[image: Balisage logo]Balisage: The Markup Conference

Optimized Cartesian product: A hybrid approach to derivation-chain checking in XSD 1.1
Maurizio Casimirri
Graduate student
Department of Computer Science, University of Bologna

<mcasimir@cs.unibo.it>

Paolo Marinelli
Temporary research associate
Department of Computer Science, University of Bologna

<pmarinel@cs.unibo.it>

Fabio Vitali
Associate professor
Department of Computer Science, University of Bologna

<fabio@cs.unibo.it>

Balisage: The Markup Conference 2008
August 12 - 15, 2008

Copyright © 2008 by the authors. Reproduced with permission.

How to cite this paper
Casimirri, Maurizio, Paolo Marinelli and Fabio Vitali. "Optimized Cartesian product: A hybrid approach to derivation-chain checking in XSD 1.1." Presented at: Balisage: The Markup Conference 2008, Montréal, Canada, August 12 - 15, 2008. In Proceedings of Balisage: The Markup Conference 2008.
 Balisage Series on Markup Technologies vol. 1 (2008). https://doi.org/10.4242/BalisageVol1.Marinelli01.

Abstract
As XPath predicates are involved, XSD 1.1 conditional declarations make difficult the problem of statically verifying whether a type is a legal restriction of its base. The XSD 1.1 current draft adopts a full dynamic approach to the problem. In this paper we propose a hybrid solution (neither completely static, nor completely dynamic) to the same problem.

Balisage: The Markup Conference

 Optimized Cartesian product: A hybrid approach to derivation-chain checking in XSD
 1.1

 Table of Contents

 	Title Page

 	Introduction

 	XSD 1.1 and Co-Constraints
 	Assertions

 	Conditional Type Assignment

 	XSD Terminology

 	Derivation by Restriction in XSD 1.1
 	Full Static Approach

 	Expressivity Limitation Approach

 	Full Dynamic Approach

 	Run-time Check
 	An Algorithm for Run-Time Check

 	RTC Algorithm Cost Analysis

 	Hybrid Approach: Cartesian Product

 	Optimized Cartesian Product
 	General idea

 	OCP Static Phase

 	OCP Run-Time Phase

 	OCP Cost Analysis
 	OCP Static Phase Analysis

 	OCP Run-Time Phase Analysis

 	Comparing CP, OCP, and RTC

 	Implementation

 	Related Works

 	Conclusions

 	Acknowledgements

 	About the Authors

 Optimized Cartesian product: A hybrid approach to derivation-chain checking in XSD 1.1

Introduction
In this paper we propose an hybrid solution to the problem of verifying whether a type is a legal restriction of its base in XSD 1.1.
Version 1.1 of XML Schema (XSD) in now in Working Draft [XSD 1.1: Structures, XSD 1.1: Datatypes]. One of the most important features introduced by XSD 1.1 is Conditional Type Assignment, i.e., the possibility for element declarations to assign a type based on XPath predicates. CTA is meant to address one of the most evident limitations of XSD 1.0: the co-constraint definition support.
The CTA introduction in XSD arises an issue concerning the derivation by restriction between types containing conditional declarations. Indeed, the type actually assigned by a conditional declaration can be known at run-time only and it may vary from element to element. Thus the problem of statically verifying whether a type is a legal restriction of its base when conditional declarations are involved is difficult. It is possible to identify three alternative approaches to the problem:
	Limiting the CTA usage in type restrictions.

	Dynamic verification: at schema compile time no check is performed, but if at run-time we have a document proving that a type is not a legal restriction of its base, an error is thrown.

	Hybrid approach: similar to the previous approach, with the exception that at schema compile time some analysis is performed providing the dynamic phase information that might decrease the operations to be performed.

