[image: Balisage logo]Balisage: The Markup Conference

Marking up changes to ISO standards: A case study
Tristan Mitchell
Senior Software Engineer
DeltaXML Ltd.

<tristan.mitchell@deltaxml.com>

Nigel Whitaker
Chief Architect
DeltaXML Ltd.

<nigel.whitaker@deltaxml.com>

Balisage: The Markup Conference 2013
August 6 - 9, 2013

Copyright © 2013 DeltaXML Ltd.

How to cite this paper
Mitchell, Tristan, and Nigel Whitaker. "Marking up changes to ISO standards: A case study." Presented at: Balisage: The Markup Conference 2013, Montréal, Canada, August 6 - 9, 2013. In Proceedings of Balisage: The Markup Conference 2013.
 Balisage Series on Markup Technologies vol. 10 (2013). https://doi.org/10.4242/BalisageVol10.Mitchell01.

Abstract
The ISO Standards Tags Set (ISOSTS) is a customization of NISO’s Journal Article Tag Suite (JATS) developed for the International Standards Organization for authoring standards
 documents.
As part of the authoring workflow used at ISO, they required the capability to produce redline publications of a document in order to show
 changes between different versions of a given standard. Alongside Typefi, who provided the functionality for publishing the marked XML into PDF with redlining, we provided our XML
 comparison toolset to detect and mark the changes as required.
This paper discusses some of the issues we faced while completing this work, including the representation of changes in the XML, comparison of tables, ignoring text formatting
 changes, and the use of processing instructions. The paper also looks at the pros and cons of various format design decisions that can have an impact on the suitability of that
 format to support good comparison.

Balisage: The Markup Conference

 Marking up changes to ISO standards: A case study

 Table of Contents

 	Title Page

 	Introduction

 	Document Comparison Overview
 	Change representation
 	Tracked Changes

 	Format-specific syntax

 	Generic change representation

 	Making use of DTDs and schema
 	Whitespace

 	Infoset Augmentation

 	Table Comparison

 	Text formatting changes

 	ID and IDREF attributes

 	Processing Instructions

 	Word Capitalization

 	HTML change visualization

 	Results

 	Summary

 	About the Authors

 Marking up changes to ISO standards: A case study

Introduction
The ISO Standards Tags Set (ISOSTS) [[isosts]] is a customization of NISO’s Journal Article Tag Suite (JATS) developed by Mulberry Technologies
 [[mulberry]] for the International Standards Organization for authoring standards documents. Documents authored in this format can then be
 converted into multiple publishing formats such as Adobe InDesign, PDF, HTML or EPUB, using a solution from Typefi called Typefi Publish [[typefi-publish]]. As part of the authoring workflow used at ISO, there was a requirement to produce documents in these published formats that displayed changes between
 different versions of a standard using redlining. Redlining is a technique for marking changes in a document, typically using text styling to highlight deleted and/or added content.
 For example, all deleted text could be highlighted by colouring it red and striking through the text. Added content could be highlighted with an underline. It is also common practice
 to highlight only added content and mark the position of deleted content using a caret such as ‸ or ⁁.
Typefi approached us and asked us to be involved in producing a proof of concept, building on top of their existing solution for ISO. Our expertise in XML comparison and change
 representation matches perfectly with Typefi’s expertise in content layout and document publishing to provide a solution to this new requirement for ISO. Our contribution included
 producing a tailored comparison of ISOSTS documents, ignoring certain types of change that were not important to ISO. The result from this is fed into Typefi Publish which handles the
 DeltaXML change representation format, DeltaV2, to produce the redlined final output. As an alternative, we also provided modifications to ISO XSLT stylesheets that convert ISOSTS into
 XHTML directly. These modifications used CSS to provide the redline change highlighting.

