[image: Balisage logo]Balisage: The Markup Conference

Analysing XSLT Streamability
John Lumley
jωL Research

Saxonica

<john@jwlresearch.com>

Balisage: The Markup Conference 2014
August 5 - 8, 2014

Copyright © 2014 jωL Research Ltd. All rights reserved.

How to cite this paper
Lumley, John. "Analysing XSLT Streamability." Presented at: Balisage: The Markup Conference 2014, Washington, DC, August 5 - 8, 2014. In Proceedings of Balisage: The Markup Conference 2014.
 Balisage Series on Markup Technologies vol. 13 (2014). https://doi.org/10.4242/BalisageVol13.Lumley01.

Abstract
Determining streamability of constructs in XSLT3.0 involves application of a set of
 rules that appear to be complex. A tool that analyses these rules on a given stylesheet has
 been developed to help developers understand why sections which were designed with streaming
 might fail the required conditions. This paper discusses the structure of this analysis
 tool. The development was funded by Saxonica.

Balisage: The Markup Conference

 Analysing XSLT Streamability

 Table of Contents

 	Title Page

 	Introduction
 	Major points

 	Streaming in XSLT3.0
 	Streamability rules

 	A Quick Tour

 	Basic Design
 	Determining streaming properties

 	Displaying the results

 	Delivering the service

 	Limitations and assumptions

 	Expanding XPath Expressions
 	Inclusions

 	Applying Streamability Rules
 	Preprocessing and rewriting

 	Declarative tables
 	Type model

 	Context focus and type

 	Resource references
 	Variables

 	Functions

 	Applied templates

 	Assessing sweep and posture
 	Usage

 	General Streamability Rules

 	Evaluating expressions and instructions

 	Evaluating built-in functions

 	Determining guaranteed streamabilty

 	Interactive Display
 	Serialising to HTML

 	Interactivity

 	Conclusion
 	Doing what the compiler (usually) doesn't

 	Controlling the volume of displayed data

 	Who & how best to process XSLT?

 	A syntactically coherent specification

 	Problems

 	Acknowledgements

 	Quo vadis?

 	About the Author

 Analysing XSLT Streamability

Introduction
XSLT has gradually developed over the past decade from a 'browser-based' document
 transformer/generator into a fully-fledged, industrial scale, functional processing tool,
 aimed at XML documents. As such its 3.0 version has introduced support for
 streaming processing of very large documents. To do this effectively, the
 XSLT specification has had to outline a very extensive, very detailed, and ostensibly very
 complex, set of rules defining the conditions under which a given program can be guaranteed to
 be processable in a streaming manner.
This paper describes an interactive static analysis and display tool that can be used to
 examine the evaluation of these rules on (fragments of) a given XSLT stylesheet, so developers
 of processes intended for streaming may understand better whether their programs can indeed be
 processed in a streaming fashion, and if not, perhaps why not. This tool also includes active
 linking to appropriate sections of the specification to further increase comprehension.
As the tool was being developed while these rules were being developed, proven and changed
 by the XSLT Working Group, it was important that the tool itself could be flexible to changes
 in these rules. [See section “Type model” for a very good case of this happening.]
 Accordingly, the tool makes significant use of declarative descriptions of sections of the
 rules rather than direct code, some defined directly within the tool, some as external data
 files and some extracted from the specification itself, or other parts of the specification
 definitional framework.
This paper is organised as follows:
	The model for streaming in XSLT 3.0 is presented and the specification-defined rules
 are discussed briefly.

	The tool is illustrated in action on a simple example taken from the XSLT
 specification.

	The basic overall design is discussed: analysing the streaming properties, displaying
 the results and delivering the tool as a web service.

	XPath expressions embedded in XSLT programs need to be expanded into their parse trees
 for analysis – the model for doing this is detailed.

	The model for evaluating the streamability rules is discussed in some detail, with all
 the streaming properties being attached to the stylesheet tree as attributive
 properties.

	Interactive display of the results involves serialisation of the annotated result tree
 as an HTML page, with styling through CSS and interaction through a Saxon-CE supported
 XSLT2.0 stylesheet.

	A final conclusion presents lessons for the development of this type of analysis tool
 within the XML world.

The entirety of the tool is written in XSLT3.0 and of course is about manipulating
 XSLT3.0. Thus a reasonable knowledge of XSLT3.0 (or at least 2.0) is assumed on the part of
 the reader.
Note
This paper discusses interpreting the rules for guaranteed streamability within XSLT,
 but through the imperfect eyes of the author and the potentially fallible medium of a
 program that ostensibly follows those rules. In particular the samples and examples in the
 paper date mainly from the Working Draft specification of December 2013 and several changes
 have occurred since, especially in a new static type model. The definitive guide
 is the specification itself, which is, and always will be, the ultimate
 arbiter. The author assumes no responsibility for errors (positive or negative),
 omissions and shortcomings. If in doubt read the 20,000 words yourself!

Major points
The development of this tool is based on three major points, which can be relevant to
 any similar system that needs to analyse properties of an XSLT program:
	The entire coding can be, and perhaps is best, written in XSLT3.0

	The best data structure to hold a lot of varied information about an XSLT program is
 the tree that defines the program itself.

	Declarative structures (tables, trees, even parts of the specification) can be used
 effectively to either i) be interpreted to evaluate effect, or even ii) compiled to
 program sections, or an intermediate computational form such as maps.

Streaming in XSLT3.0
One of the design goals in updating XSLT from version 2.0 to version 3.0 was support for
 processing very large documents – XML documents whose complete tree
 descriptions could not fit in memory, and for which processing or generation of output would
 have to proceed before all input had been read. The full details of the design chosen can be
 found in the Streaming and
 Streamability sections
 of the XSLT3.0 specification. Two papers on streaming presented at XML Prague 2014 (Braaksma1, Kay) give much more detail.
The basic approach chosen is to declare that a given document should be processed in a
 streaming manner by using the <xsl:stream
 href="doc"> instruction which
 processes the (XML) data of the given document according to the instructions supplied as
 children of the xsl:stream and returns the result. The essential issue is whether
 the instructions requested as a set can process the document without having to either i)
 collect and store the whole document to produce the result or ii)
 back-up to parts of the document before the
 current context node.
The model used is to examine two contextual properties of the instructions:
 posture and sweep, and determine whether the
 sequence constructor (the sequence of contained instructions) of the xsl:stream
 has a grounded posture. If so then the processing of the xsl:stream
 is guaranteed streamable and a compliant streaming XSLT3.0 processor will
 process the document in a streaming manner. Such analysis is completely static and can be
 performed either at compile time (which is what a compiler will need to do) or in a separate
 phase of static analysis and display, which this paper is about.
Partially quoting Kay, these two properties are functions of the
 construct itself (an XSL instruction, an XPath expression term or a function call), the
 context posture (i.e. the posture generally of the 'parent') and sometimes the data type. They
 have the following meanings:
The sweep of a construct
The sweep indicates how much of the input document is needed to
 evaluate the construct. The values are
	Motionless: the construct either doesn’t look at the input
 document at all, or it only needs to look at the place where the input document is
 currently positioned.

	Consuming: the construct needs to read everything between the
 current start tag and the corresponding end tag

	Free-ranging: the construct potentially needs to read outside
 the slice of the document represented by the current element and its ancestors.

The posture of a construct
The posture is concerned with determining whether an expression
 returns nodes from the streamed input document, and if so, where these nodes come from.
 There are five values:
	Grounded: this means that the expression doesn't return nodes
 from the streamed input. It either returns atomic values (or function items), or it
 returns nodes from non-streamed documents only.

	Striding: this means that the expression returns a set of nodes
 from the streamed input document, in document order, and that none of these nodes will
 contain another node in the result (none is an ancestor or descendant of
 another).

	Crawling: again, the expression returns a set of nodes from the
 streamed input document, in document order, but this time some of the nodes may be
 ancestors or descendants of others.

	Climbing: The specification assumes that when an input document
 is streamed, a stack of information is retained containing details of the names and
 attributes of all ancestor elements of the element at which the stream is currently
 positioned. Any expression that accesses ancestor nodes or their attributes from this
 stack has a posture of climbing.

	Roaming : This indicates that an expression navigates off to
 parts of the document that aren't accessible when streaming, such as preceding or
 following siblings.

Streamability rules
The specification provides a very detailed and very large set of
 rules for determining these properties for a given construct in a given situation within an
 XSLT stylesheet. (To give a sense of the size, the streamability rules take approximately
 20,000 words of the 160,000 in the specification's main body, and the section on streaming
 itself another 6000 words.) The detail is necessary to ensure that simple constructs, which
 at first glance should be streamable, actually are – a highly conservative simpler set of
 rules would exclude many common cases.
Note
Whilst these rules are intended to be complete, Braaksma2, presented
 at XML London , gives a more informal set of guidelines, intended to support designers
 creating or refactoring their code for streaming.

These rules split into four general categories: i) a set of General
 Streamability Rules (usually abbreviated to GSR), ii) a set of specific rules
 for every XSL instruction, iii) rules for each XPath expression term and iv) rules for all
 built-in XPath functions. Examples of these rules will be given in later sections.
To analyse the streamability of a given xsl:stream instruction it is
 (usually) necessary to recursively apply these rules to every construct
 contained within (every XSL instruction, every XPath term), and in addition any 'external'
 resources, such as xsl:template or xsl:function (and their
 definitions) that may be invoked.[1]
It is anticipated that developers who are designing streamable transformations, will
 acquire a sense of the spirit of these rules, but to start may have to work through the
 rules in detail on a given problem. Whilst these calculations can be performed 'by hand', it
 can be somewhat tortuous, and slow, involving very deep recursions and much scrolling back
 and forth through the specification[2].
To assist in such early study of streamability, the author has built a tool, funded by
 Saxonica, to perform such analysis on a given stylesheet and display the results in a form
 that the intermediate properties and the relevant rules can be explored interactively. The
 rest of this paper is about the structure of this tool.
Note
The tool is at the time of writing available at Saxonica Community: Streaming
 Analysis which is intended only to analyse small single stylesheets (no support
 for inclusion), or some of the specification and W3C test-case examples. Saxonica Ltd
 reserves the right to withdraw this service without notice and makes no guarantees as to
 the veracity of the results.

