[image: Balisage logo]Balisage: The Markup Conference

Text Retrieval for XML-Encoded Corpora: A Lexical Approach
Liam R. E. Quin
XML Activity lead
W3C

<liam@w3.org>

Balisage: The Markup Conference 2008
August 12 - 15, 2008

Copyright © 2008 Liam R E Quin. Used by permission.

How to cite this paper
Quin, Liam R. E. "Text Retrieval for XML-Encoded Corpora: A Lexical Approach." Presented at: Balisage: The Markup Conference 2008, Montréal, Canada, August 12 - 15, 2008. In Proceedings of Balisage: The Markup Conference 2008.
 Balisage Series on Markup Technologies vol. 1 (2008). https://doi.org/10.4242/BalisageVol1.Quin01.

Abstract
This paper describes some modifications done to an open source
 text retrieval package to make it XML-aware, and contrasts this lexical
 approach, in which XML documents are primarily treated as sequences of
 characters rather than trees, with the W3C XPath 1.0 and XQuery 2.0
 Full-Text facility.
Specific usage scenarios are taken into consideration, including
 World Wide Web publication and the searching and analysis of text
 corpora for research purposes.

Balisage: The Markup Conference

 Text Retrieval for XML-Encoded Corpora: A Lexical Approach

 Table of Contents

 	Title Page

 	Introduction

 	A Brief Description of the Full Text Facility
 	Primary characteristics

 	A Brief Description of lq-text

 	Commonalities Between The Approaches

 	Lq-text and XML: Objectives

 	Lq-text Architecture in Detail

 	The lq-text lqkwic program

 	Extending lqkwic

 	A sample program

 	Unicode

 	Comparing with XQuery 1.0 or XSLT 2 + Full Text
 	Advantages of Full-Text

 	Advantages of a lexical approach

 	JEXE: Just Enough XML, Eh?

 	Future Work

 	Conclusions

 	About the Author

 Text Retrieval for XML-Encoded Corpora: A Lexical Approach

Introduction
The W3C XML Query Working Group has published a specification for
 performing full-text queries over instances of the XPath and XQuery Data
 Model using an extension of the XQuery syntax. This is a text retrieval
 facility that operates on an abstract representation of XML trees, rather
 than on text files that happen to contain markup. Elements and their
 attributes are reified into hierarchies of nodes, text leaps into the
 lacunæ and swims between them, and not a pointy bracket in sight.
This paper compares the XQuery Full Text Facility with a more
 traditional open source text retrieval system, lq-text, and also explores
 the work done to make lq-text become more suitable to the processing needs
 of people who work with XML.
Disadvantage and advantages of the two approaches are
 discussed.

A Brief Description of the Full Text Facility
Although this paper is primarily concerned with a lexical approach,
 an understanding of the XPath 2 and XQuery approach is useful, and will be
 taken as a baseline for comparison.
Informally, a full text search is a search to find all documents in
 a collection, or all elements of some specific type (for example)
 containing one or more specific words. For example, one might want to find
 all occurrences of the phrase “warm socks” in a multi-gigabyte corpus of
 text. The underlying assumption of full text is that the implementation
 uses an index that has been constructed separately in advance, although
 this is not necessarily true.
Primary characteristics
XQuery 1.0 and XPath 2.0 Full-Text 1.0 [W3C Full-Text, 2007] extends XPath 2.0 (and XQuery 1.0 in turn,
 which itself extends XPath 2.0) to add support for explicit syntax for
 full text searches.
XPath 2.0 is node-based, matching text nodes which are contained
 by element nodes in a collection of XML document trees. The result is a
 Boolean value (when used in an XPath predicate) together with an
 optional numerical score or ranking.
The Full-Text facility includes a large number of possible
 modifiers, many of which are optional features and may or may or be
 available in any given implementation. These include (for example) both
 query expansion through a thesaurus and also query narrowing using a
 different sort of thesaurus. One can search for two tokens (words, for
 English) within a certain number of tokens, sentences or even
 paragraphs. The optional features are marked as being “at risk” in W3C
 parlance, meaning that unimplemented (or unimplementable) features will
 be dropped from the draft specification before it is published as a W3C
 Recommendation.

