattices by
 considering the lattice formed by the sets *S1, *S2,
 *(S1 ∪ S2), *(S1 ∩ S2), *(S1 \ S2),
 *(S2 \ S1), and the top and bottom nodes (⊤ and
 ⊥) of the universal document lattice.[2]
 Note that all illustrations assume that neither
 D1 nor D2 is self-contradictory (so neither
 *S1 nor *S2 is equal to ⊤)
 and that neither is vacuous (so neither
 *S1 nor *S2 is equal to ⊥).

Every document is represented by a point in the lattice.
 If and only if two documents D1 and D2 are equivalent,
 then D1 and D2 map to the same point in the lattice.
 If D1 subsumes D2 but the two documents are not equivalent,
 then D1 is below D2 in the lattice.
 Informally: we can reach D1 from D2 by going
 down in the graph (or D2 from D1 by climbing).
 If neither D1 nor D2
 subsumes the other, then neither is above or below the other
 in the lattice.

 For the document lattice (based as it is upon the subset
 relation), the meet of two documents D1 and D2 is
 represented by the set *S1 ∩ *S2, their join by *S1
 ∪ *S2. (In the figure, the nodes a and b are
 colored yellow and blue; their meet is colored gray,
 their joint is colored green. As the bold arrows show,
 there may be more than one path connecting a node to its
 meet or its join with another node, but the meet and join
 are nevertheless each guaranteed unique.)

We have the following relations in the lattice for the
 various possible relations of D1 and D2, which we
 illustrate on the finite lattice described earlier:
 	If D1 and D2 are equivalent, then they map
	 to the same point in the lattice (as do their union and
	 intersection).
	 Figure 4
[image:]

	

	If D1 subsumes D2 but they are not
	equivalent, then D1 is below D2 in the lattice and can
	be reached by a sequence of downward arcs.
	Figure 5
[image:]

	

	If D2 subsumes D1 but they are not
	equivalent, then the reverse is true.

	If D1 and D2 contradict each other, then
	their join is the topmost point in the lattice (the
	set of all possible sentences).[3]
	Figure 6
[image:]

	If neither D1 nor D2 subsumes the other, but
 they are logically consistent with each other, then
 they have a join somewhere other than the
 top of the lattice.
 Figure 7
[image:]

Most of what has been said so far is a straightforward
 account of the relation of arbitrary sets of sentences in a
 logical notation, when the sets are closed under logical
 inference. It is not uniquely true of sets of sentences
 derived from the markup in documents. Readers thus may well
 be asking themselves where some application to document
 processing comes in.
The document lattice we have described makes explicit
 some facts about information in documents that is obvious to
 markup practitioners (but often disappointingly non-obvious
 to clients and novices). The kinds of translation processes
 referred to as up-translations and down-translations
 correspond directly to relations in the lattice: an
 up-translation involves mapping from some document
 D1 to another document D2 above D2 on the lattice,
 a down translation similarly involves moving downwards
 in the lattice.
If our task is to translate from
 document D1 in one markup vocabulary (say, Docbook) into
 some document D2 in another vocabulary (say, XHTML) by
 fully automatic means (e.g. an XSLT stylesheet), then either
 D2 must subsume D1, or our task is impossible: fully
 automatic transforms can in principle map only from one
 document into another document reachable by zero or more
 downward steps. (D2 is reachable in zero downward steps
 if it is logically equivalent to D1; this is possible in
 principle but often quite difficult in practice.)

If a conversion from one vocabulary to another is
 intended to have no information loss, then the requiremet
 is that for any D1 in the source vocabulary, the
 conversion produce a D2 which occupies the same point
 in the lattice.

Example
A simple example may help to illustrate the operation
	 of the algorithm we have given above.
High-level description
Consider the following simple table:
	
	 Figure 8
[image:]

Let us imagine that we have two versions of this table,
 each in a different markup language with a possibly different
 table model, and we wish to know whether the table
 markup in the two documents is equivalent, or at least
 logically consistent.
One table, let us suppose, is tagged in XHTML:
 <table border="1">
 <tr>
 <th>Année</th>
 <th>Événement</th>
 </tr>
 <tr>
 <td>1969</td>
 <td>Création d'ARPANET, le premier réseau
 national américain d'ordinateurs, par le
 Defense Department's Advanced
 Research Projects Agency (DARPA)</td>
 </tr>
 <tr>
 <td>1992</td>
 <td>Mise en service du World Wide Web
 par le CERN (Centre européen de recherche
 nucléaire), en Suisse</td>
 </tr>
 </table>

The other table, intended to be equivalent, is tagged
 using the SGML Open exchange subset of the CALS table model
 [Bingham 1995],
 [Severson and Bingham 1995].
 <table colsep="1" rowsep="1">
 <tgroup cols="2">
 <colspec colnum="1" colname="annee" colwidth="1*"/>
 <colspec colnum="2" colname="evenement" colwidth="4*"/>
 <tbody>
 <row>
 <entry>Année</entry>
 <entry>Événement</entry>
 </row>
 <row>
 <entry colname="evenement">Création d'ARPANET,
 le prémier réseau américain
 d'ordinateurs, par le Defense Department's
 Advanced Research
 Projects Agency (DARPA)</entry>
 <entry colname="annee">1969</entry>
 </row>
 <row>
 <entry colname="annee">1992</entry>
 <entry>Mise en service du World Wide Web
 par le CERN
 (Centre européen de recherche nucléaire),
 en Suisse</entry>
 </row>
 </tbody>
 </tgroup>
</table>

In first-order predicate calculus
From each marked up table we derive a set of
 sentences.[4]

Set S1
In more or less conventional first-order predicate calculus
	 notation,[5]
	 the first set of inferences is as follows.[6]
Table T is 3 by 2. In consequence, cell (3, 2) exists in table T,
 but cells (4, 1) and (1, 3) do not.)
 	table_dimensions(T, 3, 2)

	cell(T, 3, 2) ∧ ¬cell(T, 4, 1) and ¬cell(T, 1, 3)

The two heading cells in row 1, columns 1 and 2,
 are identified as headings.
 	isTableHeader(T, 1, 1)

	isTableHeader(T, 1, 2)

Next, the contents of the various cells are given.
 	tableCellContent(T, 1, 1, "Année")

	tableCellContent(T, 1, 2, "Événement")

	tableCellContent(T, 2, 1, "1969")

	tableCellContent(T, 2, 2, "Création d'ARPANET...")

	tableCellContent(T, 3, 1, "1992")

	tableCellContent(T, 3, 2, "Mise en service du...")

The table has some styling information, given in CSS and not
	 shown above: the table
 width is 80% of its parent element's width, and it has a 10% left margin.
 	tableWidth(T, "80%")

	tableMarginLeft(T, "10%")

 The background color of the heading cells is #CCCCCC, and all cells
 are vertically aligned to the top of the cell.
 	(∀ x ∈ ℕ, y ∈ ℕ)[isTableHeader(T, x, y) ⇒ tableCellBackgroundColor(T, x, y, "#CCCCCC")]

	(∀ x ∈ ℕ, y ∈ ℕ)[cell(T, x, y) ⇒ tableCellVerticalAlign(T, x, y, "top")]

 Table borders are thin, solid lines.
 	(∀ x ∈ ℕ, y ∈ ℕ)[cell(T, x, y) ⇒ tableCellBorderWidth(T, x, y, "thin")]

	(∀ x ∈ ℕ, y ∈ ℕ)[cell(T, x, y) ⇒ tableCellBorderStyle(T, x, y, "solid")]

Finally, we give some rules which apply to all tables and not just to this one.
 These can be used for sanity checking of sets of sentences, to ensure that we have specified
 content for all the cells that need to be described, and so on.