A Quick Tour
The tool is controlled by and presents its results as an XHTML web page, which is usually
 connected to a server providing the analysis operation. It's best to start off with a quick
 picture of what the tool provides, operating in this case on one of the examples from the
 specification:
Figure 1: Sample stylesheet
[image:]

A stylesheet can be uploaded to the analysis tool, or as in this case, a pre-loaded
 example taken from the specification is selected. A serialised version of the source is
 displayed, with styling, line-numbering and fold/unfold controls. The
 xsl:template and xsl:stream have green backgrounds as the analysis
 has concluded that they are guaranteed streamable – if this were not the
 case they would have red backgrounds. The implicit sequence constructors have been displayed
 explicitly. Many of the elements of the serialisation are sensitive to mouse-click...
Figure 2: XPath expressions revealed
[image:]

By clicking on the two XPath-containing attributes (@match and
 @select of lines 2 and 5 respectively) we reveal the full trees representing
 the parsing of these expressions, whose properties will become crucial in determining
 streamability. By selecting amongst the check-boxes we can then show some of the streaming
 properties that have been calculated:
Figure 3: Streaming properties displayed
[image:]

Here we have chosen to display both the role of each of the XPath
 expressions (whose importance will be explained later), and the calculated static
 type and posture for each element in both XPath expression
 and XSLT instruction constructs. These are displayed in distinctly shortened and styled forms,
 as if they were attributive properties of each element.
Figure 4: Applied rules identified
[image:]

Not only is it useful to display the calculated property, but it is also exceptionally
 helpful to understand why it has that value. In this case we have displayed the sections of
 the General Streamability Rules that were triggered, if those rules were used
 on that particular construct. If we click on one of these decorations a subsidiary browser
 window or tab shows the first section of the rules which were applied:.
Figure 5: Applicable general streamability rules
[image:]

Here case 1.b.iii.A.II was appropriate (the usage wasn't
 modified). Other relevant portions of the specification can be displayed in a similar manner –
 clicking on the AxisStep element brings up the specification-defined process for
 determination of the streamability of such an expression:
Figure 6: Relevant specification sections linked
[image:]

The rest of this paper looks at the details of the design of the tools to achieve these
 effects.

Basic Design
The tool splits broadly into three sections: i) determining the appropriate streaming
 properties for all nodes on a stylesheet 'tree', ii) preparing an interactive display of the
 stylesheet where these properties can be examined and iii) combining these in a web-server
 such that stylesheets can be uploaded and interactive result web pages returned. With the
 exception of the web-server package deployment, the analysis tool is built entirely in
 XSLT3.0, generating an interactive display result which is a combination of (X)HTML, CSS and
 XSLT2.0 delivered using Saxon-CE.
Determining streaming properties
To analyse the streaming properties for a given stylesheet, we at least need to
 recursively descend the stylesheet tree from any xsl:stream instructions, or
 xsl:template nodes that can be invoked in a streamable mode, and calculate
 these properties based on a contextual state, the specific construct and most likely the
 properties of its children, hence the deep recursion. Not only does this process have to
 involve XSLT instructions, it must also involve XPath expressions contained within various
 attributes of those instructions, as they are the mechanisms whereby XSLT selects data nodes
 of interest, and their behaviour in 'moving around' the data tree is critical to
 streamability. In effect, for purposes of streamability, the XPath expressions (which can be
 described from their parse trees) are tree-extensions of the main stylesheet, albeit
 technically anchored through attributes rather than elemental children.
This process starts by producing a modified version of the XSLT tree, in which
 additional sub-trees describe these XPath expressions and which has explicit sequence
 constructors. For example the template:
Figure 7: Sample XSLT
<xsl:template match="/">
 <xsl:stream href="book.xml">
 <xsl:for-each select="book">
 <xsl:for-each select="chapter">
 <xsl:result-document href="chapter{position()}.xml">
 <xsl:copy-of select="."/>
 </xsl:result-document>
 </xsl:for-each>
 </xsl:for-each>
 </xsl:stream>
</xsl:template>

is transformed into another tree with additional children and attributes:
Figure 8: Transformed XSLT
<xsl:template match="/" l:no="2" xmlns:xp="http://saxonica.com/xpathParse" xmlns:s="StreamAnalysis">
 <xp:AxisStep axis="self" nodeTest="document-node()" s:role="match"/>
 <s:sequence-constructor>
 <xsl:stream href="book.xml" l:no="3">
 <s:sequence-constructor>
 <xsl:for-each select="book" l:no="4">
 <xp:AxisStep axis="child" nodeTest="element(book)" s:role="select"/>
 <s:sequence-constructor>
 <xsl:for-each select="chapter" l:no="5">
 <xp:AxisStep axis="child" nodeTest="element(chapter)" s:role="select"/>
 <s:sequence-constructor>
 <xsl:result-document href="chapter{position()}.xml" l:no="6">
 <xp:FunctionCall name="position" s:role="AVT.href.1"/>
 <s:sequence-constructor>
 <xsl:copy-of select="." l:no="7">
 <xp:ContextItemExpr s:role="select"/>
 </xsl:copy-of>
 </s:sequence-constructor>
 </xsl:result-document>
 </s:sequence-constructor>
 </xsl:for-each>
 </s:sequence-constructor>
 </xsl:for-each>
 </s:sequence-constructor>
 </xsl:stream>
 </s:sequence-constructor>
</xsl:template>

The sequence constructors have been made explicit as s:sequence-constructor children[3]. If, for example, the xsl:for-each select="book" had contained an
 xsl:sort directive, this would not be contained within
 the sequence constructor pseudo-child. The XPath expressions contained within attributes
 have been placed as children in the xp: namespace, each having an attribute
 (@s:role) describing the role it takes within the containing instruction,
 using a simple naming scheme for identifying expressions contained within attribute value
 templates. (The @l:no attributes have been added to denote original source line
 numbers, for use in eventual display.)
With the expanded XSLT tree, a top-down analysis of the streamability is performed, by
 evaluating the extensive rules outlined in the specification over tree nodes and their
 children. The results are returned as a copy of the input tree decorated with a series of
 attributes describing the streaming properties of each node. The inner
 xsl:result-document sub-tree of our example becomes:
Figure 9: Analysed XSLT
<xsl:result-document id="d7794e12" href="chapter{position()}.xml" l:no="6"
 s:contextItemType="element(chapter)" s:staticType="item()*" s:usage="transmission"
 s:contextPosture="striding" s:href="#streamability-xsl-result-document" s:posture="grounded"
 s:sweep="consuming" s:general="2.d.ii">
 <xp:FunctionCall id="d7794e13" name="position" s:role="AVT.href.1"
 s:contextItemType="element(chapter)" s:staticType="xs:integer" s:contextPosture="striding"
 s:href="#streamability-fn-position" s:posture="grounded" s:sweep="motionless" s:general="2.a"
 s:sweepOriginal="motionless" s:generalOperand="1.b.ii"/>
 <s:sequence-constructor id="d7794e14" s:contextItemType="element(chapter)"
 s:staticType="element(chapter)" s:usage="absorption" s:href="#classifying-sequence-constructors"
 s:contextPosture="striding" s:posture="grounded" s:sweep="consuming" s:sweepOriginal="consuming"
 s:usageOriginal="absorption" s:generalOperand="1.b.ii,1.c.i" s:potentialConsumer="">
 <xsl:copy-of id="d7794e15" select="." l:no="7" s:contextItemType="element(chapter)"
 s:staticType="element(chapter)" s:usage="transmission" s:contextPosture="striding"
 s:href="#streamability-xsl-copy-of" s:posture="grounded" s:sweep="consuming"
 s:general="2.d.ii">
 <xp:ContextItemExpr id="d7794e16" s:role="select" s:contextItemType="element(chapter)"
 s:staticType="element(chapter)" s:usage="absorption"
 s:href="#streamability-of-context-item-expression" s:contextPosture="striding"
 s:posture="striding" s:sweep="consuming" s:sweepOriginal="motionless"
 s:usageOriginal="absorption" s:generalOperand="1.b.iii.A.II,1.b.iii.B.2.1,1.c.i"
 s:potentialConsumer=""/>
 </xsl:copy-of>
 </s:sequence-constructor>
</xsl:result-document>

(The details of these annotations will be described later.)

Displaying the results
At this point, technically the analysis of the streamability is complete – examining
 these streaming properties can assess whether an xsl:stream instruction is
 indeed guaranteed streamable. However to be useful these results should
 be displayed in a meaningful way, and with some interaction to restrict the almost certain
 information overload. The basic approach is to convert the result tree into a serialised
 HTML pre, which is styled through CSS, and where the visibility of various
 sections can be controlled interactively, in this case using Saxon-CE transforms attached to
 callbacks. The xp:FunctionCall[@name='position'] shown highlighted in Figure 9 is displayed as a line:
Figure 10: Displayed analysed expression
[image:]

which is actually represented as a structure within pre as[4]:
Figure 11: Serialised display of analysed XSLT

 FunctionCall

 name="position"

 r: AVT.href.1

 ct: document-node()

 t: xs:integer

 ...

 p: grounded

 ...

 rule.op:1.b.ii

 >

The stream span contains all the streaming properties, each being styled
 and differentiated via CSS through the @class attribute. Interaction through
 the tool check-boxes toggles the @style between display:none and
 display:inline, thus revealing or concealing the properties. The
 generalOperand class contains a hyperlink to the section of the General
 Streamability Rules that was used when treating this construct as an operand of its parent.
 How these decorations are added is described later.