Document Comparison Overview
Comparison is a key component of any system that is dealing with documents that change during their lifetime. Understanding the differences between different versions of a document
 is absolutely vital and, in some industries, can even be a legal requirement. It is therefore important to understand the implications for document comparison when those documents are
 stored in an XML format such as ISOSTS.
Because of the structure and syntax of XML, line based comparison tools can often produce incorrect comparison results. Line based tools are often unaware of XML syntax, and
 changes which can usually be ignored, such as indentation, namespace prefixes, and attribute ordering can lead to false notification of changes. Consider the following two XML
 documents and the line-based comparison provided by a UNIX diff.
Figure 1: Document A
<document xmlns="demo-namespace">
 <title>This is the document title</title>
 <p>An example paragraph</p>
 <p>Lack of namespace awareness makes line based diff ineffective</p>
</document>

Figure 2: Document B
<demo:document xmlns:demo="demo-namespace">
 <demo:title>This is the document title</demo:title>
 <demo:p>An example paragraph</demo:p>
 <demo:p>Lack of namespace awareness makes line-based diff ineffective</demo:p>
</demo:document>

Figure 3: Result of comparing Figure 1 and Figure 2 with UNIX diff
1,5c1,5
< <document xmlns="demo-namespace">
< <title>This is the document title</title>
< <p>An example paragraph</p>
< <p>Lack of namespace awareness makes line based diff ineffective</p>
< </document>

> <demo:document xmlns:demo="demo-namespace">
> <demo:title>This is the document title</demo:title>
> <demo:p>An example paragraph</demo:p>
> <demo:p>Lack of namespace awareness makes line-based diff ineffective</demo:p>
> </demo:document>

The result of this particular line based comparison gives no advantage over visually inspecting the two documents to detect the differences. The tool’s lack of understanding of XML
 syntax means that it detects far too much difference in the two documents.
It is possible to improve the results of a line based comparison by canonicalizing the documents to be compared to ensure consistent use of namespace prefixes, defined attribute
 ordering, and consistent indentation. This will go some way to reducing the amount of false differences identified by line based tools but there are still limitations with what can be
 achieved. Change identification at the word level is potentially still problematic and if the documents reference a DTD for example, correct parsing of the documents is necessary for a
 comprehensive comparison since parsing may actually affect the content of the document itself (this is covered in more detail in section “Infoset Augmentation”).
An XML aware tool has the advantage of being able to parse the document, taking into account any references to external content (e.g. DTDs, XIncludes) where necessary. As well as
 parsing, it is then a simple task to add pre-processing of documents using various XSLT steps to perform tasks such as segmenting sentences into individual words. If we use an XML
 aware tool such as DeltaXML Core to compare the two documents, we get a result more like that shown in Figure 4. This is an HTML rendering of the underlying
 result format produced by DeltaXML Core.
Figure 4: Result of comparing Figure 1 and Figure 2 with DeltaXML Core
[image:]

Change representation
Identifying change to XML documents is just the first part of a solution. Once these changes have been discovered, there needs to be a way of representing those changes. This
 does not necessarily need to be in a result document; in some use cases it may be appropriate to produce a report on the changes that have been made. However, in the context of
 producing redline documents, it will be necessary to represent the changes within the context of the documents themselves. In the case of ISOSTS, this marked document is an
 intermediate result file which can subsequently be rendered either as a redlined PDF, using Typefi Publish, or as a redlined XHTML document, using the XSLT stylesheet extension
 mentioned in section “HTML change visualization”.
There are several options for representing change within the document context, each of which has its own benefits and drawbacks.
Tracked Changes
Although tracked change representations are usually intended to be generated during live editing of a document, it is perfectly possible to generate the relevant syntax from
 changes identified during a comparison. The actual syntax varies depending on the consuming application but many editors use processing instructions to mark changes.
The advantage of processing instructions as a representation is that they do not break the validity of the content they are tracking and they do not require modification to a
 format to enable tracking of change. A major disadvantage is that there is no standard syntax defined; each editor typically uses its own syntax to represent change. This means
 that, if visualisation of changes is required in multiple editors, changes identified will need to be converted into multiple result formats. There is also the chance that it is
 not possible to represent specific types of change, e.g. attribute changes, using the syntax provided by a specific editor.
This type of change representation was not appropriate in the ISO solution as the final document needed to be a published document that was not viewed in an editing
 application. In order for changes to be displayed in hard copies of a document, they needed to be represented by styling of the text and, while it is technically possible to
 convert these processing instructions into styling as part of a publishing process, other representations were deemed more suitable.