A Brief Description of lq-text
Lq-text is an open source text retrieval package that was first
 released in 1989. It has had sporadic development since then. Its main
 claims to fame are high precision, good performance (particularly when the
 data does not fit into available virtual memory), flexible concordance
 generation and an open, extensible, multi-process architecture.
Lq-text operates on text files. It makes an index to the files; this
 index stores the location of each occurrence of each natural-language word
 in all of the files. The resulting index is stored efficiently, and
 generally takes between a quarter and three quarters of the storage size
 of the original documents. The index is an adjunct; lq-text also refers to
 the original files, although these can be compressed to save space if
 needed. The package is designed to work best with many small files rather
 than a few large ones.
When lq-text indexes files, it can run a format-specific filter on
 each file before indexing it. The list of filters is currently built in to
 the software (but since it is open source, you can in fact change it if
 you wish).
A suite of separate Unix programs operate on the index for
 retrieval; some of these will be described in this paper. They are used in
 conjunction with each other, using a documented text-based format to
 communicate.
It is this open architecture that can be exploited to enable
 XML-specific searches, and that is the primary work described in this
 paper.

Commonalities Between The Approaches
An underlying assumption is that some sort of indexing will have
 been performed before queries are run; this is of course for all full-text
 systems, and although in some cases the constructed indexes do not persist
 between invocations of the query software, usually the indexes are kept
 and re-used.
Although the Full-Text facility operates on trees and lq-text
 operates on flat text files, in practice both systems are matching
 sequence of tokens against an index, and returning matches based on text
 content.
The XQuery Update Facility allows queries to update documents, and,
 as a result, implementations must be able to re-index documents
 efficiently. Lq-text can also re-index documents, most efficiently when
 both the original and the new version are available.

Lq-text and XML: Objectives
The author wanted to experiment to understand what work would be
 needed to make lq-text be useful for people working with XML documents.
 Some goals of this work included:
	Make minimal changes to the architecture and index and match
 format, because of limited programming resources;

	Retain a small index and efficient retrieval;

	Solve common use cases rather than providing extensive and
 general mechanisms.

Although lq-text was not (at the start of the work) XML-aware, it
 has the ability to run a format-specific filter program when indexing any
 given document. There was already an SGML filter, but all it did was
 ensure that element and attribute names were not indexed. This filter was
 re-used for XML, modified to allow indexing of elements and attributes.
 But at that point the work had only begun.
The following use cases were determined sufficient for
 experiments:
	Identify all documents containing two or more phrases in the
 same element, for any given element;

	Refine the search to an element with a specific attribute set to
 a given value;

	Highlight the matches of the search in context;

	For a given match, print the parent element and its content, or
 the contents of the parent tag, or a given attribute value, or the
 name of the parent element... possibly constrained to any named
 ancestor element not just the parent.

This of course is much less than one might want in a full XML-aware
 text retrieval system. On the other hand, the XPath-based approach taken
 by the Full-Text facility does not support highlighting of matches or
 generation of concordances, and the author felt this to be essential
 functionality, both for research and for industrial or commercial
 use.
The approach taken was to extend lqkwic, the concordance program, so the paper will
 describe the lq-text architecture and then lqkwic, and then explain the extensions that were
 added. After that, an example program will be shown that uses lqkwic to solve one of the use cases given above.
 At that point we will be able to compare an XQuery or XSLT 2
 solution.
Support for a subset of XML (“just enough XML, Eh?”) was
 implemented; this subset will also be described, as it may be of interest
 for other people considering adding XML support to older software.