Delivering the service
The analysis tool is an XSLT transform that delivers a modified XSLT tree. The display
 generator is another transform that takes that tree and delivers an (interactive) HTML page.
 These could be combined into a single package, but we have chosen to implement this analysis
 as a web service, permitting stylesheets to be uploaded for examination. To do this we've
 used the Servlex webapp package tool . The general architecture of the
 delivery platform is:
Figure 12: Streamability analysis as a web service
[image:]

Apart from delivery of resource classes (e.g. *.html,*.css and
 *.js, which includes the Saxon-CE 'compiler'...), three principal messages
 are processed by the web package:
	analyze.html
	Executes an XSLT transform that generates the main tool page, including collecting
 all the preloaded examples and forming drop-down selectors to choose them.

	analyzeStream
	Is accompanied by the upload of the source stylesheet[5]which is processed for analysis followed by serialisation of the result
 into an interactive web-page, which displays in a frame in the main tool.

	XSLT3.0-Spec
	Generates an annotated version of the current W3C specification, mostly in terms
 of labelling all the cases in the General Streamability Rules so they
 can linked to by fragment identifiers (e.g. #gsr-1.b.iii.A.II). The
 specification is displayed in a separate tab or window for ease of use. (The annotated
 specification should be stored in the Servlex web cache, so this regeneration should
 be infrequent.)

 This delivery mechanism will not be described further in this paper, save that we found
 Servlex to be an excellent vehicle for constructing such a service.

Limitations and assumptions
The tool assumes of course that the stylesheets are well formed XML, and syntactically
 correct XSLT, or more correctly only analyses them on the basis that they are syntactically
 correct. Little error checking is performed.

Expanding XPath Expressions
To analyse XSLT streamability it is necessary to examine from where in the XML input tree
 data is being collected by stylesheet instructions. These operations are obviously described
 as XPath expressions, which can be highly compound in nature, such as mixing searches along
 different axes (child, ancestor, following etc.), predicates and a number of built-in
 functions. Analysis of streamability has to examine the structures of these expressions - the
 rules are described with reference to the EBNF grammar for XPath, defined in XPath 3.0 Grammar. Thus for our
 purposes it is most convenient to generate parse result trees corresponding to the XPath
 expressions contained in attribute values (e.g. @select) or attribute value
 templates (e.g. href="example{position()}.xml").
As the analysis is being performed in an XSLT environment, such parsing can be performed
 most conveniently with a parser itself written in XSLT. Luckily the REx
 parser generator can be configured to generate parsers in several languages, including XSLT,
 which can both test against a grammar and built a result XML parse tree. REx can indeed
 generate a working XPath 3.0 parser to run in XSLT. The nub of the expansion is shown in Figure 13 :
Figure 13: Parsing XPath expressions
<xsl:include href="../rex/xpath3.0-parse.xslt"/>
...
<xsl:template match="@select|@test|@match|@group-adjacent" mode="operand">
 <xsl:variable name="role" select="name(.)"/>
 <xsl:for-each select="xp:parse.xpath(.)">
 <xsl:copy>
 <xsl:sequence select="@*"/>
 <xsl:attribute name="s:role" select="$role"/>
 <xsl:sequence select="*|text()"/>
 </xsl:copy>
 </xsl:for-each>
</xsl:template>

xpath3.0-parse.xslt links to the transform that has been generated by REx.
 xp:parse.xpath() performs some tactical rewriting of an XPath string (see section “Preprocessing and rewriting”), calls the REx-generated parser and does some post-processing
 (namespace remapping, collapsing of singleton leaf sub-trees, etc...) before returning the
 completed parse-tree. The operand mode generates a child element containing that
 XPath parse tree, identified with the role of the expression (in this case the attribute name)
 - this role will be used in later operations to identify different instruction-specific
 treatments as far as effect on streaming is concerned. These operands trees are generated from
 a main template shown in Figure 14, where not only are common XPath
 carriers (e.g. @select) processed, but also attributes that are identified as
 containing attribute value templates, using the predicate test function
 xp:is.AVT().
Figure 14: Expanding constructs
<xsl:template match="xsl:*" mode="xp:P">
 <xsl:copy>
 <xsl:apply-templates select="@*" mode="#current"/>
 <xsl:call-template name="line-number"/>
 <xsl:apply-templates select="." mode="xp:implict-select"/>
 <xsl:apply-templates select="@select,@test,@match,@group-adjacent" mode="operand"/>
 <xsl:apply-templates select="@*[xp:is.AVT(.)]" mode="operand"/>
 <xsl:for-each-group select="*|text()[matches(.,'\S+')]"
 group-adjacent="xp:is.sequence-constructor(.)">
 <xsl:choose>
 <xsl:when test="current-grouping-key()">
 <s:sequence-constructor>
 <xsl:apply-templates select="current-group()" mode="#current"/>
 </s:sequence-constructor>
 </xsl:when>
 <xsl:otherwise>
 <xsl:apply-templates select="current-group()" mode="#current"/>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:for-each-group>
 </xsl:copy>
</xsl:template>

As well as generating the operand trees, this template also:
	processes instructions that have an implicit selection role, such as
 xsl:apply-templates[empty(@select)] or xsl:next-match to add
 the implicit context XPath expression tree,

	assigns a line-number-recording attribute, and

	collects all the contiguous elements and text nodes of the sequence constructor(s)
 together under s:sequence-constructor elements. The function
 xp:is.sequence-constructor() provides a suitable test – elements which are
 configurations or parameters of the instruction, such as xsl:param or
 xsl:sort, return false().

Inclusions
Stylesheets often include resources from other stylesheets, using
 xsl:include and xsl:import redirection instructions. For
 purposes of streamability analysis they can both be treated similarly (implicit match
 priorities are immaterial) and their document bodies are expanded as children of the
 instruction. As far as this analysis is concerned, templates, functions and variable
 directly within such inclusions are considered top-level to the outer
 stylesheet. (The web-delivered service cannot process relative inclusions from uploaded
 stylesheets.)

Applying Streamability Rules
With the complete expanded stylesheet we have all the necessary program information to
 commence the streamability analysis. Whilst the rules are written recursively
 top-down, the author found it helpful to split the process into three
 sequential phases during which the tree is modified: required functionally equivalent rewrites
 of some expressions to ensure possible streamability, determination of context focus and
 construct type, followed by assessment of posture and sweep.
Preprocessing and rewriting
There are a number of (equivalence) rewrites defined in the specification that are
 required to either i) generate a canonical form or ii) make common constructs streamable.
 Some of these are most conveniently applied as textual rewrites to the original string (e.g.
 // -> /descendant-or-self::node()/). Others are best applied as
 rewrites on the tree, such as Figure 15 where the treat as
 expression, forcing document-node() type, has been parsed to a tree.
Figure 15: Root node rewriting
<xsl:template match="PathExpr[Token[1]='/'][count(*) gt 1]">
 <RelativePathExpr>
 <xsl:apply-templates select="
 xp:parse.xPath('root(self::node()) treat as document-node()'),
 tail(*)"/>
 </RelativePathExpr>
</xsl:template>

Declarative tables
While the tree modifications described in this section are actually carried out by sets
 of XSLT templates and functions, as much use as possible has been made of declarative tables
 that define appropriate properties, that the XSLT can interpret to process sections
 correctly. Using such tables increases flexibility and coherence extensively, collecting all
 relevant properties together in one place and often making some changes merely altering the
 value of an attribute.
Figure 16: Instruction descriptions
<xsltConstructs>
 <X:for-each focus-changing="controlling controlled"
 f-c="select:controlling sequence:controlled"/>
 <X:iterate focus-changing="controlling controlled"/>
 <X:result-document staticType="item()*"/>
 <X:stream focus-changing="controlled" context-posture="striding"/>
 <X:template focus-changing="controlling controlled" href="#streamable-templates"/>
 <X:text staticType="text()"/>
 <X:value-of staticType="text()"/>
 <X:when href="#streamability-xsl-choose"/>
 <X:otherwise href="#streamability-xsl-choose"/>
 <s:sequence-constructor href="#classifying-sequence-constructors"/>
</xsltConstructs>

These descriptions for some XSLT instructions describe i) if they are focus-changing and
 if so, which of their operands control and are controlled by the change, using an order or
 simple proforma, ii) a static type for the instruction, if it is independent of that
 determined from context or children and iii) a hyperlink to the relevant streamability
 specification section if it is not in the canonical form (e.g.
 #streambility-of-xsl-copy). This description is used to produce a series of
 maps relating instruction name to property such as $spec-ref(),
 $staticTypes() that are used within XSLT processes described later.
Figure 17: Expression descriptions
<expressionConstructs href="#classifying-expressions">
 <xp:Expr usage="T*"/>
 <xp:ForExpr usage="N T" href="#streamability-of-for-expressions"/>
 <xp:SimpleForClause/>
 <xp:LetExpr usage="N T"/>
 <xp:QuantifiedExpr staticType="xs:boolean" href="#streamability-of-quantified-expressions"/>
 <xp:IfExpr usage="if:I then:T else:T" href="#streamability-of-if-expressions"
 choice-group="then else"/>
 <xp:OrExpr staticType="xs:boolean" usage="I I"/>
 <xp:AndExpr staticType="xs:boolean" usage="I I"/>
 <xp:ComparisonExpr staticType="xs:boolean" usage="A A"/>
 ...
 <xp:Root staticType="document-node()"/>
</expressionConstructs>