Format-specific syntax
Some document formats, e.g. DocBook, DITA, and OpenDocument, define elements and/or attributes specifically for marking changes. DocBook, for example, includes a
 revisionflag attribute on most elements that can take the values changed, added, deleted, and off. DITA includes
 a CDATA rev attribute and a status attribute that can take the values changed, new, deleted, and
 unchanged. These attributes can be used to represent change, and the relevant tools for publishing documents to formats such as HTML and PDF can use them to add
 styling for change highlighting.
The advantage of using this type of syntax is that it is built directly into the language specification. This means that there is often support for making use of such syntax in
 existing publishing tools. Again, one disadvantage is that the syntax may not be valid on every element that has been changed. In DocBook and DITA, it is not possible to mark
 attribute changes using the aforementioned syntax.
Of course, not all documentation formats include such syntax in their specification and in this case, we must either amend the specification where possible, or use another
 approach. This was the case for ISOSTS but as we were not able to edit the specification we opted to use our own generic change representation.

Generic change representation
Both options listed above are specific to particular formats or editors and, while they are useful ways of representing change, they do require the use of specific tools or
 languages. A generic way of representing change in XML is a more preferable solution as it can be applied to any XML format, whether change marking is specified in the language or
 not and, with appropriate support, could be visualised in any editor.
A generic solution should be able to represent change to any part of an XML document including addition/deletion/modification of attributes, and addition/deletion of elements
 and text. Ideally, it should not cause the XML document to be invalid and it should be simple to process the document to obtain the ‘latest’ version. To ensure consistency across
 different document formats and editors, such a solution lends itself well to becoming a standard and the W3C has created a Change Tracking Markup Community Group [[w3c-change]] in order to discuss ideas that could potentially lead to a standard.
In the meantime, we continue to use our own generic markup format, DeltaV2 [[deltav2]], to represent changes to XML documents. This markup
 uses elements and attributes in a separate namespace to show the input documents in which each element occurred. In the case where an element occurs in both documents, attributes
 are used to show whether there have been modifications. It is possible to represent attribute changes by converting an element’s changed attributes into an XML subtree containing
 the relevant information. Text changes are also represented by wrapping different versions of text strings inside elements. An example result representing the changes between the
 documents defined above (Figure 1 and Figure 2) is shown below.
Figure 5: DeltaV2 Result
<document xmlns:deltaxml="http://www.deltaxml.com/ns/well-formed-delta-v1"
 deltaxml:deltaV2="A!=B" deltaxml:version="2.0" deltaxml:content-type="full-context">
 <title deltaxml:deltaV2="A=B">This is the document title</title>
 <p deltaxml:deltaV2="A=B">An example paragraph</p>
 <p deltaxml:deltaV2="A!=B">Lack of namespace awareness makes line
 <deltaxml:textGroup deltaxml:deltaV2="A!=B">
 <deltaxml:text deltaxml:deltaV2="A"> </deltaxml:text>
 <deltaxml:text deltaxml:deltaV2="B">-</deltaxml:text>
 </deltaxml:textGroup>
 based diff ineffective</p>
</document>

Making use of DTDs and schema
We encountered issues with some of the ISO documents we tested as the use of DOCTYPE instructions was not consistent. For a given pair of documents, for example, one included a
 DOCTYPE instruction but the other did not. This led to issues, particularly with infoset augmentation, described below. The ISOSTS standard does not explicitly state the intended use
 of the DTD and whether it should be included in instance files in a DOCTYPE instruction. This could lead to different behaviour for documents provided by different implementers. Many
 specifications, for example the XHTML specification [[xhtml-spec]], explicitly state that a conforming document MUST include a DOCTYPE
 instruction.
While many XML authors will understand that a DOCTYPE instruction has “something to do with validating” the XML they are writing, they will not always be clear about the full
 implications of this instruction. While it is true that a DTD provides validation of the document being authored, it also has implications on the meaning of whitespace in a document
 and on the appearance and/or value of certain attributes.
Whitespace
Prior to comparison, it is recommended practice to ‘normalize’ whitespace within the input documents. This is because differences in whitespace are not usually significant to
 authors and in fact cannot always be represented once a document has been rendered in a publishing format. Whitespace normalization, in its simplest sense, converts each whitespace
 sequence into a single space character. This means that all indentation and occurrences of multiple contiguous spaces are removed, being replaced by a single space. More typically
 though, normalization also involves the complete removal of inter-element whitespace. This is whitespace that is used purely for indentation and
 readability and has no textual meaning at all. A simplistic approach to normalizing this kind of whitespace is to remove all PCDATA nodes that contain only whitespace characters.
 This leads to problems in mixed content, as can be seen in the example below.
Figure 6
<document>•
••<p>This◦text◦contains◦bold◦and*<i>italic</i>◦text</p>•
</document>