Lq-text Architecture in Detail
Before explaining how lq-text was extended, it is necessary to give
 at least an abbreviated account of how lq-text works.
Lq-text builds and maintains a separate index for each set of
 documents, which it calls a database.
 When building the index, lq-text applies simple stemming, by reducing words to a root. Currently,
 only plural and possessive forms are recognised and recorded, and other
 forms are indexed separately. This code is specific to the English
 language, and may be removed in a future version, with stemming instead
 being done by term expansion at query time.
Lq-text comprises a suite of separate programs, and each program
 always uses a single database. For the sake of simplicity in this paper we
 will assume that only a single lq-text database is in use at any time,
 unless otherwise stated.
Some of the programs included with lq-text are listed for reference
 in the table. Only a few of them will be discussed further in this paper,
 but the table may give the reader a clearer sense of the software.
Table I
Lq-text Programs

	Program	Purpose
	lqaddfile	Used to add documents to the index, and to manipulate the
 index.
	lqunindexfile	removes a file from the index.
	lqphrase	matches one or more exact phrases
	lqquery	matches words or phrases, but supports wildcard expansion
	lqrank	reorders results based on the number of documents matched
 (quorum ranking)
	lqsort	sorts matches by various criteria e.g. by the word before the
 match
	lqshow	text-terminal (curses) program to show matched text
	lqsed	process documents, highlighting matches by insertion
	lqkwic	the main keyword in context concordance program

Once an index is built (for example with lqaddfile), it can be used.
 A sample search might be as follows:
$ lqquery "on his face" | lqkwic
For one small corpus (Brewer's Dictionary of Phrase and Fable, with
 about 17,000 files) the results are as follows:
==== Document 1: xml/1251.xml: Balafré ====
1:t which left a frightful scar on his face (1550–1588). So Ludovic Lesly, an
==== Document 2: xml/3720.xml: Cloud ====
2: He [Antony] has a cloud on his face.
==== Document 3: xml/6070.xml F ====
3: F is written on his face. “Rogue” is written on his face
4: face. “Rogue” is written on his face. The letter F used to be branded n
==== Document 4: xml/8745.xml Ill Omens ====
5: he happened to trip and fall on his face. This would have been considered a
6: shore at Bulverhythe he fell on his face, and a great cry went forth that i
Here, the matched text is shown with a few words of context on
 either side, giving rise to the term key word in
 context, KWIC, index.
Two lq-text programs, lqquery and
 lqkwic, were combined in the search,
 using a Unix pipe; that is, both programs were run concurrently, with the
 output of one being fed as the input to the other. This is a usual way of
 working with lq-text, and although it sometimes requires some thought, it
 does mean that lq-text exploits multi-processor systems well, and also
 works well with Unix and Linux, which were designed to run pipelines of
 small programs very efficiently.
This description begs the question, exactly what output is passed
 from lqquery to lqkwic in the example? The answer to this question
 exposes the underlying index architecture, and can be seen by running just
 the first program without the second:
$ lqquery "on his face"
3 0 41 2792 1251.xml
3 0 55 11703 3720.xml
3 0 15 14314 6070.xml
3 0 21 14314 6070.xml
3 0 75 17285 8745.xml
3 1 8 17285 8745.xml
The format, as can be determined by inspection, is a sequence of
 lines of text, and, in each line, a number of space-separated fields. Each
 line represents a single match, and just as there were six results before,
 there are six matches here. The fields are, from left to right, the number
 of words matched, the block in the file, the word in the block, the file
 number and (optionally) the filename.
The lq-text index does not store exact locations for matches.
 Instead, the location to the nearest block number, and the word within the
 block, are stored. Blocks are by default 128 bytes in size. The result of
 this is that a match location within a file is usually represented by a
 pair of fairly small integers, but that finding the actual intended words
 to highlight requires accessing the file and counting words. This is a
 trade-off: a lq-text index is often much smaller than the indexed files,
 because the average English word is about 5 characters long (depending
 somewhat on the corpus), and it only takes 2 bytes in most cases to store
 the information about a match.
Lines in the match list starting with a # are
 considered to be comments, and lines of the form
 { variable = value } are used by
 lqkwic to set values that can be used
 later, as we shall see.
Lq-text programs generally both accept this match format as input
 and produce it as output, so that they can be combined. In particular, the
 lqkwic program can both read and produce
 this format, as we shall see in the next section.

