[image: Balisage logo]Balisage: The Markup Conference

Methodology For Providing National Information Exchange Model (NIEM) Model Understanding
 to XML and NIEM Novices
Betty Harvey
Electronic Commerce Connection,
 Inc.

Balisage: The Markup Conference 2014
August 5 - 8, 2014

Copyright © 2014 Electronic Commerce Connection, Inc.

How to cite this paper
Harvey, Betty . "Methodology For Providing National Information Exchange Model (NIEM) Model Understanding
 to XML and NIEM Novices ." Presented at: Balisage: The Markup Conference 2014, Washington, DC, August 5 - 8, 2014. In Proceedings of Balisage: The Markup Conference 2014.
 Balisage Series on Markup Technologies vol. 13 (2014). https://doi.org/10.4242/BalisageVol13.Harvey01.

Abstract
NIEM is a U.S. government initiative to enable the sharing of data. NIEM consists
 of many domains. The NIEM model relies heavily on the use of references to create
 relationships between data. It also relies on different namespaces for each domain.
 Many large government projects have mandated that NIEM be used for exchange of data
 between the government agencies, states and other trading partners. NIEM data models
 are very complex. One of the challenges with using NIEM is how to provide a
 mechanism to present a complex data model in a way that will provide business
 analysts, SMEs, programmers and testers the ability to understand the complexity of
 elements, relationships and bi-directional linkages between pieces of information
 that can be understood by both technical and non-technical individuals.
Most of the projects have software development lifecycle (SDLC) artifacts, i.e.,
 UML models, data dictionaries, business analysis documents etc. However, these
 artifacts do not provide the clarity of schema design needed from a NIEM and XML
 perspective. This paper will describe a 'crazy'
 mechanism (out of the norm) for providing an understandable artifact of the a very
 large NIEM schema that that was provided to possibly thousands of diverse trading
 partners for very large federal and state government program

Balisage: The Markup Conference

 Methodology For Providing National Information Exchange Model (NIEM) Model Understanding
 to XML and NIEM Novices

 Table of Contents

 	Title Page

 	Introduction

 	Challenges
 	NIEM Directory Structure

 	NIEM Directory Structure

 	NIEM Flexibility

 	NIEM and Substitution Groups

 	NIEM and Referencing

 	Namespaces

 	Nillable Elements

 	Approach
 	Default XML Template

 	Headers and Footers

 	Comments

 	Dealing with Attributes

 	Major Sections

 	Navigation Bar/Bookmarks

 	Cross-References

 	Data Dictionary

 	Benefits

 	Conclusion

 	About the Author

 Methodology For Providing National Information Exchange Model (NIEM) Model Understanding
 to XML and NIEM Novices

Introduction
Every large project has to create and maintain documentation that conveys information
 about every aspect of that project. These include but are not limited to:
	Data models

	Information consumers

	Data flows

	Information transformations

	Information storage

	Etc.

In a recent large project we were faced with all of these issues. The data model that
 was used was a customized National Information Exchange Model (NIEM) data model. The
 NIEM data model is very complex. NIEM uses redirection and references that on the
 surface makes the data model hard to understand and navigate. We were faced with the
 prospect of trying to convey the data model to literally hundreds, possibly thousands,
 of business analysts and developers (mostly JAVA) in an efficient and understandable
 way. The consumers of the data model were unknown to us. Their skill level and
 understanding of NIEM were unknown, although we suspected that this understanding was
 low, especially where NIEM was concerned.
This paper will describe an approach that I developed for conveying the complexities
 of the data model. Although, at first I thought it was a 'crazy' idea, it proved to be
 very useful and much more efficient in understanding the data model.

Challenges
NIEM is an XML vocabulary for describing information. NEIM creates profiles based on
 specific business domains. NIEM was designed as an exchange model. The XML schemas and
 information artifacts are packaged into what NIEM calls an Information Exchange Package
 Documentation (IEPD). The directory structure of an IEPD is complex. At the leaf of
 every directory are one or more schemas that is referenced by another schema.
 Individuals that have worked with XML are able to pick up a W3C Schema, DTD or RelaxNG
 schema and obtain an understanding of the schema. The fragmentation and referencing used
 in NIEM makes it virtually impossible to gain knowledge by reading the schemas.
The project that this paper concerns was and continues to be a very large project.
 There are hundreds of organizations (federal government, state governments, local
 governments and commercial) that were required to use the IEPD to exchange information
 between the various organizations.
There are also hundreds, maybe thousands of consumers of the information. The actual
 consumers of the IEPD were unknown at the project level, except at a high level. We knew
 that the types of consumers would be:
	Business Analysts