The example includes three types of whitespace nodes: inter-element whitespace within a PCDATA node that contains only whitespace (marked with a •) that can safely be removed
 entirely, whitespace within a PCDATA node that also contains non-whitespace characters (marked with a ◦) that can be normalized to a single space character but should not be removed,
 and whitespace within a PCDATA node that contains purely whitespace (marked with a *) that should NOT be removed. The difference between the whitespace marked * and that marked • is
 not obvious when subsequently processing the XML but the use of a DOCTYPE instruction will cause the different types of whitespace to be reported differently by an XML parser.
Consider a possible DTD for this document, shown below.
Figure 7
<!ELEMENT document (p)* >
<!ELEMENT p (#PCDATA | b | i)* >
<!ELEMENT b (#PCDATA) >
<!ELEMENT i (#PCDATA) >

With the inclusion of this DTD, the parser can now differentiate between the different types of whitespace. Whitespace marked in the previous example as • can now be reported as
 ignorable whitespace as the DTD states that no PCDATA can be present as a child of the document element. All other whitespace is
 reported using the characters event and should be treated as ‘normal’ PCDATA. It could still be normalized to a single space character but should not
 be removed entirely.

Infoset Augmentation
Another important implication of DTD or schema use is infoset augmentation. Infoset augmentation means adding data from the DTD or schema to the resulting parsed representation.
 It is often used to specify values of attributes, for example that a table by default will have a 1 pixel border.
If DOCTYPE instructions are not used consistently in documents to be compared, it is quite possible that one of the inputs will undergo infoset augmentation while the other one
 does not. This causes misleading comparison results to appear because attributes that were added during parsing in one document but not in the other appear as added or deleted in the
 result. Such problems can be avoided by consistent use of DOCTYPE instructions.

Table Comparison
The ISOSTS specification uses the XHTML table model to define how tables are declared. While not as complex as the CALS table model, there are still significant issues with this
 model if tables are compared as ‘plain’ XML, without knowledge of the table structure. One example of this is adding row spanning to a cell.
Figure 8: Original Table
<table>
 <tbody>
 <tr><td>Cell 1</td><td>Cell 2</td></tr>
 <tr><td>Cell 3</td><td>Cell 4</td></tr>
 <tr><td>Cell 5</td><td>Cell 6</td></tr>
 </tbody>
</table>
Table I
Original Table, rendered

	Cell 1	Cell 2
	Cell 3	Cell 4
	Cell 5	Cell 6

Figure 9: Modified Table
<table>
 <tbody>
 <tr><td rowspan="2">Cell 1</td><td>Cell 2</td></tr>
 <tr><td>Cell 4</td></tr>
 <tr><td>Cell 5</td><td>Cell 6</td></tr>
 </tbody>
</table>
Table II
Modified Table, rendered

	Cell 1	Cell 2
	Cell 4
	Cell 5	Cell 6

Figure 10: Table Comparison Result
<table deltaxml:deltaV2="A!=B" ...>
 <tbody deltaxml:deltaV2="A!=B">
 <tr deltaxml:deltaV2="A!=B">
 <td deltaxml:deltaV2="A!=B">
 <deltaxml:attributes deltaxml:deltaV2="B">
 <dxa:rowspan deltaxml:deltaV2="B">
 <deltaxml:attributeValue deltaxml:deltaV2="B">2</deltaxml:attributeValue>
 </dxa:rowspan>
 </deltaxml:attributes>
 Cell 1
 </td>
 <td deltaxml:deltaV2="A=B">Cell 2</td>
 </tr>
 <tr deltaxml:deltaV2="A!=B">
 <td deltaxml:deltaV2="A">Cell 3</td>
 <td deltaxml:deltaV2="A=B">Cell 4</td>
 </tr>
 <tr deltaxml:deltaV2="A=B">
 <td>Cell 5</td>
 <td>Cell 6</td>
 </tr>
 </tbody>
</table>
Table III
Rendered result table, using bold italics to show deletion