 In any table, only those cells exist which have content.
 	(∀ t, x ∈ ℕ, y ∈ ℕ)[cell(t, x, y) ⇔ (∃ c)[tableCellContent(t, x, y, c)]]

All tables are finite and have no holes. (Literally: for all tables,
 there are maximum dimensions x and y such that all cells have row and
 column coordinates less than or equal to x and y, respectively.)
 	(∀ t)(∃ x ∈ ℕ, y ∈ ℕ)(∀ x′ ∈ ℕ, y′ ∈ ℕ)[
 cell(t, x, y) ⇔ ((x′ ≤ x) ∧ (y′ ≤ y))
]

No table is empty. (So all tables have at least one row and one column and thus a cell in position (1, 1).)
 	(∀ t)[cell(t, 1, 1)]

In a table, only existing cells can have interesting properties.
 (Literally, we postulate isTableHeader, or a background color, or
 vertical alignment, or border width and style, of some triple T, x, y only if
 there is a cell T, x, y.)
 	(∀ t, x ∈ ℕ, y ∈ ℕ)[

 (

 isTableHeader(t, x, y) ∨

 (∃ c)[tableCellBackgroundColor(t, x, y, c) ∨

 tableCellVerticalAlign(t, x, y, c) ∨

 tableCellBorderWidth(t, x, y, c) ∨

 tableCellBorderStyle(t, x, y, c)]

) ⇒ cell(t, x, y)

]

Set S2
The description of the other table is this; notice both that
 it takes a rather different view of which individuals need to exist to
 enable the description of the table, and that the markup from
 which it started said nothing about vertical alignment or
 table borders.

This set of sentences begins by identifying the individuals
 in the universe of discourse and saying what kinds of things they are:
 c11 and c12 are heading cells, various other individuals are
 data cells, rows, columns, or tables.
 	headingcell(c11)

	headingcell(c21)

	datacell(c12)

	datacell(c22)

	datacell(c13)

	datacell(c23)

	row(r1)

	row(r2)

	row(r3)

	column(c1)

	column(c2)

	table(t1)

The table t1 contains a particular set of rows in a particular
 order, and a particular set of columns in a particular order.
 (We write sequences as comma-separated lists in angle brackets,
 as is common in some fields.)
 	table_rowsequence(t1, 〈 r1, r2, r3 〉)

	table_colsequence(t1, 〈 c1, c2 〉)

	row_cellsequence(r1, 〈 c11, c21 〉)

	row_cellsequence(r2, 〈 c12, c22 〉)

	row_cellsequence(r3, 〈 c13, c23 〉)

	col_cellsequence(c1, 〈 c11, c12, c13 〉)

	col_cellsequence(c2, 〈 c21, c22, c23 〉)

The individual cells each contain text, represented
 here as a simple string of characters.[7]
 	cell_text(c11, "Année")

	cell_text(c21,"Evénement")

	cell_text(c12,"1969")

	cell_text(c22,"Création d'ARPANET, le prémier réseau national américain d'ordinateurs ...")

	cell_text(c13,"1992")

	cell_text(c23,"Mise en service du World Wide Web pare le CERN ...")

Ensuring the identity of individuals (digression)
The next step is to formulate translation inference rules
	 for mapping from the vocabulary of S1 to that of S2 and
	 vice versa.
There is a complication here, however, which requires a brief
 digression. The issue has no particular interest from the
 markup point of view but is crucial to make the inference
 process work smoothly. It is perhaps best illustrated if
 we imagine a two-player game similar to Twenty Questions.
 Player One is equipped with sentences S1, which Player
 Two cannot see, while Player Two has set S2, which is
 invisible to Player One; both have access to the
 translation inference rules. The players take turns
 challenging each other to say whether a given sentence is
 or is not present in (or inferrable from) the challenger's
 set of sentences.
In our example Player One might ask whether
 table_dimensions(t, 2, 3) is in set S1. Player
 Two knows that the table has three rows and two columns,
 so the correct form of such a sentence should be
 table_dimensions(t, 3, 2), so Player Two
 correctly answers no.
The complication arises when Player 1 asks whether the
 sentence table_dimensions(t, 3, 2) is in S1.
 It could be; the order of arguments is correct. But does
 S1 refer to the table in question as t? Or as t1?
 Or by some other name? There is no way for Player Two to
 find out: in symbolic logic, the identifiers used to denote individuals are
 arbitrary and do not in themselves carry information.
If Player Two is required to guess how
 S1 spells the identifier, then the game quickly becomes
 uninteresting. We need some way to make such guessing
 unnecessary. Perhaps the players could agree in advance
 on the names of all the individuals to be postulated in
 the universe of discourse. That would simplify life a
 great deal, but it is not always possible: S1 and S2
 do not necessarily agree on the number or nature of the
 individuals to be postulated in the universe of
 discourse.
We therefore impose a rule that the arbitrary
 identifier used for each individual must be discoverable
 from the essential properties of that individual. For
 each individual with an arbitrary identifier, the set of
 sentences referring to that individual must include some
 predicate which is true of that individual and of no other
 individual in the universe of discourse.[8]
Set S1, for example, assigns the arbitrary identifier
 T to the table being described. Since for purposes of
 the example there is never more than one table in the
 universe of discourse, a predicate like
 this_table(T) can be used to identify the
	 table uniquely, make the identifier T discoverable,
	 and satisfy the rule. We therefore add that predicate
	 to our sketch of S1:
	 	this_table(T)

	 The natural numbers 1, 2, and 3, and various
 strings of Unicode characters are referred to using
 standard well known notations and not using arbitrary
 identifiers, so we do not need such uniquely identifying
 predicates for them.[9]
Set S2 identifies a larger set of individuals, but we
 can easily use the positions of rows, columns, and cells
 within a table to uniquely identify them. The individuals
 postulated in the universe of discourse by S2 can all be
 identified with the following set of uniquely identifying
 predicates:
 	table_row(r1, t1, 1)

	table_row(r2, t1, 2)

	table_row(r3, t1, 3)

	table_column(c1, t1, 1)

	table_column(c2, t1, 2)

	table_cell(c11, t1, 1, 1)

	table_cell(c21, t1, 1, 2)

	table_cell(c12, t1, 2, 1)

	table_cell(c22, t1, 2, 2)

	table_cell(c13, t1, 3, 1)

	table_cell(c23, t1, 3, 2)

 When such uniquely identifying predicates are available,
 we no longer have to wonder if a cell whose existence
 is predicated by set S1 and the S1 → S2 rules is
 supposed to represent cell c11 or cell c21 or one of the
 others.
The rules of the game can now be refined: players are
 forbidden to ask about sentences involving arbitrary
 identifiers. So Player One cannot pose the sentence
 table_dimensions(t, 3, 2) as a challenge.
 Instead, all sentences must use bound variables; the
 uniquely identifying predicates make it possible to bind
 variables reliably to any chosen individual. So Player
 One can usefully ask:
 	(∃ x)[this_table(x) ∧ table_dimensions(x, 3, 2)]