For XPath expression constructs we also describe the usage using a
 proforma derived from a table (Classifying Expressions) within the specification [6], and membership of a choice group of some of the operands.
 For example, the IfExpr usage is defined to be that the operand having the
 if role has an inspection usage, and both the
 then and else operands have transmission usage, as
 well defining that the then and else operands constitute a
 choice-group (which effectively means that only one of
 them, not both, must read the input stream).
Type model
For some constructs the static type is needed to assess
 streamability properties. [The most common case is assessing the value of a node which is
 known to be childless, such as an attribute or a text node - in this case no subtree has
 to be traversed to derive the complete string value.]
Initially the analysis model used a type hierarchy, which for streaming could be
 somewhat coarser than can be strictly assessed - all XSL instructions were assessed as
 having static type item()*, whereas a finer granularity was available, but
 not needed, for the streamability analysis. The type hierarchy was defined for the
 analysis tool by a tree:
Figure 18: Type hierarchy
<item>
 <node>
 <document-node/>
 <element/>
 <attribute childless="true"/>
 <text childless="true"/>
 <comment childless="true"/>
 <processing-instruction childless="true"/>
 <namespace childless="true"/>
 </node>
 <xs:anyAtomicType>
 <xs:boolean/>
 <xs:string/>
 <xs:anyURI/>
 <xs:QName/>
 ...
 <xs:gMonthDay/>
 <xs:gDay/>
 <xs:duration>
 <xs:dayTimeDuration/>
 <xs:yearMonthDuration/>
 </xs:duration>
 <xs:double/>
 <xs:float/>
 <xs:decimal>
 <xs:integer/>
 </xs:decimal>
 </xs:anyAtomicType>
 <!-- Function and map types -->
</item>

The most common operation required using this type hierarchy was to assess a composite
 type for a sequence of operands, calculated as the narrowest type in the type hierarchy
 which is the type or super-type of all members of the sequence. This was most readily
 assessed using a precomputed map of maps
 xp:least-common-supertypes($type0)($type1) derived from this tree of types.
Subsequent detailed study (see note in the next section) revealed that a more general
 model involving union of types was needed. Thus between the first submission of this paper
 and the final publication the type model migrated to a U-type where
 types were classified as a partial union of 28 fundamental types (7 nodal, e.g.
 element(); 19 primitive atomic, e.g. xs:string;
 function() and xs:untypedAtomic) A sequence is an instance of
 a U-type U if every item in the sequence is an instance of one of the
 fundamental types in U, considered as a set. For example, the
 sequence (23, "Paris") is an instance of the U-type U{xs:string,
 xs:decimal, xs:date} because both items in the sequence belong to item types in
 this U-type. Shorthand forms for common groupings were defined, e.g.
 U{N} denotes the union of all the node types.
Luckily the tool could migrate relatively smoothly, by representing a U-type as an
 order-insensitive sequence of the constituent fundamental types as xs:string*
 (and stored as an attribute value as a whitespace-separated string, that can easily be
 tokenised back to a sequence), with a small number of additional helper maps and
 functions, such as $uTypes('N') and xp:union-type($types as
 xs:string*). Some of the special cases for expressions, instructions and
 functions had to be altered to use these type-determination functions rather than those
 using the type-hierarchy tree.

Context focus and type
Whilst posture and sweep are the main
 properties to be analysed, two other subsidiary properties need to be assessed:
 static type and control focus. Whilst this could
 be achieved contemporary with the posture/sweep analysis, it is somewhat clearer, and
 certainly easier to debug, to carry this out as a recursive descent/ascent pre-pass.
Certain instructions and expressions change the context focus for evaluation of their
 children. For a simple example, xsl:for-each obviously can (and almost
 invariably does) change the sequence of context nodes for evaluation of its descendant
 instructions. An xsl:for-each is said to be focus
 changing, its @select expression (which of course is represented as
 an expression tree identified @s:role="select") is said to be
 focus-controlling and its sequence constructor is
 focus-controlled. These are identified on the tree through attributes
 s:focus="change|controlling|controlled" respectively.
During this pass it is also possibly to analyse static type, propagating a
 context item type downwards (as a tunneled variable), changing it
 through focus-changing instructions, where generally the context item type for the
 controlled children is that of the assessed static type of the controlling (child) operand.
 For example the sequence constructor of xsl:for-each select="amount" will have
 a context item type of element(amount)* as that is the assessed static type of
 the XPath expression tree. The context type is recorded for subsequent display as a
 @s:contextType attribute.
When leaves are reached, either it defines its own type (e.g. FunctionCall
 name="position" has type xs:integer, which can be inferred from the
 function signature; StringLiteral value="foo" has type xs:string)
 or its static type is the context type (e.g. ContextItemExpr, aka '.'). On the
 way back either there are definitive rules provided (e.g. QuantifiedExpr has
 type xs:boolean and PostfixExpr A[B] has a type which is the type
 of A), or it has a sequence composite type, or appropriate union type
 calculated as described above.
For expressions the specification gives a table of type determination
 formulae (Determining the Static
 Type of a Construct). Whilst the static types defined (e.g. AndExpr
 has type xs:boolean) are determined from entries in the declarative table of
 Figure 17 , currently most of these cases are defined by
 pattern-matching templates.
Note
The tool proved to be of some worth in this area when I discovered a test-case that
 was failing to be streamable, involving the expression xsl:value-of
 select="head(/BOOKLIST/BOOKS/ITEM[1]/PRICE/ancestor::*/@*)". The issue was that
 whilst the static type of head() was item()? the instruction
 failed streamability (a potentially overlapping sub-tree would have to be traversed to
 determine the textual value, due to the ancestor::* step.) However if the
 type of head() is inferred to be the same type as its principal argument, in
 this case attribute()?, then that is technically a
 childless-node, whose text value can be
 retrieved without further movement across the tree. A set of about a dozen functions (e.g.
 subsequence()) needed such specialist treatment. The XSLT Working Group had
 to change the type model to encompass unions of fundamental types (see above) and classify
 functions that used their principal arguments in a transmission usage
 (such as head()) to use such unions.

Resource references
Whilst most of the assessment is carried out in a recursive tree descent/ascent manner,
 XSLT (and XPath) constructs can reference non-child resources in three specific ways:
 variable / param references, function / named
 template calls and template applications. To complete
 streaming analysis these references must be examined and require off-tree
 mechanisms. We'll discuss each in term:
Variables
Variables can be declared both in XSLT (xsl:variable and
 xsl:param) and in XPath (let $v :=.., for $v in
 ...) and in both cases the scoping of reference to their
 value follows the
 following-sibling::*/descendant-or-self::* compound axis[7]. Processing such references is most simply achieved by
 iterating across construct bodies, accumulating maps of processed
 variables which are tunneled down through to following-siblings and their descendants. For
 example in assessing static type, sections of the code relating to variables are
 approximately:
Figure 19: Variables and types
<xsl:template match="xp:*|xsl:*|s:sequence-constructor" mode="s:Type">
 <xsl:param name="variables" as="map(xs:string,element())" select="map:new()" tunnel="yes"/>
 ...
 <xsl:iterate select="*|text()">
 <xsl:param name="variables" select="$variables"/>
 <xsl:variable name="temp" as="item()*">
 <xsl:apply-templates select="." mode="#current">
 <xsl:with-param name="variables" select="$variables" tunnel="yes"/
 </xsl:apply-templates>
 </xsl:variable>
 <xsl:sequence select="$temp"/>
 <xsl:if test="self::xsl:variable|self::xsl:param|self::xp:QE.var">
 <xsl:next-iteration>
 <xsl:with-param name="variables" as="map(xs:string,element())"
 select="map:new(($variables,map:entry(@name,$temp)))"/>
 </xsl:next-iteration>
 </xsl:if>
 </xsl:iterate>
 ...
</xsl:template>

<xsl:template match="xsl:variable|xsl:param" mode="s:staticTypeVal" as="xs:string?" priority="1.5">
 <xsl:param name="children" select="()" as="element()*"/>
 <xsl:value-of select="xp:composite-type-multiple($children/@s:staticType)"/>
</xsl:template>

<xsl:template match="xp:VarRef" mode="s:staticTypeVal" as="xs:string">
 <xsl:param name="variables" as="map(xs:string,element())" select="map:new()" tunnel="yes"/>
 <xsl:value-of select="($variables(@name)/@s:staticType,'UNKNOWN VAR/TYPE')[1]"/>
</xsl:template>

In the first template, the iteration across the children using
 xsl:iterate accumulates a parameter $variables as a map which
 relates variable name to the in-scope processed variable tree for that name. The tree
 value will i) be fully decorated with its properties (in this case including
 @staticType and ii) have had all variables it refers
 to in its definition interpolated fully as regards streaming properties. Each child in
 turn is processed with a full current binding of variables passed as a tunneled parameter
 $variables, which can in turn be updated in scope[8].
The second template assesses the static type of a variable as the composite type of
 its children, which actually should be null or a singleton - either
 the @select operand, or a single sequence constructor. The final template
 shows how the static type is evaluated for a VarRef construct (the only
 construct within the XPath grammar which actually interpolates variable name references),
 by lookup in the supplied map.