	Cell 1	Cell 2
	Cell 3	Cell 4
	Cell 5	Cell 6

As can be seen, the resultant table does not render well as the second row now includes too many cells, thus pushing Cell 4 too far to the right. A better result would be to handle
 the change to row spanning by including the problematic rows from the original table, marked as deleted, followed by the matching rows from the modified table, marked as added. This
 can be seen in the example below.
Figure 11: An improved table result
<table deltaxml:deltaV2="A!=B" ...>
 <tbody deltaxml:deltaV2="A!=B">
 <tr deltaxml:deltaV2="A">
 <td>Cell 1</td>
 <td>Cell 2</td>
 </tr>
 <tr deltaxml:deltaV2="A">
 <td>Cell 3</td>
 <td>Cell 4</td>
 </tr>
 <tr deltaxml:deltaV2="B">
 <td rowspan="2">Cell 1</td>
 <td>Cell 2</td>
 </tr>
 <tr deltaxml:deltaV2="B">
 <td>Cell 4</td>
 </tr>
 <tr deltaxml:deltaV2="A=B">
 <td>Cell 5</td>
 <td>Cell 6</td>
 </tr>
 </tbody>
</table>
Table IV
Rendered result table, using bold italics to show deletion and underline to show addition

	Cell 1	Cell 2
	Cell 3	Cell 4
	Cell 1	Cell 2
	Cell 4
	Cell 5	Cell 6

This is one example of the way that tables are handled intelligently during the comparison phase. As mentioned above, the XHTML table model is simpler than the CALS table model
 leading to fewer potential issues during comparison, but there were still a number of problems that needed to be solved.

Text formatting changes
Changing the format of specific pieces of text, e.g. highlighting a word by making it bold or italic, is common during text editing but should this constitute a change in a redline
 document? The answer will depend on the context of the change, whether the subject domain places meaning on such formatting, and whether or not there is a requirement to see these kind
 of changes in the redline document. In the case that it should be highlighted, there may be different ways of doing so. The document reviewer may wish to see the text with its old
 formatting marked as deleted and the text with its new formatting marked as added so that a complete view of the change is present. In other situations, it may be sufficient to mark
 the text with some other kind of highlighting to show that there has been a formatting change but not include details of how the formatting has changed.
Many content authors may not even understand that there is an XML structure underlying their document and that a format change actually constitutes a structural change. Thus, when
 they make a word bold and the resultant comparison result shows the word deleted and then added again, they see this as a mistake.
Figure 12: A result file showing a formatting change
<p deltaxml:deltaV2="A!=B" ... >The addition of
 <deltaxml:textGroup deltaxml:deltaV2="A">
 <deltaxml:text deltaxml:deltaV2="A">bold</deltaxml:text>
 </deltaxml:textGroup>
 <b deltaxml:deltaV2="B">bold
 formatting.
</p>

In order to have the ability of marking formatting changes in a different way, or in fact ignoring them completely, we need to have some way of detecting the structural change
 without having to mark the underlying text as changed as well. One technique we have utilised for this is to pre-process the documents to flatten the structure of formatting elements.
 The following example shows a document with a bold word that has had its formatting flattened.
Figure 13: A pre-processed input with flattened formatting
<p xmlns:deltaxml="...">
 The addition of
 <deltaxml:format-start>
 <deltaxml:element></deltaxml:element>
 </deltaxml:format-start>
 bold
 <deltaxml:format-end/>
 formatting.
</p>

This flattened structure can handle formatting elements that are a simple tag, e.g. or <i/> and also more complex formatting such as
 . Processing the input documents in this way then allows the text to be compared more intuitively, as it is all at the
 same level in the XML structure. Format changes are detected as changes to the <deltaxml:format-start/> and <deltaxml:format-end/> elements and the
 structured formatting can be reconstructed after comparison. There is the potential for overlapping structures in the result when formatting is flattened; to solve this problem, the
 formatting from one of the input documents, typically the latest or ‘B’ document, is given priority when reconstructing.
ISO’s requirement was to ignore formatting changes completely and, for content that was in both input documents, to include the formatting from the latest or ‘B’ document. This
 makes reconstructing the formatting elements a lot simpler because in the case where formatting has changed it is possible to ignore all of the elements marked as being only in
 document ‘A’.

ID and IDREF attributes
ID attributes and their associated IDREFs are typically used for internal cross-referencing in documents. It is important that the target of a cross-reference is declared as an
 attribute having type ID in order to ensure uniqueness within the document. Unfortunately, this uniqueness constraint can cause problems in the result file, which must be overcome.
 Imagine the situation where an image, e.g. an element, is used to display a diagram and defines an ID, e.g. . An editor of
 the document decides that this should have been defined using a figure element but, to avoid having to update references to the diagram, uses the same id: <fig
 xml:id="widget"/>. This is all perfectly valid because each document maintains uniqueness of its IDs. However, the comparison result file will contain the following content
 because of the requirement to view both added and deleted content in the same document.
Figure 14
...