 The form of the query is superficially more complicated, but the
 outer structure and first part of the sentence (namely
 (∃ x)[this_table(x) ∧ ...])
 serve merely to set up the real question, namely
 table_dimensions(x, 3, 2).[10]

The S1 → S2 translation inference rules
We can translate from the vocabulary of S1 into that
 of S2 by these rules:
We begin with existential claims for the individuals in S2,
	 beginning with the table and continuing with the rows, columns,
	 and cells.
	 	(∃ x)[this_table(x)]
		

		⇒
		(∃ y)[table(y)]

	(∀ x, y)(∀ n ∈ ℕ, m ∈ ℕ, i ∈ ℕ)
	

	 [(this_table(x)
	 ∧ table(y)
	 ∧ table_dimensions(x, n, m)
	 ∧ 1 ≤ i
	 ∧ i ≤ n)
	

	 ⇒
	 (∃1 r)[table_row(r, y, i)]]

	(∀ x, y)(∀ n ∈ ℕ, m ∈ ℕ, i ∈ ℕ)
	

	 [(this_table(x)
	 ∧ table(y)
	 ∧ table_dimensions(x, n, m)
	 ∧ 1 ≤ i
	 ∧ i ≤ m)
	

	 ⇒
	 (∃1 c)[table_column(c, y, i)]]

	(∀ x, y)(∀ n ∈ ℕ, m ∈ ℕ, i ∈ ℕ, j ∈ ℕ)
	

	 [(this_table(x)
	 ∧ table(y)
	 ∧ table_dimensions(x, n, m)
	 ∧ 1 ≤ i ∧ i ≤ n
	 ∧ 1 ≤ j ∧ j ≤ m)
	

	 ⇒
	 (∃1 c)[table_cell(c, y, i, j)]]

	
Next, we specify that the rows are rows, the columns are columns,
	 etc.	(∀ x, y, r)(∀ n ∈ ℕ, m ∈ ℕ, i ∈ ℕ)
	

	 [(this_table(x)
	 ∧ table(y)
	 ∧ table_dimensions(x, n, m)
	 ∧ (1 ≤ i ∧ i ≤ n)
	 ∧ table_row(r, y, i)
	

	 ⇒
	 row(r)]

	(∀ x, y, c)(∀ n ∈ ℕ, m ∈ ℕ, i ∈ ℕ)
	

	 [(this_table(x)
	 ∧ table(y)
	 ∧ table_dimensions(x, n, m)
	 ∧ (1 ≤ i ∧ i ≤ m)
	 ∧ table_column(c, y, i)
	

	 ⇒
	 column(c)]

	(∀ x, y, c)(∀ n ∈ ℕ, m ∈ ℕ)
	

	 [(this_table(x)
	 ∧ table(y)
	 ∧ isTableHeader(x, n, m)
	 ∧ table_cell(c, y, n, m)
	

	 ⇒
	 headingcell(c)]

	(∀ x, y, c)(∀ n ∈ ℕ, m ∈ ℕ)
	

	 [(this_table(x)
	 ∧ table(y)
	 ∧ ¬ isTableHeader(x, n, m)
	 ∧ table_cell(c, y, n, m)
	

	 ⇒
	 datacell(c)]

	(∀ x, y, c)(∀ n ∈ ℕ, m ∈ ℕ)
	

	 [(this_table(x)
	 ∧ table(y)
	 ∧ cell(c x, n, m)
	 ∧ table_cell(c, y, n, m)
	

	 ⇒
	 cell(c)]

The table_rowsequence, table_colsequence,
	 row_cellsequence, and column_cellsequence predicates
	 are a little more complicated, as they require
	 the construction of a sequence of objects.
	

	 While sequences are familiar enough to anyone involved
	 with XML or with contemporary programming languages, there
	 are a variety of ways they can be specified in logical
	 terms. One common approach[11] which
	 suffices for our present purposes is to say that a
	 sequence s of length n is a mapping from an initial
	 segment of the counting numbers (1, 2, ... n) to a
	 set.
	 To indicate that a variable s in a logical expression
	 denotes a sequence, we declare it as (s ∈ Seq).
	 A sequence can be written out as a whole
	 by listing its members, in order, between angle
	 brackets (as was done above in the discussion of set
	 S2); an individual member of the sequence can
	 be identified by writing the number for its position
	 and the element in that position, joined by
	 the symbol ↦, e.g. 1 ↦ A, 2 ↦ B,
	 ... For clarity, such mappings may be parenthesized:
	 (1 ↦ A), (2 ↦ B), ...
	 We say that sequence s has element x at position
	 n by writing (n ↦ x) ∈ s.
	
Armed with this account of sequences, we can now
	 describe the sequences of rows and columns in the table
	 and the sequences of cells in columns and rows.
	 	(∀ x, y, r)
		(∀ n ∈ ℕ, m ∈ ℕ, i ∈ ℕ, s ∈ Seq)
		

		[(this_table(x)
		∧ table(y)
		∧ row(r)
		∧ table_dimensions(x, n, m)
		

		∧ ((i ↦ r) ∈ s ⇔ (1 ≤ i
		∧ i ≤ n ∧ table_row(r, y, i)))
		

		∧ (i ≤ 0 ∨ n < i)
		⇒
		¬(∃ z)[(i ↦ z) ∈ s])
		

		⇒
		table_rowsequence(x, s)]
		

	(∀ x, y, c)
		(n ∈ ℕ, m ∈ ℕ, i ∈ ℕ, s ∈ Seq)
		

		[(this_table(x)
		∧ table(y)
		∧ column(c)
		∧ table_dimensions(x, n, m)
		

		∧
		((i ↦ c) ∈ s
		⇔ (1 ≤ i ∧ i ≤ m ∧ table_column(c, y, i)))
		

		∧ (i ≤ 0 ∨ m < i)
		⇒
		¬(∃ z)[(i ↦ z) ∈ s])
		

		⇒
		table_colsequence(x, s)]
		

	(∀ x, y, r, c)
		(n ∈ ℕ, m ∈ ℕ, i ∈ ℕ, j ∈ ℕ, s ∈ Seq)
		

		[(this_table(x)
		∧ table(y)
		∧ table_dimensions(x, n, m)
		

		∧ row(r)
		∧ 1 ≤ i ∧ i ≤ n
		∧ table_row(r, t, i)
		

		∧ ((j ↦ c) ∈ s
		⇔ 1 ≤ j ∧ j ≤ m ∧ table_cell(c, y, i, j))
		∧ (j ≤ 0 ∨ m < j)
		⇒
		¬(∃ z)[(j ↦ z) ∈ s])
		

		⇒
		row_cellsequence(r, s)]
		

	(∀ x, y, col, c)
		(n ∈ ℕ, m ∈ ℕ, i ∈ ℕ, j ∈ ℕ, s ∈ Seq)
		

		[(this_table(x)
		∧ table(y)
		∧ table_dimensions(x, n, m)
		

		∧ column(col)
		∧ 1 ≤ j ∧ j ≤ m
		∧ table_column(col, t, j)
		

		∧ ((i ↦ c) ∈ s
		⇔ 1 ≤ i ∧ i ≤ n ∧ table_cell(c, y, i, j))
		∧ (i ≤ 0 ∨ n < i)
		⇒
		¬(∃ z)[(i ↦ z) ∈ s])
		