Functions
Built-in and stylesheet functions are global entities, which may be referenced
 (almost) anywhere within the stylesheet tree. Fortunately the streamability rules only
 require knowledge of the type of the result and the required type of the arguments to
 assess the streamability of a call. For built-in functions, the XPath and XQuery Functions and
 Operators 3.0 specification uses a definitional XML file
 function-catalog.xml that contains all the data defining each function,
 such as signatures, and from which the specification is constructed. The specification
 contains a table in Classifying
 Calls to Built-In Functions that defines further (usage) properties. By taking a
 copy of function-catalog.xml and adding some minor annotations, we can
 construct maps that will both identify type and usage for function calls and their
 arguments:
Figure 20: Built-in function catalog
<fos:functions xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 ...
 <fos:function name="head" diff="add" at="E">
 <fos:signatures>
 <fos:proto name="head" return-type="item()?">
 <fos:arg name="arg" type="item()*" usage="transmission"/>
 </fos:proto>
 </fos:signatures>
 <fos:properties>
 <fos:property>deterministic</fos:property>
 <fos:property>context-independent</fos:property>
 <fos:property>focus-independent</fos:property>
 </fos:properties>
 ...
 </fos:function>
 ...
</fos:functions>

<xsl:variable name="functions" as="map(xs:string,item()*)" use-when="false()"
 select="map:new(
 for $f in (doc('function-catalog.xml')//fos:function[not(@prefix='op')])
 return map:entry(
 $f/(if(@prefix = ('math')) then @prefix||':' else '') || @name,
 let
 $proto := $f/fos:signatures/fos:proto
 return
 map:new((
 map:entry('returnType',distinct-values($proto/@return-type)[last()]),
 map:entry('args',$proto[last()]/map:new(fos:arg/map:entry(position(),.)))
))))"/>

<xsl:variable name="default-dot-functions" as="xs:string*"
 select="map:keys($functions)! .[$functions(.)('args')(1)/@default='.']"/>

In Figure 20 we show the entry for head() in
 which we have added a transmission usage property to its sole argument. The
 variable $functions has been constructed from that file as a map keyed by the
 function name, each entry containing a map of some properties of that function,
 viz. the returnType and a further map containing
 entries for each argument of the last definition (which is usually the most complete),
 keyed by position. This map, and others like it are used extensively within the analysis[9]: expanding implicit '.' arguments for built-in functions (e.g.
 name() being equivalent to name(.)) is supported by computing
 the set of function names for which that is the case as shown
 $default-dot-functions.
Stylesheet functions can be analysed as a global set at top level: type signatures can
 then be recorded as a similar map to that used for built-in functions. Fortunately, and
 certainly avoiding issues of analysing recursive functions, the return type is generalised
 as item()*. Similar mechanisms can be used for named templates.

Applied templates
xsl:apply-templates invokes pattern-matching processing on each of the
 members of their selected sequence. As such complete assessment of their return would
 require some indirect assessment. Fortunately as far as streamability is concerned this is
 much simpler – the instruction is assumed to generate results of item()*
 type, and the posture/sweep streamability properties can be
 determined mostly locally within the xsl:apply-templates instruction itself:
 other templates that may be triggered only have to be assessed as being in a totally
 streamable mode-set.

Assessing sweep and posture
A similar, though much more complex, recursive descent/ascent process is used to
 determine the posture and sweep. A context posture is propagated
 downwards, and alters through focus-changing instructions, with generally the context
 posture for controlled sub-trees being the assessed posture of the
 controlling operand. The sweep of each of the construct operands is assessed and the
 composite sweep and posture is then calculated for the ensemble and becomes the sweep and
 posture for the construct. As much of the analysis as possible is calculated from definition
 tables described earlier.
The properties are represented on the tree as attributes (e.g.
 s:posture="striding"), so they can be extracted from result through XPath.
 But to reduce errors through mistyping, a defined set of global variables, each having an
 attribute() type and suitable name/value can be defined, such as
 $p.grounded whose value is @s:posture="grounded". Moreover, the
 most common 'stream failure' results from roaming posture and
 free-ranging sweep, so this is abbreviated: $RFR =
 ($p.roaming,$s.free-ranging). Using these variables when setting properties reduces
 typing errors extensively, as the complier will of course complain about undefined
 variables.
The generic form of processing is a template of the following canonical
 structure:
Figure 21: Generic assessment of posture and sweep
<xsl:template match="construct" mode="addPosture">
 <xsl:param name="contextPosture" as="xs:string?" tunnel="yes"/>
 <xsl:variable name="children" as="element()*">
 <xsl:apply-templates select="*" mode="#current"/>
 </xsl:variable>
 <xsl:copy>
 <xsl:call-template name="expr-init"/>
 Code to decide posture sweep and return:
 i) suitable @s:posture, @s:sweep
 ii) $children, in document order, each appropriately decorated.
</xsl:template>

Usually all children are evaluated, sometimes when focus changes, altering the
 context posture for their evaluation. Then the result is constructed
 as a copy of the original node, a series of initial attributes (all existing attributes, a
 hyperlink to the appropriate section of the specification, the context posture etc.) are
 written on by the template expr-init, followed by the calculated posture and
 sweep, again as attributes, and finally the evaluated children are added.
Currently there are 12 primary templates of for assessing xsl:* XSLT
 instructions and 18 for processing xp:* XPath expression constructs. Many of
 these make calls on the General Streamability Rules.
A subsidiary property needed for analysis, usage, described below,
 is written on to the tree by push-processing in mode addUsage, before the main
 evaluating is performed, again through mostly push-processing in mode
 addPosture.
Usage
Constructs act as operands for their parents (or sometimes
 ancestors) and as such the parent can use the information from the operand in several
 ways, described as the usage property, which again partially quoting
 Kay, can take the following values:
	Absorption: the parent expression makes use of information
 from the entire sub-tree rooted at nodes returned by the operand expression.

	Inspection: the parent expression makes use of properties of
 the nodes returned by the operand expression that can be established while positioned
 at a node's start tag.

	Transmission: the parent expression returns nodes delivered
 by the operand expression.

	Navigation: the parent expression performs arbitrary
 reordering of the returned nodes, or navigates away from them in arbitrary
 ways.

As these properties are used quite extensively, the constructs in the tree are
 decorated with an @s:usage attribute in a single pass before posture and
 sweep is assessed, by consulting declarations and suitable maps.

General Streamability Rules
Rules for assessing posture and sweep for many of the constructs devolve to some
 assessment of a set of more general rules with different configured treatments for the
 individual operands of the construct. For example:
19.8.4.37 Streamability of xsl:value-of
The posture and sweep of xsl:value-of follow the general streamability
 rules. The operand roles and their usages are as follows:
	The select expression (usage
 absorption)

	 The separator attribute value template (usage
 absorption)

	The contained sequence constructor (usage
 absorption).

The General Streamability Rules, part of which is shown in Figure 5
 are a nested tree of calculations and decisions, up to six levels deep, with 25 separate
 steps and cases (many of which are applied iteratively to each operand) and an embedded
 decision table. To apply these for a given construct we need to i) identify which of the
 child (or sometimes descendant) constructs have influence and what are their mode of
 usage.
While expanding XPath expressions the role of a construct was attached to the parse
 tree as an @s:role attribute, so simple XPath search can extract necessary
 operands. In this case we have already given every node a unique id so simple
 maps of id and associated property can be used.
The GSR are implemented as a single named XSLT template, which has the following
 features:
	The context item is assumed to be the construct element to be assessed.

	The following parameters can be supplied, or may be derived:
	contextPosture
	The context posture from the parent

	operands
	a set of descendant items that should be considered as operands. These can
 be searched for through a push mode GS-find-operands.

	context-postures
	A map of operand ids and the associated or required posture for
 the operand having that id. (This becomes useful for complex
 instructions such as xsl:apply-templates or
 xsl:iterate where the operands can include sections of attribute
 value templates within child elements, and postures can vary across the set of
 operands.)

	children
	Possible children of the construct, which will otherwise be evaluated
 recursively.

The first action in this template is to assess the sweeps of all the operands,
 corresponding to step 1 of GSR,
 consisting of some dozen tests and a table lookup for each operand. After such processing
 each operand element will be decorated with attributes @s:sweep (a possibly
 adjusted sweep), @s:sweepOriginal (when the sweep was changed by the GSR
 rules), @s:usageOriginal (when the usage has been altered likewise) and
 @s:potentialConsumer if the operand is so judged from rule
 1.c. Parts of the code to do this are:
Figure 22: Calculating sweep
<xsl:variable name="table.1.b.iii.B" as="map(*)"
 select="map{
 'grounded' := map{'absorption':='S', 'inspection':='S', 'transmission':='S', 'navigation':='S'},
 'climbing' := map{'absorption':='free-ranging', 'inspection':='S', 'transmission':='S', 'navigation':='free-ranging'},
 'striding' := map{'absorption':='consuming', 'inspection':='S', 'transmission':='S', 'navigation':='free-ranging'},
 'crawling' := map{'absorption':='free-ranging', 'inspection':='S', 'transmission':='S', 'navigation':='free-ranging'}
 }"/>
<xsl:variable name="swept" as="item()*">
 <xsl:for-each select="$children/descendant-or-self::*[@id=$operands.id]">
 <xsl:variable name="T" select="@s:staticType"/>
 <xsl:variable name="P" select="@s:posture"/>
 <xsl:variable name="S" select="@s:sweep"/>
 <xsl:variable name="U" select="@s:usage"/>
 <xsl:copy>
 <xsl:sequence select="@*"/>
 <xsl:attribute name="s:sweepOriginal" select="@s:sweep" on-empty="()"/>
 <xsl:attribute name="s:usageOriginal" select="@s:usage" on-empty="()"/>
 <xsl:variable name="results" as="map(*)*">
 <xsl:sequence select="map{'posture':=$P, 'USAGE':=$U}"/>
 <xsl:choose>
 <xsl:when test="$S = 'free-ranging' or $P = 'roaming'">
 <xsl:sequence select="map{'rule':='1.b.i','sweep':='free-ranging'}"/>
 </xsl:when>
 <xsl:when test="$P = 'grounded'">
 <xsl:sequence select="map{'rule':='1.b.ii','sweep':= @s:sweep}"/>
 </xsl:when>
 <xsl:otherwise>
 <xsl:variable name="childless.absorption" select="$U = 'absorption' and xp:is-childless-type($T)"/>
 <xsl:variable name="Up" select="if($childless.absorption) then 'inspection' else $U"/>
 <xsl:sequence select="map{'rule' := '1.b.iii.A.' || (if($childless.absorption) then 'I' else 'II'),
 'usage':= if(empty($Up)) then 'NO USAGE DEFINED' else $Up}"/>
 <xsl:if test="exists($Up) and exists($P)">
 <xsl:sequence select="map{'rule':=string-join(('1.b.iii.B',($P,$Up)!$table.axes(.)!string(.)),'.')}"/>
 <xsl:if test="map:keys($table.1.b.iii.B) = $P">
 <xsl:variable name="row" select="$table.1.b.iii.B($P)"/>
 <xsl:if test="map:keys($row)=$Up">
 <xsl:sequence select="map{
 'sweep':= (let $s := $table.1.b.iii.B($P)($Up) return (if($s eq 'S') then @s:sweep else $s))}"/>
 </xsl:if>
 </xsl:if>
 </xsl:if>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:variable>
 <xsl:attribute name="s:sweep" select="$results!.('sweep')"/>
 <xsl:attribute name="s:usage" select="$results!.('usage')" on-empty="()"/>
 <xsl:attribute name="s:generalOperand" select="$results!.('rule')" separator=","/>
 <xsl:choose>
 <xsl:when test="$results!.('sweep')='consuming'">
 <xsl:attribute name="s:generalOperand" select="$results!.('rule'),'1.c.i'" separator=","/>
 <xsl:attribute name="s:potentialConsumer"/>
 </xsl:when>
 <xsl:when test="@s:usage='transmission' and not(@s:posture = 'grounded')">
 <xsl:attribute name="s:generalOperand" select="$results!.('rule'),'1.c.ii'" separator=","/>
 <xsl:attribute name="s:potentialConsumer"/>
 </xsl:when>
 </xsl:choose>
 <xsl:sequence select="*|text()"/>
 </xsl:copy>
 </xsl:for-each>
</xsl:variable>