The lq-text lqkwic program
The lqkwic program takes lq-text matches as input, and prints them
 using a user-supplied format, or a built-in format. Matches are grouped by
 file, and another format is used to print the start of each group of
 documents, and yet another can be supplied to be used at the end of each
 group.
The format takes the form of a string with embedded variables that
 are interpolated each time the format is used. An example may clarify the
 format:
$ lqquery "on his fa*" |
 lqkwic -S '' -A '' -s '${MatchNumber} ${MatchedText}\n'
1 on his father
2 on his face
3 on his favourite
4 on his face
5 on his father
6 on his face
7 on his face
8 on his father
9 on his favourite
10 on his face
11 on his face
Here, the formats for the start and end of each group of matches
 have been set to the empty string with -S '' and -A
 '' respectively. The per-match format is set to a string in which
 for each match the match number is printed, followed by a space, followed
 by the matched text and (indicated by \n in the grand Unix
 tradition) a newline. The single quotes are used to surround the strings
 to prevent the Unix shell from seeing the dollar signs and treating them
 as references to shell variables.
Although the MatchedText variable is obviously useful for testing,
 one would normally use it in conjunction with other variables, such as
 TextBefore and TextAfter. The purpose of this section is not to document
 lqkwic, but to give the reader an understanding of the sorts of things one
 can print, since lqkwic has uses that are far removed from concordance
 generation, and since we will shortly be taking advantage of such
 uses.
The following table shows some of the variables available. In many
 cases, lqkwic must read the actual matched documents (or at least part of
 them), in order to evaluate the variables.
Table II
The lqkwic formatting variables

	Variable	Description
	DocName	the name of the current document, as stored in the database
	FileName	the absolute path corresponding to ${DocName}
	DocTitle	the title of the document
	FID	the File Identifier Number of the document (an integer)
	FileNumber	starts at 1, increases for each new document in the output
		
	BlockInFile, WordInBlock	these determine the location of the match
	NumberOfWordsInPhrase	the length in words of the phrase matched
	TextBefore	the text in the document immediately before the match
	MatchedText	the document text that exactly matches the phrase
	TextAfter	the text in the document immediately after the match
		
	MatchNumber	starts at 1 and increases for each match
	MatchWithinFile	like MatchNumber but reset for each new document
	StartByte	the byte offset in the file at which the match begins
	EndByte	the byte offset in the file at which the match ends
	MatchLength	length in bytes of ${MatchedText} (EndByte - StartByte)

There are also constructs for formatting variables, for padding them
 to a given width (measured in Unicode characters, not bytes), and for
 filtering them through routines that delete punctuation, convert
 punctuation to spaces, perform case conversion and so forth.

Extending lqkwic
The following XML-specific variables were added as an experiment to
 try to understand how viable the approach would be:
Table III
XML-specific Variables

	Variable	Description
	XML.Parent.Tag	The content of the containing element's tag, between the
	 angle brackets
	XML.ContentBefore	Content up to the > of the start tag of the immediately enclosing parent element (including any tags and content that open and close entirely between the match and the parent tag)
	XML.Parent.Name	the name of the parent element
	XML.Parent.EndTag	the content of the parent element's end tag
	XML.ContentAfter	content up to the < of the parent's end tag

It is not clear that this is sufficient to answer our use case of
 finding multiple phrases in the same XML element. To do that, we would
 need a way to identify parent elements and compare them.
One could use the File number and the byte offset of the matched
 text (${StartByte}), but this is not sufficient, because
 there may be close and open tags between matches of two phrases.
One approach to finding phrases with a common containing element
 named (of type) E would be to find all of the start and end tags for E,
 and then use the file, block and word within block numbers to perform
 range algebra.
But it would be more efficient if this were not needed. In a corpus
 of many files, it is likely that the element E will occur in many files,
 perhaps many times, and searching for them all will be too slow.
If lqkwic could print the location of the parent tag, a much simpler
 faster algorithm would be possible.
The notation ->startbyte or
 ->endbyte was added; after any XML variable name, it
 generates the corresponding byte offset in the matched file.
In addition, the notation XML.parent.Tag.e was added,
 to be similar to the XPath notation ancestor::e; it is
 possible that a future version of lqkwic
 will use the XPath notation, as long as there is no danger that users will
 be confused into thinking that lq-text is using a node-based model
 internally.
The search for a parent tag is implemented by reading the matched
 document at the block containing the match, and for some distance
 beforehand. lqkwic then searches backwards from the match to find an open
 tag which has no corresponding close tag in the intervening distance. It
 is worth noting that this sort of approach is not generally possible with
 SGML, where empty elements have no end tag. The syntactic innovation of
 XML was to require empty tags to have a trailing slash, as in <p/>
 or <p id="p301" />, and this enables the software to skip empty
 elements reliably. Start and end tags can be skipped more easily of
 course, although the algorithm used for backwards parsing does rely on
 attributes not containing unquoted < or > signs.
Unfortunately, backwards parsing suffers from a major drawback: the
 search for the parent tag will fail if it is too far away. Although lqkwic
 could in theory read arbitrarily back in the file, this could mean that
 presenting matches in a dictionary would be very expensive, with every
 match processed necessitating a search back to the start of a large
 document.
In practice, an in-memory cache may be sufficient to achieve
 reasonable performance in most cases. Another possibility might be to
 store parent pointers in the index. For now, lq-text is primarily intended
 for working with many thousands of small files; use XSLT to split large
 files before indexing them.