		⇒
		col_cellsequence(col, s)]
		

	
Finally, we specify rules for the cell_text predicate.
	 	(∀ x, y, c, s)
		(i ∈ ℕ, j ∈ ℕ)
		

		[(this_table(x) ∧ table(y) ∧ table_cell(c, y, i, j)
		and tableCellContent(x, i, j, s))
		

		⇒
		cell_text(c, s)]
		

	

The S2 → S1 translation inference rules
And conversely, we can translate from the vocabulary of S2 into that
 of S1 by these rules:
 	
		 (∀ x, y)
		

		 [table(x) ⇒ this_table(y)]
		

	
		 (∀ x, y, c, i ∈ ℕ, j ∈ ℕ)
		

		 [(table(x) ∧ this_table(y)
		 ∧ headingcell(c)
		 ∧ table_cell(c, x, i, j))
		

		 ⇒
		 isTableHeader(y, i, j)]
		

	
		 (∀ x, y, c, s, i ∈ ℕ, j ∈ ℕ)
		

		 [(table(x) ∧ this_table(y)
		 ∧ cell(c)
		 ∧ table_cell(c, x, i, j))
		 ∧ cell_text(c, s))
		

		 ⇒
		 tableCellContent(y, i, j, s)]		
		

Note that no translation rules are listed which
	 allow us to infer any instances of the S1 predicates
	 tableWidth, tableMarginLeft, tableCellBackgroundColor,
	 tableCellVerticalAlign, tableCellBorderWidth, or
	 tableCellBorderStyles. This reflects the fact that
	 the set of enumerations S1 includes an analysis of
	 the CSS styling for the XHTML table, while
	 the Oasis Exchange Model (CALS) encoding of the table
	 lacks such style information.
	 As a consequence, here D1 and D2 are not equivalent;
	 instead, D2 subsumes D1.
	

In Prolog
The logic outlined above has been translated into Prolog
 to demonstrate that the inferences required are automatically
 derivable.[12]
	 The following files are available in the appendices to this paper:[13]
 	
	
	 Set S1 is in Appendix A.
	

	
	
	 Set S2 is in
	 Appendix B.
	

	
	
	 The S1
	 → S2
	 translation inference rules are in
	 Appendix C.
	

	
	
	 The S2
	 → S1
	 translation inference rules are in Appendix D.

 The two sets of translation inference rules adopt the convention
 of defining two predicates with standard names:
 	individuals asserts the existence of
 all the individuals mentioned in the target set of
 sentences, using a Skolem function (gensym)
 to create a name for the individual, and asserting the
 uniquely identifying predicate for that individual.

	obligations consists of a conjunction
 of all the ground facts of the target set of sentences,
 using appropriately bound variables in place of the
 identifiers actually used in the target set.

Further work
Several questions arise from the operational
	 definitions offered here of document equivalence,
	 subsumption, compatibility, and contradiction.
Can the constraints given above on the form
	taken by the enumerations for a given document be
	relaxed?

Given two compatible documents in a given vocabulary V,
 is it always, sometimes, or never possible to generate
 documents in V representing the meet and the join of the
 two initial documents?
 We conjecture that it is sometimes possible, depending on
 properties of the vocabulary V and the specific information
 in the two documents. This conjecture leads to another question:

Is it possible to design a vocabulary V so as
 to ensure that the meet and the join of arbitrary sets of
 documents is always representable?
 If it is not possible to guarantee that the meet and join
 are always representable, can we increase the likelihood
 that it's representable for interesting cases?

Can the technique described here scale up to
 full colloquial XML vocabularies like JATS, DocBook,
 TEI, and HTML? Or even to full table markup in the
 CALS and XHTML table models? We believe so, but
 cannot exhibit a full formal description of any
	colloquial XML vocabulary.

For two given vocabularies V1 and V2, is it
 possible to generalize about the relative position in the
 lattice of documents in V1 and V2? Is it
 possible (and if so, how can it be done?) to define V1 and V2
 such that
 	No document D1 in vocabulary V1 is equivalent
 to any document D2 in V2.

	Every document D1 in vocabulary V1 has at least
 one equivalent document D2 in V2.

	Every document
	 D1 in vocabulary
	 V1 can be
	 reached by a down-translation from some document
	 D2 in
	 V2 (i.e. for
	 every D1, there
	 exists some D2
	 such that the join of
	 D1 and
	 D2 is
	 D2).

Appendix A. Sentence set
 S1
% Prolog equivalent of S1 sentences
%
% Revisions
%
% 2014-04-18 : YM : added y/m prefix to each (exported) predicate
% 2014-04-15 : YMA :	reintroduced the module definition (no change)
% 2014-04-12 : YMA :	various major revisions
% 2014-04-08 : CMSMcQ : supply uniquely identifying predicate for T
% extend with style rules
% remove general rules to y_general.pl
% 2014-04-03 : CMSMcQ : initial translation from table_trial_YM.txt

:- module(y, [y_this_table/1,
	 y_table_dimensions/3,
	 y_cell/3,
	 y_table_consistent/1,
	 y_tableWidth/2,
	 y_tableMarginLeft/2,
 y_isTableHeader/3,
 y_tableCellContent/4,
	 y_tableCellBackgroundColor/4,
	 y_tableCellVerticalAlign/4,
	 y_tableCellBorderWidth/4,
	 y_tableCellBorderStyle/4
]).

% Individuals: for each individual that needs one, we have a uniquely
% identifying predicate. (Here, we have only one individual needing
% such a predicate: the table.)
% t is a table; it is the only individual we identify
% apart from the natural numbers and the strings

y_this_table(t).

y_tableWidth(t,"80%").
y_tableMarginLeft(t,"10%").

y_isTableHeader(t, 1, 1).
y_isTableHeader(t, 1, 2).

y_tableCellContent(t, 1, 1, "Année").
y_tableCellContent(t, 1, 2, "Événement").

y_tableCellContent(t, 2, 1, "1969").
y_tableCellContent(t, 3, 1, "1992").

y_tableCellContent(t, 2, 2, "Création d'ARPANET, le premier réseau national américain d'ordinateurs, par le Defense Department's Advanced Research Projects Agency (DARPA)").
y_tableCellContent(t, 3, 2, "Mise en service du World Wide Web par le CERN (Centre européen de recherche nucléaire), en Suisse").

% Uncomment to test for incorrectness
% y_tableCellContent(t, 4, 4, "Extraneous").

% The style is consistent across cells in the table, so we can
% have some general rules.

y_cell(T,R,C) :- y_tableCellContent(T, R, C, _).

y_tableCellBackgroundColor(t,R,C,"#CCCCCC") :- y_isTableHeader(t,R,C).
y_tableCellVerticalAlign(t,R,C,"top") :- y_cell(t,R,C).
y_tableCellBorderWidth(t,R,C,"thin") :- y_cell(t,R,C).
y_tableCellBorderStyle(t,R,C,"solid") :- y_cell(t,R,C).