<fig deltaxml:deltaV2="B" xml:id="widget" />
...

The document now contains two elements with the same ID value, which makes it invalid. This situation can be resolved by renaming the IDs on any deleted, or ‘A’ document elements
 and also updating any references to that element (these will be elements in the ‘A’ document only, that contain an IDREF whose value is the ID in question). The following figure shows
 an example of a fixed result file.
Figure 15: An example fixed result file
<document deltaxml:deltaV2="A!=B" ... >

 <fig deltaxml:deltaV2="B" xml:id="widget" />
 <p deltaxml:deltaV2="A">This reference to the img will be deleted <xref linkend="widget_deleted_1" /></p>
 <p deltaxml:deltaV2="A=B">This reference will be kept in the new document <xref linkend="widget" /></p>
</document>

This document is now valid in respect of its ID uniqueness. The deleted first paragraph contains a reference to the old diagram as that is what it was referencing. The remaining
 second paragraph now points to the new version of the diagram. The naming scheme for updating deleted ID attributes can ensure uniqueness by using a number suffix that does not exist
 in the document. This can be checked against all existing IDs in the document.
Another potential use of ID values is to use them during comparison to align elements of the same type with matching IDs. This can improve comparison results, particularly for
 documents that include repeated sentences and phrases as can be typical in legal documents for example. For this technique to work, an element must maintain its ID value across
 different versions of the document so that its identity is consistent. Many XML documents are auto-generated from some other format and part of this process will involve the generation
 of ID values. If these are randomly generated, they will not be suitable for this use as equivalent elements in different versions of a document will not have the same ID. Even if they
 are not random and use a naming scheme, e.g. fig1, fig2, fig3 etc., removal of an element in this sequence could have a ripple effect on the ID values for all subsequent elements,
 again making them unsuitable for use during comparison. This was the case for the ISO documents and the ripple effect of ID values changing caused a large amount of change to ID
 attributes that had to be handled using the technique above.

Processing Instructions
Processing instructions are used to supply a consuming application with information. One thing they are increasingly used for is to insert data and/or content into a document
 format that does not allow for that content in its model. This is a way of providing a customized extension to a document format but is often used as a quick fix when a more
 appropriate solution would be to add the required functionality to the language specification. An example of this is the use of a processing instruction to specify the size at which a
 table should be rendered on a page. In the ISOSTS documents we tested, we saw the use of processing instructions to specify an external image location that could have been included as an attribute, e.g. <?img-id D09291AZ.PNG?> instead of .
One of the problems this causes is that if you compare documents containing such processing instructions and you want the result file to include the processing instructions, there
 is no sensible way of representing change to them as they are not XML elements. It is possible to preserve processing instructions, and even detect change in them by first converting
 them into an XML structure, comparing documents, and then converting the XML structure back into processing instructions. A potential solution to representing change is to duplicate
 the containing element whenever a change is detected in a processing instruction. For example, and containing a processing instruction as above with a change to
 the external location of that image could be represented as an image deletion and addition e.g. Figure 16
...
 <?img-id old-image.png?>
 <?img-id new-image.png?>
...

This solution is not as good as being able to represent change to an href attribute as it is not as easily processed but it provides a reasonable result. This can,
 however, be problematic if the element containing the processing instruction is very large, e.g. a table containing a processing instruction that gives information on how it should be
 rendered. Including two versions of the whole table in order to represent the processing instruction change does not give a sensible result.

Word Capitalization
Word capitalization, like formatting change, is often viewed as an insignificant change that should not be highlighted in a redline document. This was indeed the case with ISO’s
 requirements. Like formatting, the result document needed to include the version of the text that was in the latest, or ‘B’ document.
A potential solution to this problem is to pre-process the input documents to ensure that all text uses only lower case. For documents whose text is mainly prose, this is not
 appropriate as upper case letters are an important feature of the text and should be preserved during comparison. Because pre-processing the inputs in this way does not make sense for
 the ISOSTS documents, the solution was to post-process the result file to detect those text changes where the only difference between the two versions was letter case. The following
 figure gives an example of the kind of change that can be detected.
Figure 17: An example of a text change involving capitalization
<p deltaxml:deltaV2="A!=B" ... >
 Word capitalization is often seen as an
 <deltaxml:textGroup deltaxml:deltaV2="A!=B">
 <deltaxml:text deltaxml:deltaV2="A">insignificant</deltaxml:text>
 <deltaxml:text deltaxml:deltaV2="B">Insignificant</deltaxml:text>
 </deltaxml:textGroup>
 change.
</p>