What Figure 22 is showing is that the code generally tries to
 reflect the structure of the rules as laid out in the specification, even using a map to
 represent table 1.b.iii.B, and with the same abbreviations[10]. Note that the intermediate variable $results computed for each
 operand is typed as a sequence of item() but is actually a sequence of
 map()*, which can be used to transmit heterogeneous information, in this
 case both the properties of direct interest (e.g. sweep) but also the
 rule-invoked indicators. Using the XPath simple map operator, we can extract multiple
 values through an expression such as $results!.('rule').
Note
It would be possible to use the same technique here as is used for posture and sweep
 attributes described above, i.e. defining variables which are map entries, e.g.
 $map:p.grounded := map{'posture':='grounded'}, which would reduce the
 effect of typing errors.

Assessing the posture is handled similarly, checking the conditions of section 2 over
 the sweep-assessed operands. Finally the posture and sweep of the construct is determined,
 written onto a copy of the construct element (together with GSR provenance from section 2)
 and the children are placed in the new parent.

Evaluating expressions and instructions
Most XPath expression terms can be evaluated with the General Streamability Rules,
 suitable usage having been written onto operands from the maps described in section “Declarative tables”. Others require more specialist treatment, such as the
 ForExpr for which the test can be two-stage:
Figure 23: Posture and sweep of the ForExpr
<xsl:choose>
 <xsl:when test="$children[2]/@s:posture = 'grounded'">
 <xsl:call-template name="general-streamability.operands">
 <xsl:with-param name="children" as="item()*" select="$children"/>
 </xsl:call-template>
 </xsl:when>
 <xsl:otherwise>
 <xsl:sequence select="$RFR,$children"/>
 </xsl:otherwise>
</xsl:choose>

where if the return (the second child) is grounded, the General Streamability Rules
 apply, otherwise the construct is roaming and
 free-ranging. The most interesting and perhaps important, are the
 AxisStep terms, which really define movement around the input tree. The
 tests (19.8.7.7 Streamability of Axis Steps) are a little more complex and involve six
 cases and a tabular form, relating context posture and the axis of travel. Whilst this
 could perhaps be interpreted, in the end an extended xsl:choose was the
 simplest form.
XSLT instructions tend to be more complex in their streamability than XPath
 expressions, so while some (e.g. xsl:copy) are analysed completely with the
 General Streamability Rules, many require specialist templates, especially to handle
 issues such as instruction configuration elements (e.g. xsl:sort) and
 determining what are the active operands for streamability. To make these somewhat more
 coherent, a number of helper functions are used:
	xp:AVT()
	Returns all the nodes of the input that represent attribute value
 templates in the instruction.

	xp:active()
	Returns all operands of input nodes that are active in
 creating a sequence (@select or
 s:sequence-constructor)

Similarly, some of the common instruction-varying actions can be cast as templates in
 a specific mode, such as GS-find-operands, which finds the appropriate
 operands for an instruction for application of General Streamability Rules. For example
Figure 24: Find operands for General Streamability Rules
 <xsl:template match="xsl:apply-templates" mode="GS-find-operands">
 <xsl:sequence select="xp:active(.)|
 xp:active(xsl:with-param)|xp:active(xsl:sort)|xp:AVT(xsl:sort)"/>
 </xsl:template>

where for xsl:apply-templates operands could appear i) as active parts of
 the instruction itself (in this case @select), ii) within active sections of
 xsl:param and xsl:sort options (either as @select
 or sequence constructors) or iii) within attribute value templates
 within the xsl:sort declarations (typically in attributes such as
 @order).

Evaluating built-in functions
Calls to built-in functions (mostly from XPath, but a few, such as key(),
 that are specialist for XSLT) have to be examined in terms of both the streamability
 properties of their arguments and the use the function makes of the results of those
 arguments. For most functions this can be expressed as an evaluation of the General
 Streamability Rules, with suitable usage. In the specification this
 is described as a list with an entry of each function using a proforma representation,
 e.g. fn:fold-left(N,A,I) which indicates that the arguments
 have usage navigation, absorption and
 inspection respectively. Currently these usages are written onto
 the arguments of the function definitions in function-catalog.xml whence they
 are converted into maps as described in section “Functions”, but in theory these
 properties could be read from the specification itself. For some dozen functions (such as
 last()) there are specialist rules - these are handled by simple templates:
Figure 25: Streamability of last()
<xsl:template match="xp:FunctionCall[@name='last']" mode="addPosture">
 <xsl:param name="contextPosture" as="xs:string?" tunnel="yes"/>
 <xsl:copy>
 <xsl:call-template name="expr-init"/>
 <xsl:sequence
 select="if($contextPosture = ('striding','crawling','roaming'))
 then $RFR else ($p.grounded,$s.motionless)"/>
 </xsl:copy>
</xsl:template>

where $RFR denotes roaming and
 free-ranging as described earlier.

Determining guaranteed streamabilty
Finally all the components of a top-level xsl:stream or
 xsl:template have been evaluated against the rules and any sequence
 constructor can be examined for a grounded posture and a template
 @match checked for a motionless sweep. The element is
 marked @s:streamable with the boolean satisfaction of these conditions,
 whence the analysis of that sub-tree is complete. Later display can give visual
 indication. For templates of course they form a modal group which might be invoked by
 other templates - the mode is marked streamable (in a map) only if i) the mode is declared
 streamable and ii) all templates within that mode are themselves proven guaranteed streamable[11].

Interactive Display
Once the analysis has been completed, the result needs to be displayed. As all the
 information is attached to the expanded XLST/expression tree as namespaced attributes, we
 could either i) display the original program in some serialised form and arrange some linkage
 from that serialisation to appropriate points in the 'shadow tree' or ii) display the whole
 expanded tree including properties as a serialisation and selectively display desired
 sections. The second appeared to be the simplest route, albeit at the cost of a very
 large serialised form even for modest programs.
Serialising to HTML
The tree is serialised to be displayed within a pre section of the web
 page, by a specialist XSLT-coded serialiser with the following features:
	As the tree is well-formed XML, and space is at a premium, indentation is strict and
 closing tags are omitted.

	Line numbering follows the document order of elements in the original XSLT and is
 displayed at the start of each corresponding line in the serialisation.

	A fold/unfold group (as a span containing two span-contained images,
 only one of which should be visible) follows for any element in the result tree that has
 children.

	The element name and primary attributes are written surrounded by classifying
 spans - some note of line length is considered and line-breaks can be
 interpolated. Some names are shortened and the information is attached to the span
 class, e.g. the xp: prefix dropped from XPath constructs.

	The span of elements decorated @s:streamable (i.e.
 xsl:template, xsl:stream) are classified as
 xslstreamyes or xslstreamno as appropriate.

	All the streaming properties follow, each with an enveloping span and
 differentiating classes: e.g. class="streamProperty posture". Name/values
 for these properties are simplified, e.g. s:posture="grounded" displays as
 p:grounded.

	Specification hyperlinks are cast as a[@href] elements around the
 appropriate display text.

	All the children of an element exist within a span
 class="XMLBody|XSLBody" on the line following the element head. Thus when
 folding an element this span is set to style="display:none".
 This provides a consistent model for fold/unfold, albeit at the cost of an additional
 nested span for every element.

The styling is defined by a CSS stylesheet that exploits these classes, starting with
 the display styling all XPath expansions and streaming properties set to
 none[12].

Interactivity
The selection of stylesheets to analyse and examine is a simple use of forms and server
 response, piping the serialised response HTML into a given target frame. More interesting is
 the interaction within the analysed stylesheet. There are four types of interaction, three
 of which are implemented by triggered templates in a simple Saxon-CE executed XSLT 2.0
 transform.
	Fold/unfold
	The fold/unfold buttons are intercepted by <xsl:template
 match="span[@class='folder']/span[@class=('collapse','expand')]"
 mode="ixsl:onclick"> which arranges to swap the visibility of the
 collapse and expand buttons, and then
 proceeds to change the display style of the following body span
 (@class=('XMLBody','XSLBody')) accordingly.

	Expanding XPath expressions
	 All displays of attributes that contain XPath expressions (and
 attribute value templates as well) are classed as
 XPExpr, together with an attribute on the span that identifies the
 role. <xsl:template match="span[@class='XPExpr']"
 mode="ixsl:onclick"> when triggered, searches in the following instruction
 body serialisation for the span that contains the tree for that
 expression, marked with a @role attribute, and then toggles the state of
 the display property.

	Displaying streaming properties
	Changes in the state of the check-boxes (which are computed as part of the
 returned HTML for an analysed stylesheet) are recognised by <xsl:template
 match="input[@class='showType']" mode="ixsl:onclick">, which then alter the
 display state of all the effected stream property spans through
 ixsl:page()//pre//span[@type=$type], using the
 ixsl:set-attribute instruction. (This also of course changes display
 state of properties which are invisible for higher reasons, such as being in a folded
 structure, but it maintains coherence.)