% General rules about tables. We formulate some of these as tests of
% consistent description for a table.

table_nonempty_finite_rectangular_and_dense(T) :-
	y_cell(T, R, C),
	\+ (
		y_cell(T, Row, Col),
		(Row > R;
		Col > C)
	 ;
		between(1, R, Row),
		between(1, C, Col),
		(\+ y_cell(T, Row, Col))
).

table_properties_ok(T) :-
	\+ (has_properties(T,Row,Col),
	 \+ cell(T,Row,Col)).

has_properties(T, R, C) :-
	y_isTableHeader(T,R,C);
	y_tableCellBackgroundColor(T,R,C,_);
	y_tableCellVerticalAlign(T,R,C,_);
	y_tableCellBorderWidth(T,R,C,_);
	y_tableCellBorderStyle(T,R,C,_).

y_table_consistent(T) :-
	table_nonempty_finite_rectangular_and_dense(T),
	table_properties_ok(T).

y_table_dimensions(T,Row,Col) :-
% This is not a validity check, but rather a simple way
% to compute a table's dimensions.
% Note: Reliable only if table_nonempty_finite_rectangular_and_dense(T)
	y_cell(T,Row,Col),
	R is Row + 1,
	C is Col + 1,
	\+ y_cell(T, R, 1),
	\+ y_cell(T, 1, C).

Appendix B. Sentence set
 S2
% S2 Inferences from the XHTML table

% 2014-04-18 : YM : added y/m prefix to each (exported) predicate
% 2014-04-17 : YM : Corrected definitions of row(R) and col(C)
 (R and C were at a wrong place in the predicate
 on the right)
% 2014-04-08 : MSM : add uniquely identifying predicates for all
% individuals.
% 2014-03-21 : MSM : transcribed ---28.

:- module(m, [m_headingcell/1,
	 m_datacell/1,
	 m_cell/1,
	 m_row/1,
	 m_column/1,
	 m_this_table/1,
	 m_table_row/3,
	 m_table_column/3,
	 m_table_cell/4,
	 m_table_rowsequence/2,
	 m_table_colsequence/2,
	 m_row_cellsequence/2,
	 m_col_cellsequence/2,
	 m_cell_text/2,
	 m_table_row/2,
	 m_table_col/2,
	 m_table_cell/2,
	 m_row_cell/2,
	 m_col_cell/2]).

% Individuals
m_this_table(t1).
m_table_row(r1, t1, 1).
m_table_row(r2, t1, 2).
m_table_row(r3, t1, 3).
m_table_column(c1, t1, 1).
m_table_column(c2, t1, 2).

% convention: cell X, Y is cXY
m_table_cell(c11,t1,1,1).
m_table_cell(c21,t1,1,2).
m_table_cell(c12,t1,2,1).
m_table_cell(c22,t1,2,2).
m_table_cell(c13,t1,3,1).
m_table_cell(c23,t1,3,2).

% basic classes
m_row(R) :- m_table_row(R,_T,_N).
m_column(C) :- m_table_column(C,_T,_N).
m_headingcell(c11).
m_headingcell(c21).
m_datacell(c12).
m_datacell(c22).
m_datacell(c13).
m_datacell(c23).

% Relations
%

m_table_rowsequence(t1, [r1, r2, r3]).
m_table_colsequence(t1, [c1, c2]).

m_row_cellsequence(r1, [c11, c21]).
m_row_cellsequence(r2, [c12, c22]).
m_row_cellsequence(r3, [c13, c23]).

m_col_cellsequence(c1, [c11, c12, c13]).
m_col_cellsequence(c2, [c21, c22, c23]).

m_cell_text(c11, "Année").
m_cell_text(c21, "Événement").
m_cell_text(c12, "1969").
m_cell_text(c22, "Création d'ARPANET, le premier réseau national américain d'ordinateurs, par le Defense Department's Advanced Research Projects Agency (DARPA)").
m_cell_text(c13, "1992").
m_cell_text(c23, "Mise en service du World Wide Web par le CERN (Centre européen de recherche nucléaire), en Suisse").

% Synonyms / analytic sentences
% These are not essential, but may be convenient to have.

m_cell(X) :- m_headingcell(X).
m_cell(X) :- m_datacell(X).

m_table_row(T,R) :- m_this_table(T), m_row(R), m_table_rowsequence(T,Rs), member(R,Rs).
m_table_col(T,C) :- m_this_table(T), m_column(C), m_table_colsequence(T,Cs), member(C,Cs).
m_row_cell(R,C) :- m_row(R), m_cell(C), m_row_cellsequence(R,Cs), member(C,Cs).
m_col_cell(Col,Cell) :- m_column(Col),
	m_cell(Cell),
	m_col_cellsequence(Col, Cells),
	member(Cell,Cells).

m_table_cell(T,C) :-
	m_this_table(T),
	m_cell(C),
	m_row(R),
	m_table_row(T,R),
	m_row_cell(R,C).

m_table_cell(T,C) :-
	m_this_table(T),
	m_cell(C),
	m_column(C2),
	m_table_col(T,C2),
	m_col_cell(C2,C).

Appendix C. The S1
	 → S2
	 translation inference rules
% S1 to S2: translation rules from Y sentences to M sentences.
%
% 2014-04-18 : YM : added y/m prefix to each (exported) predicate
% 2014-04-17 : YMA :	added M goals at the end
% 2014-04-08 : CMSMcQ : revise for new y.pl and new m.pl
% 2014-04-03 : CMSMcQ : first version
%
% Our job is to define the predicates exported from m.pl
% in terms of the vocabulary in y.pl. Or at least the
% predicates used for ground facts.
%
% So: to define are first the uniquely identifying predicates:
%
% m_this_table/1,
% m_table_row/3,
% m_table_column/3,
% m_table_cell/4
%
% And then the other predicates:
%
% m_headingcell/1,
% m_datacell/1,
% m_cell/1,
% m_row/1,
% m_column/1,
% m_table_rowsequence/2,
% m_table_colsequence/2,
% m_row_cellsequence/2,
% m_col_cellsequence/2,
% m_cell_text/2,
% m_table_row/2,
% m_table_col/2,
% m_table_cell/2,
% m_row_cell/2,
% m_col_cell/2.

% And we are given:
% y_this_table/1, y_cell/3, y_table_dimensions/3, y_table_consistent/1,
% y_tableWidth/2, y_tableMarginLeft/2, y_isTableHeader/3, y_tableCellContent/4,
% y_tableCellBackgroundColor/4, y_tableCellVerticalAlign/4,
% y_tableCellBorderWidth/4, y_tableCellBorderStyle/4

% First, assert the existence of appropriate individuals.

individuals :-
	abolish(m_this_table/1),
	known_table,
	abolish(m_table_row/3),
	known_rows,
	abolish(m_table_column/3),
	known_columns,
	abolish(m_table_cell/4),
	known_cells.

known_table :-
	gensym('m', T),
	assertz(m_this_table(T)).
known_rows :- y_this_table(T0), m_this_table(T),
	y_table_dimensions(T0, RowCount, _ColCount),
	(between(1,RowCount,RowNum),
	 gensym('m',R),
	 assertz(m_table_row(R, T, RowNum)),
	 fail
)
	;
	true.
known_columns :- y_this_table(T0), m_this_table(T),
	y_table_dimensions(T0, _RowCount, ColCount),
	(between(1,ColCount,ColNum),
	 gensym('m',C),
	 assertz(m_table_column(C, T, ColNum)),
	 fail
)
	;
	true.
known_cells :- y_this_table(T0), m_this_table(T),
	y_table_dimensions(T0, RowCount, ColCount),
	(between(1, RowCount, RowNum),
	 between(1, ColCount, ColNum),
	 gensym('m',Cell),
	 assertz(m_table_cell(Cell, T, RowNum, ColNum)),
	 fail
)
	;
	true.