A sample program
We are now in a position to find all elements E that contain all of
 a set of phrases P0 ... Pn, as follows:
First, match the phrases, and, for each match, use a format of the
 form ${xml.contentbefore.E->endbyte} to find the end byte
 of the start tag of the parent element of type E; that is, the location
 just after the > at the end of the start tag. If two
 matches have the same value for the start tag, and are in the same file,
 then they share the same XML ancestor E.
We can match the phrases with a single invocation of lqrank except for one difficulty: there is no way
 to determine, for a given match, to which phrase it corresponds, so we
 cannot determine whether an element contains all of the phrases.
The lqrank program has the ability
 (when instructed with the -g option) to output a line,
 { q = N } where N is an integer, to
 identify to which result set the following matches correspond. This is
 available to lqkwic formats as the
 variable g.q (the g stands for glue, the unpublished and unfinished lq-text
 integration language).
Using this, it becomes a relatively simple matter in a language such
 as Perl, Python or even the Unix shell, to run
print phrases one per line |
 lqrank -r all -g -F - |
 lqkwic -s '${FID} ${g.q}
 ${xml.contentbefore.E->endbyte} ${Match}\n'
Each match is in this way prefixed by the numeric identifier of the
 document in the index (FID), the phrase number and the byte offset of the
 end of the nearest ancestor E element's end tag. The
 -F - option makes lqrank read the list of phrases to match from its
 input, rather than expecting them as command-line arguments; one could
 also use the Unix xargs program for this
 purpose.
Next we must group the matches by file identifier and startbyte, and
 if every different phrase occurred at least once, we print all the matches
 for that file identifier and startbyte.
The result can then be fed to lqkwic to generate a concordance, or perhaps to
 fetch information about the parent element, or both.
The program outlined here (and given in full in the appendix, in the
 Perl programming language) is intended as an example of the sort of
 flexibility that might be achieved as lq-text becomes more XML
 aware.

Unicode
In 1988, the use of 8-bit character sets was pretty usual; lq-text
 is at least 8-bit clean for data, so that conversion to UTF-8 seemed a
 simple matter, and also has some locale awareness. There were two tricky
 parts to the process of adding UTF-8 support. The first was to ensure that
 characters, rather than bytes, were counted when formatting, and of course
 that a UTF-8 octet sequence was never split part-way through.
The second difficulty was much harder: making sure that combining
 characters are never split from their corresponding base character. This
 last is not yet complete, but initial work using the GNOME glibc library
 is promising. This is the main issue preventing lq-text from being
 shipped, at present, and may have been completed by the time this paper is
 presented in August 2008.
Software cannot tell by inspecting a singly byte (or octet, as
 standards people say, in case 9-bit systems should reoccur) whether that
 octet forms part of a longer UTF-8 sequence. One needs to scan backwards
 to check, because the first octet is the
 one that indicates the number of octets to follow in the sequence that
 constitutes a single character. This is of course easy to deal with as
 long as one can scan backwards a little. For diacritical marks and other
 combining characters, however, one must consult a database. The author
 could not help but wish that a single bit in the character representation
 could have been reserved for this purpose, but that would have prevented
 Unicode from being backwards-compatible with ISO 8859-1, a goal at the
 time Unicode was designed. A future version of lq-text may use its own
 database, with only the character properties that lq-text needs, perhaps
 created automatically at the same time as each database so as to take
 locale information into account.