	Programmers (JAVA, C++, possibly COBOL)

	Technical Writers

	Relational Database Developers/Administrators

	Testers

	XML Professionals (XQuery, XSLT, Transformations)

We were faced with the challenge of how to provide documentation that would convey
 information about 460+ elements in a meaningful way to prospective consumers. Even with
 a constraint schema, most of the elements were optional and used based on specific
 scenarios of the data.
NIEM Directory Structure
The structure of the schema is rigidly controlled by NIEM and the IEPD
 specification. Below is an example of an IEPD that was used to support this
 methodology.
Figure 1: IEPD Directory Structure
[image:]

NIEM Directory Structure
The IEPD in the above directory structure contains a total of 30 schemas.

NIEM Flexibility
NIEM by default has no constraints. What this means is that the structure is
 somewhat rigorous but all the elements, except the root element are optional. Most
 organizations cannot sustain a data model without constraints. NIEM has a concept of
 'unconstrained' and 'constrained' data model. If an organization decides to
 constrain its data model it must maintain 2 copies of the schema (constrained and
 unconstrained) and provide both in the IEPD.

NIEM and Substitution Groups
NIEM uses substitution groups instead for choices in the schema. Substitution
 groups are choices. The element that is included in the root model is not valid in
 the XML instance but can be substituted by other elements. The use of substitution
 groups is useful but can be very confusing to both business analysts and
 programmers. Also, many web services software could not consume the schemas with
 included substitution groups. We were never able to determine the exact reason but
 my hypothesis is that many of the substitution groups are cyclical and the software
 cannot handle the recursion. Substitution groups and software consumption of
 schema's that contain substitution groups is possibly a subject for another paper
 and not part of this paper!

NIEM and Referencing
Although NIEM is an XML exchange model, in actuality you can envision it more
 as a relational database model. Instead of a true hierarchical model where
 relationships can be construed by ancestor or descendant components, NIEM uses XML
 ID/IDREF constructs to provide relationships between different components. For
 example, in the model we were working with there were several major structures that
 belonged to a person. In other models you might embed all the information related a
 person with the person information. In NIEM, these components are separate and the
 information is 'tied' together by using a reference element:

<md-ee:PrimaryTaxFiler>
 <md-core:TINIdentification>
 <nc:IdentificationID>326603914</nc:IdentificationID>
 </md-core:TINIdentification>
 <md-core:RoleOfPersonReference s:ref="Dad"/>
</md-ee:PrimaryTaxFiler>
In the above example, this piece of information is referring back to the 'Dad'
 person. One of the sample XML documents that were provided as part of the
 documentation package for the IEPD had over 70 reference elements.

Namespaces
In the IEPD that was developed, there were a total of 15 namespaces. The more
 namespaces that you have, the more complicated the developing processes against the
 XML can be. Using 15 namespaces became challenging, not only for us but for
 developers with exchange partners. The 15 namespace prefixes that are used in the
 IEPD are: exch, ext, fips_6-4, i, i2, iso_3166, nc, niem-xsd, s, scr, usps, and 3
 custom namespaces used by the project.

Nillable Elements
Nillable elements are elements that are allowed to be empty. This is true even
 when the element has required children elements. Nillable elements are slightly
 different than true empty elements. Elements can be defined as having no content,
 or empty. For example, HTML elements
 and <hr/> elements are empty
 because they are using to define either a line break or a horizontal rule. Content
 would be meaningless for these elements. Whereas, nillable elements are designed to
 have content but the schema says they can be empty.
NIEM elements, by default, allow elements to be nillable. The NIEM specification
 was the first XML vocabulary that I have used that has actually used the 'nillable'
 capability of the XML schema. The use of nillable elements caused problems with
 both understanding the model and with software. Let's say you have the following
 model for a Person. In this model, the <PersonName> is required. The
 <PersonName> requires a <FirstName> and <LastName>. <MiddleName> is
 optional.
Figure 2: Person Name is Nillable
[image:]

Normally you would look at this model and see that the following XML tagging is
 valid:

<Person>
 <PersonName>
 <FirstName>Fannie</FirstName>
 <MiddleName>Mae</MiddleName>
 <LastName>Ryan</LastName>
 </PersonName>
</Person>