% m_headingcell/1

m_headingcell(H) :- y_this_table(T0),
	y_isTableHeader(T0,Row,Col),
	m_this_table(T1),
	m_table_cell(H,T1,Row,Col).

% m_datacell/1,

m_datacell(D) :- y_this_table(T0),
	y_cell(T0,Row,Col),
	\+ (y_isTableHeader(T0,Row,Col)),
	m_this_table(T1),
	m_table_cell(D, T1, Row, Col).

% m_cell/1,

m_cell(Cell) :- y_this_table(T0),
	y_cell(T0, Row, Col),
	m_this_table(T1),
	m_table_cell(Cell, T1, Row, Col).

% m_row/1,
m_row(R) :- y_this_table(T0),
	y_table_dimensions(T0, RowCount, _ColCount),
	between(1, RowCount, RowNum),
	m_this_table(T1),
	m_table_row(R, T1, RowNum).

% m_column/1,
m_column(R) :- y_this_table(T0),
	y_table_dimensions(T0, _RowCount, ColCount),
	between(1, ColCount, ColNum),
	m_this_table(T1),
	m_table_column(R, T1, ColNum).

% m_this_table/1,
% taken care of by the 'individuals' predicate.

% the following are all derivative. If we can prove the
% ground facts, they all follow.
% m_table_row/3,
% m_table_column/3,
% m_table_cell/4,

% m_table_rowsequence/2,
m_table_rowsequence(T, Rows) :-
	y_this_table(T0), m_this_table(T),
	y_table_dimensions(T0, RowCount, _ColCount),
	aux_rowseq(T, 1, RowCount, Rows).
aux_rowseq(Table, RowNum, RowCount, [Row|Rows]) :-
	RowNum < RowCount,
	m_table_row(Row, Table, RowNum),
	NextRow is RowNum + 1,
	aux_rowseq(Table, NextRow, RowCount, Rows).
aux_rowseq(Table, N, N, [Row]) :-
	m_table_row(Row, Table, N).

% m_table_colsequence/2,
m_table_colsequence(T, Cols) :-
	y_this_table(T0), m_this_table(T),
	y_table_dimensions(T0, _RowCount, ColCount),
	aux_colseq(T, 1, ColCount, Cols).
aux_colseq(Table, ColNum, ColCount, [Col|Cols]) :-
	ColNum < ColCount,
	m_table_column(Col, Table, ColNum),
	NextCol is ColNum + 1,
	aux_colseq(Table, NextCol, ColCount, Cols).
aux_colseq(Table, N, N, [Col]) :-
	m_table_column(Col, Table, N).

% m_row_cellsequence/2,
m_row_cellsequence(R,Cells) :-
	m_table_row(R, Table, RowNum),
	aux_rowcells(Table, RowNum, Cells).
aux_rowcells(Table, RowNum, Cells) :-
	y_this_table(T0),
	y_table_dimensions(T0, _RowCount, ColCount),
	aux2_rowcells(Table, RowNum, 1, ColCount, Cells).
aux2_rowcells(Table, RowNum, ColNum, ColCount, [Cell|Cells]) :-
	ColNum =< ColCount,
	m_table_cell(Cell, Table, RowNum, ColNum),
	NextCol is ColNum + 1,
	aux2_rowcells(Table, RowNum, NextCol, ColCount, Cells).
aux2_rowcells(_Table, _RowNum, ColNum, ColCount, []) :-
	ColNum > ColCount.

% m_col_cellsequence/2,
m_col_cellsequence(Col,Cells) :-
	m_table_column(Col, Table, ColNum),
	aux_colcells(Table, ColNum, Cells).
aux_colcells(Table, ColNum, Cells) :-
	y_this_table(T0),
	y_table_dimensions(T0, RowCount, _ColCount),
	aux2_colcells(Table, ColNum, 1, RowCount, Cells).
aux2_colcells(Table, ColNum, RowNum, RowCount, [Cell|Cells]) :-
	RowNum =< RowCount,
	m_table_cell(Cell, Table, RowNum, ColNum),
	NextRow is RowNum + 1,
	aux2_colcells(Table, ColNum, NextRow, RowCount, Cells).
aux2_colcells(_Table, _ColNum, RowNum, RowCount, []) :-
	RowNum > RowCount.

% m_cell_text/2,
m_cell_text(C, Chars) :-
	y_this_table(T0), m_this_table(T1),
	m_table_cell(C, T1, Row, Col),
	y_tableCellContent(T0, Row, Col, Chars).

obligations :-
	m_this_table(T),
	m_table_row(R1, T, 1),
	m_table_row(R2, T, 2),
	m_table_row(R3, T, 3),
	m_table_column(C1, T, 1),
	m_table_column(C2, T, 2),
	m_table_cell(C11, T, 1, 1),
	m_table_cell(C21, T, 1, 2),
	m_table_cell(C12, T, 2, 1),
	m_table_cell(C22, T, 2, 2),
	m_table_cell(C13, T, 3, 1),
	m_table_cell(C23, T, 3, 2),
	m_row(R1),
	m_row(R2),
	m_row(R3),
	m_column(C1),
	m_column(C2),
	m_headingcell(C11),
	m_headingcell(C21),
	m_datacell(C12),
	m_datacell(C22),
	m_datacell(C13),
	m_datacell(C23),
	m_table_rowsequence(T, [R1, R2, R3]),
	m_table_colsequence(T, [C1, C2]),
	m_row_cellsequence(R1, [C11, C21]),
	m_row_cellsequence(R2, [C12, C22]),
	m_row_cellsequence(R3, [C13, C23]),
	m_col_cellsequence(C1, [C11, C12, C13]),
	m_col_cellsequence(C2, [C21, C22, C23]),
	m_cell_text(C11, "Année"),
	m_cell_text(C21,"Événement"),
	m_cell_text(C12,"1969"),
	m_cell_text(C22,"Création d'ARPANET, le premier réseau national américain d'ordinateurs, par le Defense Department's Advanced Research Projects Agency (DARPA)"),
	m_cell_text(C13,"1992"),
	m_cell_text(C23,"Mise en service du World Wide Web par le CERN (Centre européen de recherche nucléaire), en Suisse").

Appendix D. The S2 →
 S1 translation
 inference rules
% m_to_y.pl: translate from M sentences to Y sentences.
% Our job here is to define rules for
% all the predicates exported from y.pl, in
% terms of the rules in m.pl.

% 2014-04-18 : YM : added y/m prefix to each (exported) predicate
% 2014-04-17 : YM : added Y goals

% First, assert the existence of appropriate individuals
% (here, only one: the table).

individuals :-
	abolish(y_this_table/1),
 gensym('y',T),
	assertz(y_this_table(T)).

% y_isTableHeader/3
% y_isTableHeader(Table, Rownum, Colnum)
y_isTableHeader(Table0,Row,Col) :-
 m_this_table(Table1),
	y_this_table(Table0),
	m_headingcell(Cell),
	table_cell_rownum(Table1, Cell, Row),
	table_cell_colnum(Table1, Cell, Col).