A text-based comparison of the ‘A’ and ‘B’ branches of the <deltaxml:textGroup/> element after converting both strings to all lower-case, shows that there is no
 change. In this situation, we can remove the marked changes and include only the text from the ‘B’ document.
This technique works well for the cases where a text change is purely a capitalization change. More complex changes that involve capitalization in conjunction with addition and/or
 deletion of surrounding words will still include the capitalization change in the final output. As the capitalization is part of a larger change which will need to be reviewed anyway,
 this is not likely to be a significant inconvenience.

HTML change visualization
As well as the ISOSTS specification, ISO provide XSLT stylesheets that convert an ISOSTS document into standalone XHTML. These stylesheets provide a useful and simple way of
 producing a published version of standards documents for previewing during authoring. They can also be used to publish an online version of a standard.
As well as providing the intermediate change representation for input into Typefi Publish, we were able to extend the XSLT stylesheets to provide some redline functionality in the
 XHTML output. In the simplest cases, this involved first categorizing the elements in ISOSTS as either block-level or inline elements and then extending the output templates to wrap
 block-level elements in a <div/> and inline elements in a with these wrappers defining a class attribute containing the value of
 the intermediate result’s deltaV2 attribute where it was ‘A’ or ‘B’. These classes were then styled using CSS to highlight deletions with a red background and additions
 with a green background.
Other cases were more complicated and involved the overriding of whole processing templates in the original XSLT but the final result was a useful rendering of redlining in
 XHTML.

Results
The following figures show an excerpt from each of the different types of redline result that were produced. The PDF result was produced using the intermediate result delta,
 published through Typefi Publish and the HTML result was produced by transforming the intermediate delta file using our XSLT extension to the ISO stylesheets. Unfortunately, images
 were not available for the HTML output at the time of writing.
Figure 18: A PDF rendering of the redline result
[image:]

Figure 19: An HTML rendering of the redline result
[image:]

Summary
Document comparison is a key part of any workflow involving changing documents and, with more and more documents being stored as XML, it is important to provide tools that
 understand the XML structure and the implications that it has on comparison results. As we have demonstrated, there are many subtle areas to consider when looking at XML comparison and
 change representation and many of the problems we have encountered could have been made simpler by designing the document formats with comparison and change representation in mind.
 This case study shows that the problems arising during comparison of structured content are not insurmountable and those considering moving to an XML representation for their document
 storage should not be reluctant to do so based on any of issues seen here.
Structured content offers huge benefits, not least of which is the processability of content to multiple published formats. This case study has shown that the production of an
 intermediate document containing change representation can be used to produce redline documents in both PDF and XHTML. This intermediate file can quite easily be further processed to
 select the types of change which should be highlighted and those which should be ignored.
Coupling this technology with Typefi Publish, which provides the flexibility of multiple output formats and professional layout and design capabilities provided ISO with a
 comprehensive solution to their requirements for published redline documents.

Bibliography
[deltav2] DeltaXML, “DeltaV2 Format”, http://www.deltaxml.com/support/documents/deltav2 (accessed July 15 2013)
[isosts] ISO, "ISO Standards Tag Set", http://www.iso.org/schema/isosts/ (accessed July 15 2013)
[mulberry] Mulberry Technologies, "Mulberry Technologies Inc", http://www.mulberrytech.com (accessed July 15 2013)
[typefi-publish] Typefi, "Typefi Publish", http://www.typefi.com/typefi-publish (accessed July 15 2013)
[w3c-change] W3C, “Change Tracking Markup Community Group”, http://www.w3.org/community/change/> (accessed July 15 2013)
[xhtml-spec] W3C, “XHTML 1.1 - Conformance Definition”, http://www.w3.org/TR/xhtml11/conformance.html#s_conform (accessed July 15 2013)

Balisage: The Markup Conference

Marking up changes to ISO standards: A case study
Tristan Mitchell
Senior Software Engineer
DeltaXML Ltd.