Or

<Person>
 <PersonName>
 <FirstName>Fannie</FirstName>
 <LastName>Ryan</LastName>
 </PersonName>
</Person>

However, when the "nillable='true'" attribute is set on the element declaration
 than the entire element is allowed to be null. By default, most NIEM elements are
 set as nillable. Therefore, the following is allowed for a Person described
 above:

<Person>
 <PersonName xsi:nil="true"/>
</Person>

Approach
Considering the challenges that we had and the reality that we weren't in a position
 where we could adequately document and convey the challenges of the complex model, it
 was necessary to 'think out of the box'. The model was
 complex and different components were required for different scenarios. These various
 scenarios were provided as XML documents as part of the IEPD documentation. Also,
 Schematron was developed to ensure that the XML validated against the various scenarios.
We understood that looking at the XML itself would only only provide a limited
 understanding of what the data actually means. The sample documents were heavily
 commented but traversing and understanding 3,000 + lines of XML would be difficult. In
 order to achieve success, the exchange partners had to understand the underlying XML to
 ensure that the exchange of information between partners was understandable.
I came up with an approach that would take the XML, turn it into PDF that looked like
 the XML, including 'pointy brackets' using XSLT and XSL-FO. The approach provided the
 following functionality:
	The XML was kept intact.

	Cross-references were 'live' hyperlinks. This allowed the reader to see how
 the cross-references worked.

	A navigation bar was added to allow traversing the model and visualizing the
 structure of the XML.

	Comments were included in the text and highlighted as comments.

	A table was included at the end of the XML to show all the cross-references,
 by element and by ID.

	A data dictionary of all the elements was included at the end of the PDF file.
 This provided documentation in a single file.

Default XML Template
Surprisingly, it is relatively easy to display the XML as XML, including pointy
 brackets and attributes. The default template took care of the bulk of the
 conversion. Below is the code for the default template:

 <xsl:template match="*">
 <xsl:if test="@xsi:nil='true'">
 <fo:block>Element allowed to be nil (empty).</fo:block>
 </xsl:if>
 <fo:block margin-left="15pt" margin-top="2pt" linefeed-treatment="preserve">
 <xsl:choose>
 <xsl:when test="@s:id">
 <xsl:attribute name="id">
 <xsl:value-of select="@s:id"/>
 </xsl:attribute>
 </xsl:when>
 <xsl:when test="contains(substring-after(name(), 'md-ee'), 'Eligibility')">
 <xsl:attribute name="id">
 <xsl:value-of select="substring-after(name(), 'md-ee:')"/>
 </xsl:attribute>
 </xsl:when>
 <xsl:otherwise/>
 </xsl:choose>
 <fo:inline color="maroon" font-weight="bold"> <<xsl:value-of select="name()"
 /><xsl:if test="@*"><xsl:call-template name="createAttributes"
 /></xsl:if>
 <xsl:if test="@xsi:nil"> xsi:nil="<xsl:value-of select="@xsi:nil"/></xsl:if>
 <xsl:if test="@xsi:nil">/</xsl:if>><fo:inline color="black"><xsl:apply-templates/></fo:inline></fo:inline>
 <xsl:if test="@s:metadata">
 <xsl:call-template name="createMetadata"/>
 </xsl:if>
 <xsl:choose>
 <xsl:when test="@xsi:nil='true'"></xsl:when>
 <xsl:otherwise> <fo:inline color="maroon" font-weight="bold"> </<xsl:value-of select="name()"
 />></fo:inline></xsl:otherwise>
 </xsl:choose>
 </fo:block>
 </xsl:template>

Below is the resulting PDF output from the default template.
Figure 3: Resulting Display from PDF File
[image:]

Headers and Footers
I felt it was important to provide both headers and footers in the PDF file. The
 headers provided information about which element you were viewing. The footer
 contained page numbers. Both the recto (right-hand) and verso (left-hand) pages
 were formatted appropriately. The header information shows the hierarchy of the
 elements on the page.
NOTE: Part of the header is redacted.
Figure 4: Example Header
[image:]

Figure 5: Footer Example
[image:]

Comments
The sample XML documents had many comments. These were used to convey important
 information and insight into the model for the users of the XML. It was important
 that these comments be included in the resulting PDF. In the XML instance the
 scenario was described as an XML comment. Below is an example of a comment that is
 in the XML instance.
Figure 6: Comment Example
[image:]

Dealing with Attributes
There are only 3 attributes that are used in the XML. The default template called
 another template to create the attributes.