Comparing with XQuery 1.0 or XSLT 2 + Full Text
The published draft of Full-Text does not support concordance
 generation, although some implementations in practice (such as MarkLogic)
 do appear to offer the necessary functionality through product-specific
 extensions. The author of this paper considers match highlighting to be
 essential functionality in practice. A future version of Full-Text may
 well include it.
Let us then assume, as we must, that we are using an XQuery or XSLT
 implementation that supports in some way identifying match locations, and
 hence allows highlighting.
Advantages of Full-Text
	With Full-Text, XPath predicates and axes are available, so
 that one can easily find ancestors, parents, position in the element
 tree, and so forth. The lexical approach is very limited in this
 regard.

	Full-Text is (or probably will soon be) a standard, and one
 can easily move between implementations. The necessity of using
 vendor extensions for highlighting reduces this somewhat, but of
 course there is only one implementation of lq-text, albeit with
 source code freely available.

	An XPath implementation with Full-Text might have indexes for
 element location that enable higher performance, for example by
 using one CPU to find elements and another to resolve the text
 search. Although this sort of optimisation is largely at the
 research level today, it is likely to find its way into products,
 both closed and open source, in the near future. Lq-text uses
 multiple programs, which can run on separate CPUs of course (and
 will do so without any action from the user on a multi-CPU system)
 but there are no plans for finer-grained parallelism.

	The Full-Text facility is designed to work with Unicode and
 XML-based language support, giving a high degree of
 internationalisation. Although the author is adding Unicode support
 to lq-text (which previously, because it predated Unicode, used
 8-bit character sets and a locale-based mechanism), it is not yet
 complete and pervasive.

	Since lq-text is not tree-based, it does not currently have
 any means to respect xml:lang, nor does it have any understanding of
 namespaces. Prefixed elements and attribute names are not currently
 handled. A solution involving the XML indexing filter is being
 considered for both of these issues, but its effectiveness is as yet
 unknown.

	The Full_text XPath extension is already in wider use than
 lq-text; training, support, books and forums are available for it,
 but not for lq-text.

Advantages of a lexical approach
	Open access to the match list supports flexibility and
 extensibility. The use of separate programs also allows intermediate
 results to be cached or stored and compared easily. By contrast,
 XQuery (where Full-Text is most likely to be found) is a large
 monolithic language. Open Source XQuery implementations are mostly
 in Java, which does not lend itself to good performance if a JVM
 must be started for each query, for example outside a servlet
 environment. None the less it should be mentioned that the fastest
	 readily available indexed XQuery implementation in the
	 author's experience is in Java, and once
 the JVM is started, is very fast.

	Because the data is not forced into the shape of a tree, it is
 possible to experiment, for example with overlapping markup. The
 generation of results by lqkwic can
 include a span from start element to corresponding end element,
	 regardless of other start or end tags. Although XQuery
	 and XPath 2.0 Full-Text allows for matching as if tags were
	 absent, it does not give good control over which tags are to
	 be treated as word boundaries and which not. But this is
	 a difficult thing to do at query-time in any case, and
 neither system today has a complete answer for this.

	Lq-text can be used to generate non-XML results, for example a
 bitmap image representing a graph of word occurrence. XQuery and
 XSLT are limited to text and XML, although one can certainly write
 out SVG with them.
Figure 1: Occurrences of four-digit numbers
[image:]
A graph showing four-digit numbers along the x-axis, from
 1500 to 1890 (presumably most of which represent years), and on
 the y-axis the number of times that number occurs in the corpus
 (17,000 entries from Brewer's Dictionary of
 Phrase and Fable).

	Experiments with Salton-style similarity functions,
 clustering, and other Information Retrieval techniques might
 eventually find their way back from work like this and into a future
 Full-Text specification. See, for example Salton, 1989 or Konchady2006 for
 descriptions of some applicable information retrieval
 techniques.