% y_tableCellContent/4
% y_tableCellContent(Table, Row, Column, String)
y_tableCellContent(Table0, Row, Col, String) :-
	m_this_table(Table1),
	y_this_table(Table0),
	m_cell(Cell),
	table_cell_rownum(Table1, Cell, Row),
	table_cell_colnum(Table1, Cell, Col),
	m_cell_text(Cell, String).

table_cell_rownum(Table,Cell,Rownum) :-
	m_this_table(Table),
	m_row(Row),
	m_table_rowsequence(Table,Rows),
	nth1(Rownum,Rows,Row),
	m_cell(Cell),
	m_row_cellsequence(Row,Cs),
	member(Cell,Cs).

table_cell_colnum(Table, Cell, Colnum) :-
	m_this_table(Table),
	m_column(Column),
	m_table_colsequence(Table,Columns),
	nth1(Colnum,Columns,Column),
	m_cell(Cell),
	m_col_cellsequence(Column, Cells),
	member(Cell, Cells).

obligations :-
	y_this_table(Ty),

	y_isTableHeader(Ty, 1, 1),
	y_isTableHeader(Ty, 1, 2),

	y_tableCellContent(Ty, 1, 1, "Année"),
	y_tableCellContent(Ty, 1, 2, "Événement"),

	y_tableCellContent(Ty, 2, 1, "1969"),
	y_tableCellContent(Ty, 3, 1, "1992"),

	y_tableCellContent(Ty, 2, 2, "Création d'ARPANET, le premier réseau national américain d'ordinateurs, par le Defense Department's Advanced Research Projects Agency (DARPA)"),
	y_tableCellContent(Ty, 3, 2, "Mise en service du World Wide Web par le CERN (Centre européen de recherche nucléaire), en Suisse").

References
[Bingham 1995]

 Bingham, Harvey. Exchange Table Model Document Type
 Definition
 OASIS Technical Resolution TR 9503:1995.
 https://www.oasis-open.org/specs/a503.htm

[Marcoux 2009]
 Marcoux, Yves.
 Intertextual semantics generation for structured documents:
 a complete implementation in XSLT.
 Actes du 12e Colloque international sur
 le Document Électronique (CiDE.12),
 Montréal, octobre 2009, pp. 159-170.

[Marcoux and Rizkallah 2009]
 Marcoux, Yves, and Élias Rizkallah.
 Intertextual semantics:
 A semantics for information design.
 Journal of the American Society for
 Information Science & Technology
 60.9 (2009): 1895-1906.
 doi:https://doi.org/10.1002/asi.21134.

[Severson and Bingham 1995]

 Severson, Eric, and Harvey Bingham. TABLE INTEROPERABILITY:
 Issues for the CALS Table Model OASIS Technical
 Research Paper 9501:1995.
 https://www.oasis-open.org/specs/a501.htm

[Sperberg-McQueen 2011] Sperberg-McQueen, C. M.
	 		What constitutes successful format conversion?
	 			Towards a formalization of ‘intellectual content’.
	 		International Journal of Digital Curation
	 		6.1 (2011): 153-164. doi:https://doi.org/10.2218/ijdc.v6i1.179.
	 	
[Sperberg-McQueen/Huitfeldt/Renear 2001a]
 Sperberg-McQueen, C. M., Claus Huitfeldt, and Allen Renear.
 Meaning and interpretation of markup.
 Markup Languages: Theory & Practice
 2.3 (2001): 215–234.
	 	http://www.w3.org/People/cmsmcq/2000/mim.html. doi:https://doi.org/10.1162/109966200750363599.

[Sperberg-McQueen/Huitfeldt/Renear 2001b]
 Sperberg-McQueen, C. M., Claus Huitfeldt, and Allen Renear. Practical extraction of meaning from markup. Paper
 given at ACH/ALLC 2001, New York, June 2001. (Slides at
 http://www.w3.org/People/cmsmcq/2001/achallc2001/achallc2001.slides.html)

[Sperberg-McQueen et al. 2002]
 Sperberg-McQueen, C. M., Renear, A., Huitfeldt, C., and
 Dubin, D. Skeletons in the closet: Saying what markup means. Paper
 given at ALLC/ACH, Tübingen, Germany, July 2002.
[Sperberg-McQueen et al. 2003]
 Sperberg-McQueen, C. M., David
 Dubin, Claus Huitfeldt, and Allen Renear.
 Drawing inferences
 on the basis of markup. Extreme Markup Languages
 2003.
 http://www.w3.org/People/cmsmcq/2002/EML2002Sper0518.final.html

[HTML 4.01]

 W3C. Tables HTML 4.01 Specification
 W3C Recommendation 24 December 1999.
 http://www.w3.org/TR/html401/struct/tables.html

[Welty and Ide 1999]
 Welty, Christopher, and Nancy Ide. 1999. Using
 the Right Tools: Enhancing Retrieval from Marked-up Documents.
 Computers and the Humanities 1999: 59-84.
	 	Originally delivered at TEI 10, Providence(1997). doi:https://doi.org/10.1023/A:1001800717376.

[Wetzel 2009]
 Wetzel, Linda.
 Types & tokens: On abstrct objects.
	 Cambridge, Mass.; London: MIT Press, 2009.

[Wickett 2010]

 Wickett, Karen M. Discourse situations and markup interoperability: An application of
 situation semantics to descriptive metadata.
 Presented at Balisage: The Markup Conference 2010, Montréal, Canada, August 3 - 6, 2010.
 Proceedings of Balisage: The Markup Conference 2010. Balisage Series on Markup
 	Technologies, vol. 5 (2010). doi:https://doi.org/10.4242/BalisageVol5.Wickett01.
 http://balisage.net/Proceedings/vol5/html/Wickett01/BalisageVol5-Wickett01.html

[Wrightson 2005]
 Wrightson, Ann.
 Semantics of Well Formed XML as a Human and Machine Readable Language:
 Why is some XML so hard to read?.
 Extreme Markup Languages 2005, Montréal.
 http://conferences.idealliance.org/extreme/html/2005/Wrightson01/EML2005Wrightson01.html

[Wrightson 2007]
 Wrightson, Ann.
 Is it Possible to be Simple Without being Stupid?: Exploring the Semantics of Model-driven XML.
 Extreme Markup Languages 2007, Montréal.
 http://conferences.idealliance.org/extreme/html/2007/Wrightson01/EML2007Wrightson01.html

[1] See discussion of related work, below.
[2] In these expressions, * indicates closure
 under logical inference, given some universal set of
 assumptions independent of the documents under consideration
 — what we elsewhere describe as world
 knowledge. The node ⊤ is
 the universal set of all sentences; note that ⊤ is
 self-contradictory: for every
 sentence s included in ⊤, the negation of s is also
 included.
 The node
 ⊥ is not the empty set, as might be expected,
 but the set of sentences which can be inferred
 without reference to any information in any document:
 that is, the set of tautologies, the set of sentences
 representing world knowledge, and the set of sentences
 inferrable from the tautologies together with world
 knowledge.
 And finally \ is the set difference operator:
 (S1 \ S2) contains those sentences of S1 which
 are not in S2.There is a certain notational tension in the fact
	 that lattices based on the subset/superset relation
	 are typically drawn with the ⊤ as the universal set
	 and ⊥ as the empty set (or, as in our case, a
	 set minimal in some way), while discussions of logic
	 sometimes use the symbol ⊤ to denote truth
	 and the symbol ⊥ to denote falsehood, or
	 contradiction. Perhaps we should draw our lattice
	 in the other direction, with subsets above not below
	 their supersets.