 <xsl:template name="createAttributes">
 <xsl:if test="@s:id"> s:id="<xsl:value-of select="@s:id"/>"</xsl:if>
 <xsl:if test="@s:ref"> s:ref="<xsl:value-of select="@s:ref"/>"</xsl:if>
 <xsl:if test="@s:metadata"> s:metadata="<xsl:value-of select="@s:metadata"
 />"</xsl:if>
 </xsl:template>

Figure 7: Example of Attribute Output
[image:]

Major Sections
I wanted the ability to differentiate the different sections. A separate template
 was made for major sections. This provided the ability to have titles and have the
 sections start on new pages. This enabled better readability of the XML. Below is
 an example of a template for a person section.
Figure 8: Person Major Section
[image:]

Navigation Bar/Bookmarks
A navigation bar was created to allow the reader to navigate the hierarchy. It
 included expanding and collapsing of the hierarchy. The navigation bar proved to be
 one of the most useful features of the PDF. Business Analysts do not have XML tools
 and to our surprise, neither do programmers. Navigating the schema in a graphical
 representation with tools such as Oxygen, XML Spy and Stylus Studio are really
 beneficial. With NIEM it is almost essential. To our surprise we found that most
 organizations to not provide XML tools to their programmers. They only have access
 to tools available in JAVA toolkits. Most programmers were using SOAPUI for
 development and testing. Therefore, the navigation bar became quite useful.
Figure 9: Snippet of Navigation Bar
[image:]

Cross-References
As stated previously NIEM relies heavily on cross-references. In one sample there
 were over 70 cross-references. In the PDF, cross-references are 'hot'. This
 enables the user to link to the location where the information is located. We used
 'meaningful' identifiers in the samples, just to make it easier to understand and
 navigate the XML. However, in practice the id's are normally not human ingestible.
 As a standard all blue text in the PDF are active links.
The PDF created a table of cross-references which provided just another look at
 how the cross-references actually worked.
Figure 10: Active Cross-references
[image:]

Figure 11: Cross-Reference Table
[image:]

The last column of the table is a hyperlink to the location in the PDF where the
 id attribute is located.

Data Dictionary
The final component in the PDF included a Data Dictionary of the schema. The NIEM
 specification requires that all elements are documented. The XSLT traversed the
 schema and created a data dictionary that contained all the elements, sorted
 alphabetically, and their definition. This provided a mechanism for the user to
 quickly find the definition for an element. In most cases the elements were
 self-describing, i.e., <PersonAmericanIndianOrAlaskaNativeIndicator>, but there
 were elements that were named ambiguously.
The navigation bar provided an expansion to link to an individual alphabetic
 location.
Figure 12: Data Dictionary Navigation Bar
[image:]

Benefits
I believe that the benefits to this approach are many. The users very quickly became
 dependent on the PDF to help them understand the model. Most developers and testers
 used the PDF version of the XML as a guideline instead of the native XML sample that was
 provided to them. Before the PDF was developed internal testers had many questions and
 misunderstandings of the model. Although the PDF didn't completely alleviate questions,
 the amount of questions were reduced in number.
The PDF file was understandable to any discipline in the business and development
 process. The result of the PDF was:
	Quicker understanding of data model

	More accurate understanding of data model

	Faster development

	Easier validation and testing by independent testers

	Less coding errors

Although there isn't any way to quantitatively evaluate the cost-savings, I believe
 that the PDF did result in cost savings through the entire life-cycle.

Conclusion
Although this approach may seem a little 'extreme', I believe that it is very
 beneficial to providing information on complex data models. It proved invaluable for
 our project. I also believe that this approach would be useful to any complex XML
 project. It provides clarity of the model that may not be available otherwise. The XML
 schema (especially NIEM) can only provide so much information about how to knit the data
 together.
It also amazes me how many organizations do not provide XML tools to their developers
 and other individuals working with XML. The cost benefits they would reap by providing
 adequate tools would far outweigh the cost of the software. Without these tools
 navigating and understanding complex models are difficult at best. I don't have a
 scientific analysis of how many of the programmers on this project did not have adequate
 XML tools but I guess that at least 75% did not.
If faced with the same challenges in the future, would I take this same approach.
 Unequivocally yes!