	Lq-text lies more in the world of traditional Unix text
 processing than in the world of relational databases. If one is
 primarily interested in finding content in a database, Full-Text is
 a clear winner. If one is more interested in exploring or searching
 text, perhaps lq-text has something to offer.

JEXE: Just Enough XML, Eh?
Some XML features were harder to see how to support than others.
 The author has no intent to support all of XML at this time, but just
 enough to be useful. This is regardless of how the XML is parsed. The
 following features are not supported, and are unlikely to be
 supported:
	CDATA sections; you can use entities instead. This is because
 the retrieval software does not scan the document from the start
 each time, but from the middle, and cannot determine whether markup
 is part of a marked section.

	External general entities (and XInclude); it is more useful
 for people working with XML as files to know the file than the
 document; if you want to resolve included entities, use a
 pre-processor such as xmllint
 before indexing.

	Arbitrary namespace support; the limit on namespaces is that
 all xmlns declarations must come
 before any regular attributes. In other words, the order of
 attributes (or pseudo-attributes) is significant. This may change in
 the future; it is because of a limitation in the indexer to do with
 the amount of available look-ahead.

	General entities; although support is planned for entities,
 the plan is to read the replacement text from a per-database
 configuration file. This is already done by lqkwic, but should also
 be done by the indexer. This means that per-document entities are
 not supported. External entities are not supported: the unit of
 retrieval is the file, not the document.

	The internal subset; currently lq-text can skip over an
 internal subset correctly in most cases (it is possible to construct
 an internal subset that will confuse it, I suspect, although this is
 always detected and a warning issued), but it is not parsed.

	Fixed and defaulted attribute values; without reading a DTD or
 internal subset, there are no default values. This could be thought
 of as a minimization feature of SGML that was overlooked during the
 design of XML.

	XML Notations; if the DTD were to be read, it might be
 possible to associate a URI or a MIME content type with a different
 tokenisation system, but the document author cannot know what MIME
 type will be used if a file is served on the Web; the DTD is not
 authoritative, and currently lq-text does not use HTTP to fetch
 things, but only works with local files. If lq-text used HTTP,
 behaviour would be based on the content type header for downloaded
 entities, not on any notation value in the DTD. For a local file,
 the notation value could be treated as a list of plausible content
 types, perhaps, but in practice content sniffing is more likely to
 work.

The result of this is that a JEXE document consists of an XML
 declaration (the encoding, if given, must be in UTF-8, however), an
 optional doctype declaration to point at an external DTD to be ignored,
 and then one (or more) simple element trees. Elements may have
 attributes, and may also declare namespaces. Namespace prefixes may be
 “normalised” based on a per-database configuration file, with elements
 in a default namespace that is associated with a URI given an explicit
 prefix [This feature is not implemented at the time of writing]. Numeric
 character references are expanded on indexing. Entity references are
 replaced by their per-database string values on retrieval; the plan is
 to index entity references both with their entity name and with their
 expanded value.
The resulting XML can be parsed “from the middle out” for the
 purposes of retrieval.
Although there is only support for a subset of XML, enough of the
 syntax is understood that you can index any XML document. However, some
 features, such as CDATA sections, permit the construction of documents
 that will confuse retrieval, even though the actual CDATA sections will
 be correctly parsed. A possible work-around is to process documents with
 XSLT before indexing them, creating surrogate documents.