[3]
	The topmost point in any lattice of sets is taken
	by the universal set; the bottom point in such a lattice
	is taken by the empty set. The sets we are concerned
	with are all closed under logical inference, and
	the most striking characteristic of a logical
	contradiction is that it allows absolutely any
	sentence to be inferred. So any set that contains
	a contradiction automatically also contains all possible
	sentences.
[4] The processes by which
 these inferences may be enumerated has been described
 elsewhere; we won't expound it again here.
[5]
	 Since notations for symbolic logic vary widely, it may
	 be helpful to summarize here the essentials of our
	 notation.
	 	The symbols used for variables and predicate names
		follow, more or less, the rules for non-colonized names
		in XML.

	Atomic facts are written in the form
		p(a1,
		a2, ...,
		an); here p is the
		predicate symbol and
		a1 through
		an are its
		arguments.

	Sentences can be combined with the connectors
		∧ (and), ∨ (or), ⇒ (implies, if-then),
		and ⇔ (if and only if).

	Sentences of the form (∀ x)[P(x)]
		may be read For all x, P(x),
		i.e. for everything that exists, the predicate P
	 holds.

	Sentences of the form (∃ x)[P(x)]
		may be read There exists some x such that P(x),
		i.e. some thing exists (here identified with the variable
		x) of which the predicate P
	 holds.

	Sentences of the form (∃1 x)[P(x)]
		may be read There exists exactly one x such that P(x).
		This is conventionally (following Russell) taken as
		meaning (∃ x)[P(x) ∧ (∀ y)[P(y) ⇒
		y =
		x]].

	For brevity, sentences of the form
		(∃ x)[x ∈ ℕ ∧ P(x)]
		may be abbreviated
		(∃ x ∈ ℕ)[P(x)].
		And similarly for other quantifiers (∀, ∃1).
		ℕ here means the natural numbers, i.e.
		the non-negative integers.
		

	For brevity, multiple quantifiers may be written together:
		(∃ x)(∃ y)[P(x, y)]
		may be abbreviated
		(∃ x, y)[P(x, y)].
		And similarly for other quantifiers (∀, ∃1).
		

	
[6]
 It is impossible to contemplate this list without
 thinking about those who have argued in the past
 that documents would be much easier to process if
 instead of XML people would use some more semantic
 notation, like symbolic logic or RDF or some knowledge-representation
 scheme, to represent them. The only way we can imagine to
 produce an actual printed table from these logical
 sentences is to try to translate them back into
 markup, and then use conventional XML processing
 to display the table.
[7] That is,
 for simplicity we here ignore the possibility of embedded markup
 inside the table cells. Since table cells can typically include
	 more or less arbitrary paragraph- or phrase-level markup from
	 the host markup language, addressing the equivalence of cell
	 contents in the general case would involve a full account of
	 the host markup language(s), and would rather spoil the simplicity
	 of the example.
	
[8] The rule does not apply for individuals
 with well-known names, such that the identifier used for
 the individual is not arbitrarily chosen by the creator of
 the set S. The natural numbers (for example) and the
 set of strings of Unicode characters do not need such
 uniquely identifying predicates.
[9] Before the
 character set enthusiasts among our readership ask, we
 assume that all strings have been normalized using some
 appropriate form of Unicode normalization, so that
 Année and Événement are always spelled the
 same way. The more or less analogous issues of whitespace
 normalization, by contrast, we simply ignore; they would
 take us too far afield.
[10]
 The notation becomes lighterweight when we allow functions
 in our logical system and require not a uniquely identifying
 predicate for each individual but a function call which
 returns it. Then the challenge can be expressed
 table_dimensions(this_table(), 3, 2).
 This shorter form is often helpful in practice, but imposes
 a heavier burden on the prose exposition, so we omit further
 mention of it here.
[11] One
	 example of this common approach is the account of
	 sequences on pages 128ff of [Wetzel 2009], which in general we follow (except that
	 we number members of a sequence from one, not zero, to
	 minimize confusion for XPath users).
[12] It must be admitted that the
	 sentences enumerated in the Prolog are not quite identical
	 to those given in the predicate-calculus versions given
	 above, owing to changes during the preparation of the paper
	 in our understanding of the best way to formulate the
	 logical descriptions of tables. Of course, some changes
	 of detail are required by the nature of Prolog.
	
[13] In addition to the versions given in the appendices, these
	 files are available on the Web at the project's web site:
	 Set S1,
	 Set S2,
	 The S1 → S2 translation inference rules,
	 The S2 → S1 translation inference rules.	
	

Balisage: The Markup Conference

Document lattices:
Equivalence, compatibility, and contradiction in document markup
C. M. Sperberg-McQueen
Founder and principal
Black Mesa Technologies LLC

C. M. Sperberg-McQueen is the founder and
	principal of Black Mesa Technologies, a consultancy
	specializing in helping memory institutions improve
	the long term preservation of and access to the
	information for which they are responsible.
He served as editor in chief of the TEI
	Guidelines from 1988 to 2000, and has also served
	as co-editor of the World Wide Web Consortium's
	XML 1.0 and XML Schema 1.1
	specifications.
	

Yves Marcoux Yves Marcoux
Associate Professor (Professeur agrégé)
École de bibliothéconomie et des
	sciences de l'information, Université de Montréal

Yves Marcoux has been a faculty member at EBSI,
	University of Montréal, since 1991.
	He is mainly involved in teaching, research, standardization,
	and international cooperation activities
	in the field of document informatics.
	Prior to his appointment at EBSI,
	Dr. Marcoux worked for 10 years
	in systems maintenance and development,
	in Canada, the U.S., and Europe.
	He obtained his Ph.D. in theoretical computer science
	from Université de Montréal in 1991.
	His main research interests are intertextual semantics,
	the design of communication, markup languages
	and digital humanities.

Claus Huitfeldt
Associate Professor (førsteamanuensis)
Department of Philosophy, University of Bergen

Claus Huitfeldt is Associate Professor at the Department
	of Philosophy of the University of Bergen, Norway. He was
	founding Director (1990-2000) of the Wittgenstein Archives at
	the University of Bergen, for which he developed the text
	encoding system MECS as well as the editorial methods for the
	publication of Wittgenstein's Nachlass - The Bergen Electronic
	Edition (Oxford University Press, 2000).

Balisage: The Markup Conference

content/images/Sperberg-McQueen01-008.png
Année Evénement

1969 |Création d'ARPANET, le premier réseau
national américain d'ordinateurs, par le
Defense Department's Advanced
Research Projects Agency (DARPA)

1992 |Mise en service du World Wide Web par

le CERN (Centre européen de recherche
nucléaire), en Suisse

content/images/Sperberg-McQueen01-007.png
g
b0

content/images/Sperberg-McQueen01-006.png
g
§oa

content/images/Sperberg-McQueen01-005.png

content/images/Sperberg-McQueen01-004.png
1
= *(*S1*52)
= *(+$2*S1)

content/images/Sperberg-McQueen01-003.png

content/images/Sperberg-McQueen01-002.png

content/images/Sperberg-McQueen01-001.png

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