Bibliography
NIEM Website: https://www.niem.gov/

Balisage: The Markup Conference

Methodology For Providing National Information Exchange Model (NIEM) Model Understanding
 to XML and NIEM Novices
Betty Harvey
Electronic Commerce Connection,
 Inc.

 As President of Electronic Commerce Connection, Inc. since 1995, Ms. Harvey
 has led many federal government and commercial enterprises in planning and
 executing their migration to the use of structured information for their
 critical functions. She has helped develop strategic XML solutions for her
 clients. Ms. Harvey has been instrumental in developing industry XML standards.
 She is the co-author of "Professional ebXML Foundations" published by Wrox. Ms.
 Harvey founded the Washington, DC Area SGML/XML Users Group. Ms. Harvey is a
 member of "The XML Guild" and was a coauthor of the book "Advanced XML
 Applications From the Experts at The XML Guild" published by Thomson.

Balisage: The Markup Conference

content/images/Harvey01-011.jpg
Cross Reference Table

[Element N (siref) Parent Element D Value i) Element Name Giid)
|nc-PersonReference | PersonAssociation [Mom

|nc-PersonReference | PersonAssociation | Cuilat

[oc-PersonReference [Peontssociation Chids

Joc PersonReference [Pessonsssocition EldertyFather

[oc PersonReference [Personssocition Dud

[oc PersonReference [Persoatssocition Moar

|nc-PersonReference |:PersonA ssociation |Chitd1

[oc PersonReference: [Personssociation Cuids

e PersonReference | Personssocition EldertyFather

content/images/Harvey01-010.jpg
AAAAAL

HouseholdMemberReference s:ref="Dad"/>

[HouseholdMemberReference s:ref="Child3"/>

blue are
active

ouseholdMemberReference s:ref="ElderlyFather"/>

content/images/Harvey01-009.jpg
P ferson Dadl T
[P person Mom]

[person [Child1]

[person [Child2]

[Person [Child3]

[P Person [ElderlyFather]

[P Tax Return

content/images/Harvey01-004.jpg
Example
I <= 2 [Mom] —

content/images/Harvey01-003.jpg
<nc:OrganizationPrimaryContactinformation>
<nc:ContactMailingAddress>
<nc:StructuredAddress>
<nc:LocationStreet>
<nc:StreetFullText>200 Main Street </nc:StreetFullText>
<Inc:LocationStreet>
ocationCityName>Mannington </nc:LocationCityName>
<nc:LocationStateUSPostalServiceCode>WV
<Inc:LocationStateUSPostalServiceCode>
<nc:LocationPostalCode>26582 <nc:LocationPostalCode>
<Inc:StructuredAddress>
<Inc:ContactMailingAddress>
<Inc:OrganizationPrimaryContactinformation>

content/images/Harvey01-002.png
© [PersonType

eee—‘

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

content/images/Harvey01-001.jpg
4 XMLSchemas.
s constaint
i XMLSchemas.
. exchange
. extension

. riem
3, domains.

"5 ma

w0

1, usps_siates

s subset

s riem
4 awpinfo
P
w2
. domains
. screening

20

4y unconsirained
). XMUSchemas

4, exchange

. extension

. domains
), screening
520

content/images/Harvey01-012.jpg
E1F Model Resources
[P Cross Reference Help
E{F Schema Elements
T a
Pe
Pc
Po
Pe
P H
1
L
(LyY]
Fo

content/images/Harvey01-008.jpg
Person 1 [Dad]

<Mmm-core:Person s:id="Dad">
<nc:PersonAgeMeasure>
<nc:MeasurePointValue>51 </nc:MeasurePointValue>
ersonAgeMeasure>
<nc:PersonBirthDate>

content/images/Harvey01-007.jpg
<hix-ee:ESIAugmentation>
<hix-ee:ESI 5:id="ManningtonDryGoodsESI">
<hix-ee:ESILowestCostPlan>

content/images/Harvey01-006.jpg
XML identifiers. NIEM uses the ‘it attribute to provide unique i's to XML components. The.
‘s atributes must be unique within the XML document. Two documents can have the same
values for i attributes because they get processed individually. The ‘s attibute s used i
many elements i this structurs to provide references to other components. The PDF version of
this XML document will demonsirate the linkages. There isnt a imit on how many ‘s attributes|
reference a single ‘sid" attrbute in a document

content/images/Harvey01-005.jpg
156