Future Work
The work has shown that adding some simple XML support to lq-text
 is possible, but leaves a lot to be desired. For people already using
 lq-text, the support described in this paper is useful, but it is
 unlikely to persuade many people to try the package for the first
 time.
Adding more support for “just enough XML” will make the package
 more interesting. In the short term, extending the Unicode support is
 necessary before a release, as is more thorough testing and (as always)
 more documentation. After that, changes in the indexer to add support
 for (just enough) namespaces, general text entities and numeric
 character references have been sketched out.
There are no plans to use a full XML parser right now; although
 the author had originally intended to do so, the difficulty in tracking
 exact byte positions in the input delayed the work, and at this point
 although it is now possible, it has become a matter of human
 resources.
It is possible that the work here would be enough to enable
 lq-text to be used by an implementor of XQuery, and the author would
 like to do experiments in that area.
Searching a corpus of documents with disparate markup can be
 difficult with either approach, because one tends to write patterns that
 depend on the markup retrieved. One approach is to try to map queries at
 runtime; this can be a difficult problem of matching incompatible
 hierarchies of elements; see Euzenat and Shvaiko, 2007 on various
 approaches to the problem of matching ontologies. A more pragmatic
 approach is to re-write documents before indexing them, perhaps with
 XSLT. This approach works with both approaches to text retrieval, but
 can be tedious. An intermediate approach might be to define some XPath
 expressions, or to use a W3C XML Schema to impost some specific types,
 to identify sections, titles, paragraphs, and to mark which elements are
 considered to break apart words, phrases and paragraphs. The index could
 then include this information alongside the element structure. More
 experiments in this area are planned.

Conclusions
The author's original goal in adding XML support to lq-text was to
 use lq-text to help optimise an XQuery implementation. After
 experimenting with an XQuery implementation that supported Full-Text,
 the author decided instead to focus on enhancing lq-text to see if the
 results would be useful. It turns out that they are indeed useful, and
 development is continuing.
It must be admitted, however, that any advantage of lq-text over
 sophisticated XQuery implementations is likely to diminish over
 time.
The subset of XML supported (and with planned support), “just
 enough XML, Eh?” (JEXE), may be worth documenting separately.

Bibliography
[Adolphs, 2006] Adolphs,
 Svenja, “Introducing Electronic Text Analysis” (Routledge, 2006). A very
 clear and impressively slender introduction to the application of
 information retrieval, and especially the keyword-in-context list, to
 literary and linguistic research.
[Baeza-Yates and Marais, 1999] Baeza-Yates, Ricardo, and Marais, H., “Modern
 Information Retrieval” (ACM Press, 1999). Describes information retrieval
 mostly from the perspective of a researcher in text retrieval rather than
 a programmer or a user, and assumes more background knowledge,
 particularly in mathematics, than Manu Konchady’s book, so may be best
 read second.
[Euzenat and Shvaiko, 2007] Euzenat, Jérôme and Shvaiko, Pavel, “Ontology
 Matching” (Springer, 2007); a surprisingly clear introduction to problems
 such as relating two or more different classification schemes (such as XML
 schemas) over the same subject matter, although the presentation uses a
 mathematical notation, and some background in formal logic may be
 helpful.
[Konchady2006] Konchady,
 Manu, “Text Mining Application Programming” (Charles River Media, Boston
 USA, 2006). A useful programmer-level introduction to topics relating to
 implementing and using text retrieval, part-of-speech tagging, clustering
 and other topics, together with just enough mathematics, but not specific
 to any particular language. Includes CD-ROM with code samples in Perl,
 however.
[Salton, 1989] Salton, Gerald,
 “Automatic Text Processing” (Addison-Wesley, 1989). Perhaps a little
 dated, but the late Dr. Salton was extremely influential in the field. His
 earlier, 1983, book formed the basis for a single chapter of this work,
 but the 1983 book is harder to find today.
[W3C Full-Text, 2007] Sihem
 Amer-Yahia, Chavdar Botev, Stephen Buxton, Pat Case, Jochen Doerre, Mary
 Holstege, Jim Melton, Michael Rys and Jayavel Shanmugasundaram (Editors),
 “XQuery 1.0 and XPath 2.0 Full-Text 1.0” [online]. [cited 18th April
 2008].
 http://www.w3.org/TR/xpath-full-text-10/.

Balisage: The Markup Conference

Text Retrieval for XML-Encoded Corpora: A Lexical Approach
Liam Quin
XML Activity lead
W3C

<liam@w3.org>
Mr Quin has been involved with declarative, descriptive markup
 since the early 1980s. He wrote his open-source text retrieval system
 and first distributed it in the late 1980s.
He has worked at the World Wide Web Consortium since 2001, where
 he is XML Activity Lead, or, informally, Mrs XML.

Balisage: The Markup Conference

content/images/Quin01-001.png

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