	Specification hyper-linking
	As the result HTML has already been decorated with a[@href] links to
 the appropriate section anchors in the (modified) specification, these links operate
 outside the purview of the Saxon-CE based stylesheet. The specification is displayed
 typically in a separate window or tab[13].

The point to note here is that all the decisions of display
 this line?, wrap onto a new line? are performed by the browser, requiring a
 minimalist approach from the analysis tool itself.

Conclusion
This paper has described a tool that performs a very detailed and exhaustive analysis of
 the streaming properties of an XSLT program, and displays the results in a form where a human
 designer might be able to examine these properties to either i) understand why a program
 cannot stream or ii) get a better feel for the interaction between XSLT instructions and XPath
 expressions and streaming behaviour.
But it could also be considered as an example of analysing a program (or other data
 structure) for certain properties within an XML-based framework, using a tree-based 'parsing'
 of the program as the main data structure, adding properties as attributes and processing the
 tree in a generally top-down recursive manner[14]. Thus some of the lessons from this tool might be pertinent to other situations,
 which are normally the province of opaque compilers, such as reachability analysis.
Doing what the compiler (usually) doesn't
A comformant XSLT compiler supporting streaming of course has to apply these rules to
 check streamability[15] but does not have to explain why a construct cannot be streamed. This tool
 effectively animates the analysis leaving a trail both of its conclusions, in results and
 intermediate data, and pointers to the relevant rules that were applied, making it less of a
 hit-and-miss affair for the designer to acheive his streamability goals. Of course a
 compiler could do similar (e.g. Saxon has an -explain option that displays the
 optimised execution plan) but this tool does this independently of any implementation, as
 the rules are strictly part of the specification.

Controlling the volume of displayed data
One of the problems was the sheer amount of data to be viewed/displayed – some 8-10
 additional properties, stored as attributes for every construction element, both instruction
 and XPath expression. One option was to display all the properties for a single given
 element at a time, perhaps on a status bar, or a popup, but much of the understanding of the
 streaming rules in action comes from examining the properties of all the operands of a
 construct as an ensemble, together with the relevant rules. I chose to enable entire classes
 to be viewed selectively – it certainly permits one to view reverse-cascades
 of usually roaming posture propagating from some errant action.
Alternatives, that could be programmed relatively easily using more detailed Saxon-CE
 interaction, could show properties for a small portion of the tree at a time (e.g. selected
 element, direct children and a limited number of ancestors), or even explore graphical
 symbology and other shorthand forms.

Who & how best to process XSLT?
The problem involved analysis of a program most of whose components are written in XML.
 Thus an XSLT enthusiast, such as the author, would reach for that tool as the primary
 instrument. The fact that the program to be analysed was itself XSLT caused very few
 problems, and made several areas easier.
The first issue was how to analyse the XPath expressions. Initially I chose to add an
 expansion to Saxon to exploit its Expression.explain() method to generate a
 parse tree, but after some success it became clear that a lot of rewrites that Saxon was
 doing internally needed to be undone or otherwise modified to get to the
 constructs that streamability required. Then a switch to a parser, written in XSLT and
 generated by REx, made the situation much clearer and the whole analysis
 solution could be written entirely in non-extended XLST 3.0[16].
Probably the most useful lesson is that a simple variant of the source XSLT program,
 held as an XML tree, can act as its own parse tree, which can be traversed, read and
 decorated entirely by XSLT programs. Of course properties have to be capable of being
 grounded to effective strings to attach to tree element nodes, which was possible even at a
 stretch when the type model moved to a union type. With with a suitable system of indexed
 map structures held within the analyser, and keyed through unique ids, even this restriction
 might be overcome.

A syntactically coherent specification
Early on in the development it became imperative that there should be some means of
 finding the correct place in the XSLT specification to examine constructs that were being
 evaluated, if only for debugging the tool itself. Whilst much of the specification is very
 richly hyper-linked internally, there was still an enormous amount of scrolling around,
 losing a place, having to revert to and search through the table of contents (which on the
 author's browser occupies some 14 pages) all the while trying to retain a
 mental (stack) model in one's head. Could we build a hyperlink from say an
 xsl:value-of element to the relevant section of the specification?
Most fortunately, but certainly by design, many of the sections (in this case
 19.8.4.37 of the December 2013 Working Draft) had hyperlink anchors which
 were extremely coherent, quite fine-grained and followed the scheme
 #streamability-xsl-{local-name(.)}, in this
 case #streamability-xsl-value-of. The exceptions (which were often to a parent
 category) could be handled by attributive declarations in a table, such as shown in Figure 17. In the case of the General Streamability Rules, the
 combination of nested lists and a table required preprocessing to bury a series of anchor
 points (and div groupings) to support display.
Equally, the existence of and access to, even more definitive documents behind the
 specification, such as function-catalog.xml, meant we could latch onto and use
 definitive information, avoiding transcription errors and making it possible for the tool to
 track eventual changes in some cases automatically.

Problems
Apart from the size and apparent complexity of the streamability rules themselves, a
 small number of other problems appeared including
	the size of the resultant fully-serialised output

	debugging the tool itself

Whilst the analysis of streamability for a modest stylesheet is relatively quick
 (seconds or less), the serialisation, and particularly the browser display of that
 serialisation can be lengthy. A glance at Figure 11 shows that each streaming
 property takes about 100 characters to define for display in the current serialised form,
 which means each construct (instruction, expression term) takes about 1kB to display. (The
 serialisation of the example in Figure 1 is just under 14kB long.) Clearly
 there could be economies in the terms used (class names are over-generous for example) and
 some server-performed compression of the results and associated CSS might improve matters by
 perhaps a factor of three. With some more active participation from the Saxon-CE stylesheet,
 such as encoding/decoding property values perhaps an order of magnitude could be gained[17].
The simplicity of keeping all the analysed data on the XSLT tree and then serialising
 the whole was very effective in getting the tool developed, but an alternative would be to
 split off the data just before serialisation and provide that as a separate
 id-mapped data structure that the Saxon-CE stylesheet would use.
Unsurprisingly early debugging of the tool wasn't extremely easy, as the sheer volume of
 data and especially the O(100) different types of instructions and expressions made
 focussing on a single problem difficult. Building the tools as a number of phases helped
 (e.g. expanding all the XPath trees, marking the focus control, calculating the static type)
 so that successive phases could be checked to mostly work[18]. However once a certain stage was reached a lot of the further development could
 be carried out merely by altering or expanding tables.

Acknowledgements
Apart from funding the venture, Mike Kay set me a very interesting and what turned out
 to be a surprisingly complex challenge, but one of XSLT working on XSLT that I very much
 enjoy. Florent Georges deserves thanks for the excellence of, and excellent support for, the
 Servlex webapp delivery mechanism which made mounting the tool as a web service
 comparatively plain (all XML) sailing, with no PHP or Java required!
 O'Neil Delpratt was his usual cheerful self in helping get the tool installed on Saxonica
 servers.

Quo vadis?
During the writing of this paper it became clear that more of the tool's behaviour could
 be derived from direct interpretation of some sections of the specification, thanks mainly
 to the coherence in its logical structure. This would increase the tolerance of the tool to
 (modest) changes in the specification. Changes to the serialisation and storage outlined
 above could be helpful also.
Whilst the original intention of the tool was to enable a given stylesheet to be
 analysed, perhaps its future value is really in being able to increase understanding of what
 the essence of the streamability rules is, by providing a highly detailed
 walkthrough of their application on fragments of XSLT of interest. It might
 also be interesting to see whether a rudimentary expert system, in the form
 of patterns matching some design metaphors (e.g. adding a copy() action to
 avoid returning nodes from the input) might be able to suggest alterations that might enable
 streamability where originially this cannot be guaranteed.

References
[Braaksma1] Braaksma, Abel: XSLT 3.0 Streaming
 for the masses [online] XML Prague 2014 proceedings, pp29–80,
 http://archive.xmlprague.cz/2014/files/xmlprague-2014-proceedings.pdf

[Braaksma2] Braaksma, Abel: Streaming Design
 Patterns or: How I Learned to Stop Worrying and Love the Stream [online] XML London
 2014 proceedings, pp24–52, doi:https://doi.org/10.14337/XMLLondon14.Braaksma01,
 http://xmllondon.com/2014/xmllondon-2014-proceedings.pdf

[Kay] Kay, Michael: Streaming in the Saxon XSLT
 Processor[online] XML Prague 2014 proceedings, pp81–102
 http://archive.xmlprague.cz/2014/files/xmlprague-2014-proceedings.pdf

[REx] Rademacher, Gunther: REx Parser
 Generator[online] http://www.bottlecaps.de/rex/

[Servlex] Georges, Florent: Servlex: (: Web
 Applications and REST Services Framework for XQuery, XProc and XSLT. :)[online]
 http://serlvex.net