<tristan.mitchell@deltaxml.com>
Tristan joined DeltaXML after graduating with an MEng from Aberystwyth University in 2004. Since then he has been involved in improving the performance of DeltaXML’s comparison
 software as well as developing new ways of representing change to XML.
Tristan lives in Salisbury, UK, with his wife and two young daughters. Outside of work he enjoys reading about and watching movies and he is also a keen runner.

Nigel Whitaker
Chief Architect
DeltaXML Ltd.

<nigel.whitaker@deltaxml.com>
Nigel Whitaker is Chief Architect of DeltaXML and has driven the development of their XML comparison and merge products, their APIs and products related to DITA and
 DocBook.

Balisage: The Markup Conference

content/images/Mitchell01-001.png
[aocument>
<titles
This is the document title
</rities
<>
An example paragraph
</p>
<>
Lack of namespace awareness makes line

<document>
<titles
This is the document title
</rities
<>
An example paragraph
</p>
<>
Lack of namespace awareness makes line

Tacea aiff inerfective

</p>
lk/document>

based Giff ineffective
</p>
</document>

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

content/images/Mitchell01-002.png
NOTE The area under the load/displmﬂan curve represents the energy required to break the
whole specimen. Dividing this energy by twice the fractured area, the surface energy expressed in joules per

square meter is obtained.

Calculate the total fracture workj W, using the following equation. The fracture work is calculated from
the integral area of the load /é# curve

J/m2

D

where

U is the recorded area under the load /dsptreement@BFIEERON curve given by the fol-

lowing equationj

BRI 1,0, imneveron milimetre- AHRE AT B EAAREA AENEEEON oFIGHAIE:

by, hranda are listed in 8.6.5.1, expressed in millimetres.

8.6.5.4 Pass/fail determination of maximum stress intensity factor

Ifatleast eight of the results from tenf] specimens are notless than 19 MPa m1/2, the material complies
with the requirements of 5.2.10.

If at least six of the results are less than 1,91MP3 m1/2, the material is deemed to have failed.

If three, four or five of the results are less than 1,9 MPam?/2, repeat the whole test] but on this occasion]
prepare esetred2 specimen strips.

If at least tenfl] of the evwebred2 results are not less than 1,9 MPa m1/2 on the second occasion, the
material complies with the requirement of 5.2.10.

8.6.5.5 Pass/fail determination of total fracture work

If at least eight of the results from tenflli specimens are not less than 900]/m2, the material complies
with the requirements of 5.2.11.

If at least six of the results are less than 900]/m2, the material is deemed to have failed.

If three, four] or five of the results are less than 900 J/m?, repeat the whole test] but on this occasion]
prepare esvebred2 specimen strips.

Ifat least of the mh’ﬂl;esults are not less than 900+J/m? on the second occasion, the material
is deemed to have complied with the requirement of 5.2.11.

content/images/Mitchell01-003.png
NOTE The area under the load/iSBIBBBBRIdeflection curve represents the energy required to break the whole specimen. Dividing this
‘energy by twice the fractured area, the surface energy expressed in joules per square meter is obained.

Calculate the total fracture work]
load/displacementdeflection curve
Wim?

where.
u is the recorded area under the load/BiSpIEBEMBAIdeflection curve given by the following
equation;
U=fPon N M nwton millmetes, whers A the measured defleston orfoad P:
. handa are listed in 8.6.5.1, expressed in millimetres.

using the following equation. The fracture work is calculated from the integral area of the

8.6.5.4 Pass/fail determination of maximum stress intensity factor

If at least eight of the results from 810 specimens are not less than 1,9 MPa m'/2, the material complies with the requirements of
5.2.10.

If at least six of the results are less than 1,9MPa m'’2, the material is deemed to have failed.

If three, four, or five of the results are less than 1,9 MPa m'”2, repeat the whole test; but on this occasion, prepare [i¥BIN@12 specimen
strips.

If at least [0 of the FBIVE1Z results are not less than 1,9 MPa m'/2 on the second occasion, the material complies with the
requirement of 5.2.10.

8.6.5.5 Pass/fail determination of total fracture work

If at least eight of the results from B0 specimens are not less than 800 J/m?, the material complies with the requirements of 5.2.11.
If at least six of the results are less than 900 J/m?, the material is deemed to have failed.
If three, fourj or five of the resuls are less than 900 J/m?, repeat the whole testj but on this occasion] prepare [EBREAZ specimen strips.

If at least IO of the FHBIVEAZ resuls are not less than 9001J/m? on the second occasion, the material is deemed to have complied with
the requirement of 5.2.11.