[1] Applicable templates must be invoked in a mode that has been declared to be
 streamable (xsl:mode name=".." streamable="yes") so the set of templates to
 be examined is restricted.
[2] The author was present when the XSLT Working Group analysed 'by hand' (and
 conference call) the streamability of a 5 instruction stylesheet, with XPath expressions
 perhaps 4-5 terms deep. They almost managed to complete the process in about 50
 minutes.
[3] We could have used xsl:sequence which in XSLT3.0 can contain a sequence
 constructor (!) but placing it in a separate namespace makes the implementation
 tidier.
[4] Multi-line expansion and indentation is shown for clarity, but the single line is
 actually flat.
[5] At present relative indirect stylesheets (e.g. xsl:include
 href="more.xsl") are not supported, as of course the server cannot
 request from the client file system, though 'web-accessible' links could be
 followed. A system where all the stylesheets were web-accessible could be
 developed easily.
[6] It didn't quite appear that the table was itself regular enough to derive this data
 from it automatically, but perhaps I should have persisted.
[7] Within our expanded XSLT trees all references will be through elements such as
 VarRef - even text-value-templates will have been
 expanded into element trees.
[8] Whilst this of course can be processed using a recursive template, using
 xsl:iterate introduces much more coherence in what is essentially a
 contained tail-recursive iteration. Using a high-order function such as
 fold() isn't terribly practical when XSLT instructions predominate.
 Equally the immutable map() of XSLT3.0 makes tracking variable scoping
 vastly easier than alternative methods.
[9] It is tempting to see whether the table Classifying Calls to Built-In Functions in the specification is regular
 enough that the usage can be extracted automatically. On the other hand one can argue
 that fundamental properties of the function, such as usage, belong in the definitive
 catalog.
[10] It would be comparatively trivial to parse that map from an even simpler
 representation, possibly even from the specification itself.
[11] Mutually interacting streamable modes are not supported in this tool.
[12] For large stylesheets 'top-level' constructs (e.g. xsl:template) could
 of course be defined to display in a folded state. The streamability of such entities
 would still be visible as red/green backgrounds of course.
[13] Under some arrangements with all being displayed in a single tab/window, it is
 possible to enrich the explanation of application of the General Streamability
 Rules, by highlighting all the rules that were relevant to a particular case. This
 requires i) div grouping of sections of the specification GSR (which
 can be done automatically) and ii) altering the display properties of these
 div sections. Unfortunately this appears not to be possible (as one
 would wish) between different tabs or windows within a browser....
[14] A critical requirement might be that referential mechanisms and dependencies (e.g.
 variables) follow descendant or following-sibling scoping.
[15] Actually they are permitted to extend the cases in which they can stream, but they
 must support cases which are guaranteed streamable according to the
 specification rules.
[16] To be fair, Mike Kay had suggested REx as a possibility in the
 initial project outline, but the author had had some experience, before working with
 Saxonica, on using Expression.explain(), so that was in the first design.

[17] Technically we might be able to implement the analysis tool in XSLT2.0 and hence
 consider a total Saxon-CE in-browser solution, but the use of XSLT3.0 facilities
 (especially mode declarations and maps, as curiously HOFs were confined to a very small
 number of cases) makes the development very much more straighforward. Of course anyone
 using streaming must be using XSLT3.0 anyway.
[18] The main phases expand / focus control / static type / usage / posture & sweep
 were pretty separable until the new U-type model introduced usage-dependent
 type to complement the existing type-dependent usage . At this
 point some sections of the type and usage phases had to be merged.

Balisage: The Markup Conference

Analysing XSLT Streamability
John Lumley
jωL Research

Saxonica

<john@jwlresearch.com>
A Cambridge engineer by background, John Lumley created the AI group at Cambridge
 Consultants in the early 1980s and then joined HPLabs Bristol as one of its founding
 members. He worked there for 25 years, managing and contributing in a variety of
 software/systems fields, latterly specialising in XSLT-based document engineering, in
 which he subsequently gained a PhD. He is currently helping develop the Saxon XSLT
 processor for Saxonica.

Balisage: The Markup Conference

content/images/Lumley01-002.png
Date:2014-04-11713:27:45.612+01:00 XSLT:3.0 Saxon:EE 9.5.1.3

Show
type

D static
[Clcontext
Dlrole
Dlfocus
usage
Dladjusted
Cloriginal
posture
Dlfinal
[Ccontext
sweep
Dladjusted
Coriginal
General

Streamability,
Rules

Dlapplied
[Cloperand
Dlpotential
Consumer
[choice
Group

Streaming analysis of file: samples/examples/example-P18.16.xsl

1Bkxs
match=n/">

tylesheet exclude-result-prefixes="xs math” version="3.0">

AxisStep axis="self" nodeTest="document-node()">
quence-constructor>
T nref="cransactions.xml">

uctor>-

quence-cor
<count>

<xslivalue-of select="count (cransactions/cransaction) ">

FunctionCall name="counc™>
RelativePathExpr>
AxisStep axis

AxisStep axis

"child" nodeTest
"child" nodeTest

element (cransactions) ">
element (cransaction) ">

content/images/Lumley01-003.png
Date:2014-04-12T11:07:18.23§+01:00 XSLT:3.0 Saxon:EE 9.5.1.3

Show
type

static
[Clcontext
ole
Dlfocus
usage
Dladjusted
Dloriginal
posture
final
[Ccontext
sweep

[adjusted

Streaming analysis of file: samples/examples/example-P18.16.xsl

18kxs1:styleshest exclude-result-prefixes="xs math” version="3.0">

20 PSR «oconn/" tielement(count)>
AisStep axis="self" nodeTest="document-node () " F:mateh t:document-node()

B sequence constructor|Eielement(count)

50 href="transactions.xml

€] Seuence constructor t:element(count)

el <count t:element(count) p:grounded>

B <xl count (transactions/cransaction) " Eitext()

:select t:xs:integer p:grounded>

RelativePathExpr t:element(transaction) p:striding>
AxisStep axi
AxisStep axi

:element(transactions) p:striding>
lement(transaction) p:striding>

"Child" nodeTest="element (transaction) |t

content/images/Lumley01-004.png
Date:2014-04-11713:

Show
type

D static
[Clcontext
Dlrole
Dlfocus
usage
Dladjusted
Cloriginal
posture

inal
[Ccontext
sweep
Dladjusted
Coriginal
General

Streamability,
Rules

pplied
Operand

:45.612+01:00 XSLT:3.0 Saxon:EE 9.5.1.3

Streaming analysis of file: samples/examples/example-P18.16.xsl

"3.0m>

18kxs1:stylesheet exclude-result-prefixes="xs math” version:

AxisStep axis="self” nodeTest="document-node () " piroaming>

B sequence-consirucior pigrounded>
EEl href="cransactions.xml” pigroundeds

=] “equence-consiructor pigrounded>

Pe) <count p:grounded rule:2.d.iv>

s <xsl:value-of =1cct="count (transactions/transaction)" p:grounded rule

FunctionCall name="count" pigrounded rule:2.d.i rule.op:1.b.ii1.i>
RelativePathExpr :striding frule.on: LBl AL b.hE0.2, 1,615

AxisStep axi "element (transactions) "

AxisStep axi "element (transaction) " p:striding:

content/images/Lumley01-005.png
Il. Otherwise, U'is U.

- B. Compue the adjusted sweep S'from the table below

8 Posture (P) Adjusted Usage (U')

& Absorption Inspection
g Free-ranging s

= Consuming s

3 Crawling Free-ranging s

c. [DEFINTION: An operand is potentially consuming if either o both of the follow
i. The operand's adjusted sweep i consuming.
ii. The operand usage is transmission and the operand is not grounded.
2. Having computed the adjusted sweep S(o) of each operand o, the posture and swee;
a. If C has no operands, then grounded and motionless.
b. If any operand o has an adjusted sweep S'(0) of free-ranging, then roaming and
c. Ifmore than one operand is potentially consuming, then:

i. If all these operands form part of a choice operand aroup, then the posture
sweep of Cis the widest sweep of the operands in this group

ii. Otherwise, roaming and free-ranging.

d. If exactly one operand o is potentially consuming, then:
i. If ois a higher-order operand of C, then roaming and free-ranging.
i Ifthe operand usage of o is absorption or inspection. then arounded and ¢

content/images/Lumley01-001.png
Saxonica Community: W3C XSLT 3.0 Streaming analysis tool

Generated @ 2014-04-11T13:10:14.186+01:00

Home.
Examine a test or example:

samples/W3C/stream (2)
Upload your own stylesheet S ®

File:

streamA ~

No file selected.

samples/examples (7)

example-P1816 ~

SAXC

XSLT AND XQU

samples/W3C/streamable
(123)

streamable-001 +

Date:2014-04-11713:27:45.612+01:00 XSLT:3.0 Saxon:EE 9.5.1.3

type
D static
match="/">

Dleontext B sequence-constructor>

Drole 38 href="transactions.xml">
Dfocus © ‘sequence-constructor>-

usage 40 <count>

Cloriginal
posture
Dlfinal
[Ccontext
sweep
Dladjusted
Dloriginal
General

Streamability,
Rules

Dlapplied
[Cloperand
Dpotential
Consumer
[choice
Group

Show Streaming analysis of file: samples/examples/example-P18.16.xsl

ylesheet exclude-result-prefixes="xs math” version="3.0">

[Fadjusted s <xslivalue-of select="count (cransactions/cransaction) ">

content/images/Lumley01-006.png
19.8.7.7 Streamability of Axis Steps

The sweep and posture of the expression are determined by the first of the following rules that applies:

1. Ifthe context posture is grounded, then the sweep is motionless and the posture is grounded;
2. Ifthe context posture is roaming, then the sweep is free-ranging and the posture is roaming;

3. Ifthe statically-inferred context item type is such that the axis will always be empty (for example, applying
document node), then the sweep is motionless and the posture is grounded (because the expression is

4. Ifthe context posture is striding, and the axis is descendant or descendant-or-seff, and there is a predic:
literal or a reference to a variable whose declared type is numeric (for example, aescendant: :zitie 1]

5. Ifthe preascateList CONtains a preaicace that is not motionless, then the sweep is free-ranging and the
6. Othervise, the sweep and posture of the expression are as determined by the table below, based on the

&
£
(a]
ool
X
S
s
O
o
S

Context posture Axis

Grounded any

Climbing seff, parent, ancestor-or-seff, ancestor, attribute, namespace:
Striding parent, ancestor-or-seff, ancestor, attribute, namespace:
Striding seff

Striding child

Striding descendant, descendant-or-self

Crawling parent, ancestor-or-seff, ancestor, attribute, namespace:
Crawling seff

Any other combination

Note:

content/images/Lumley01-007.png
<xslicopy-of =e:

grounded rule.op
=n . p:grounded>

content/images/Lumley01-008.png
00l main page

specification section

messages

stylesheet

waC

XSL Transformations (XSLT) Version 3.0

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