Co-occurrence constraints (also known as co-constraints) are rules relating the presence and values of elements and attributes that may occur in distinct fragments of an XML document. E.g., we have a co-constraint when an attribute value governs the content of an element, or when two attributes are in some logic/arithmetic relation, and so on. Co-constraints are present in several XML-based languages, among which also languages recommended by W3C.
One of the widely recognized limitations of XSD 1.0 [XSD 1.0: Structures, XSD 1.0: Datatypes] is the inability to define co-constraints. This is a serious shortcoming for a schema language, and especially for XSD, given its widespread use. Indeed, when a schema is not able to capture every validity constraints of a class of XML documents, in order to reach a complete validation process specific modules are required to verify those constraints not covered by the schema. In such cases, not only the validation process becomes more complex, but also the interoperability between applications decreases.
Version 1.1 of XSD introduces two mechanisms for the co-constraint definition: assertions and Conditional Type Assignment (CTA). The former is inspired by Schematron [Schematron ISO specification]. It permits to augment type definitions with XPath predicates (called assertions), each specifying a further validity condition besides those enforced by the content model. Assertions are particularly useful to require some elements and attributes to be in logic or arithmetic relations.
CTA, inspired by SchemaPath [P. Marinelli, C. Sacerdoti Coen, and F. Vitali, 2004], allows an element declaration to conditionally assign a type based on XPath predicates. Here we refer to declaration of such a typology as conditional declarations. CTA is particularly suitable for those situations where an attribute value governs the content of an element. For instance, in order to subject the content of a <entry> element (representing a bibliographic entry) to the value of the kind attribute, the following conditional declaration might be used

<xs:element name="entry" type="Entry">
	<xs:alternative test="@kind = 'proceedings'" type="ProceedingsEntry" />
	<xs:alternative test="@kind = 'journal'" type="JournalEntry" />
	<xs:alternative test="@kind = 'book'" type="BookEntry" />
</xs:element>

The above declaration reads as "if @kind is proceedings then <entry> is of type ProceedingsEntry, otherwise if @kind is journal then <entry> is of type JournalEntry, otherwise if @kind is book then <entry> is of type BookEntry, otherwise (none of the above conditions hold) <entry> is of type Entry (which is a type for generic bibliographic entries). Each <xs:alternative> element is named type alternative in XSD 1.1.
Conditional declarations arise an issue in the derivation by restriction. XSD (both 1.0 and 1.1) allows to define new types deriving existing ones. A derivation method is by restriction. The general principle behind the derivation by restriction is that the derived type accepts a subset of what the base type accepts. Thus, given an element E, it is required that the type assigned to E in the context of the derived type, be a restriction of the type assigned to E in the context of the base type. The presence of conditional declarations heavily complicates the static verification of such principle, as it require to analyze logic relations among XPath predicates. However, there are at least three alternative approaches to the problem of verifying whether a type is a legal restriction of its base:
	CTA limitation
	Ad hoc limitations are imposed on the CTA usage to ensure a simple static verification of the restriction. For instance, a radical limitation is that when a type contains a conditional declaration it is implicitly final w.r.t. the derivation by restriction.

	Full dynamic approach
	At schema compile type, it is never checked whether a type is a legal restriction of its base. However, at validation time, it is checked whether the instance document is an evidence of the fact that a type is not a legal restriction of its base.

	Hybrid approach
	Very similar to the full dynamic approach, but at schema compile time conditional declarations are processed in order to precompute those cases in which the derivation by restriction is violated. Such precomputed information is then available (in some form) at run-time, and it can be used by the validator to decrease the number of operations required to conclude whether the current document is an evidence of the fact that a type is not a legal restriction of its base.

The XSD current draft adopts the full dynamic approach. Indeed, at schema compile time the derivation by restriction is checked simply ignoring type alternatives. Given an element E, at run-time it is checked that the type conditionally assigned to E in the context of a derived type is a restriction of the type which would be assigned to E in the context of the base type. Such a condition is then recursively checked also for E and the base type, until the type hierarchy root is reached. I.e., the condition is checked on the entire derivation chain of the initial derived type. We call such a solution Run-Time Check (RTC). The XSD Working Group publicly solicit input from implementors and users of this specification as to whether the current run-time rule should be retained [XSD 1.1: Structures].
Cartesian Product (CP) is another solution but adopts a hybrid approach. At schema compile time it analyzes all possible cases that may occur at run-time. As the number of such cases is very high, it has serious shortcomings concerning the computational cost of the static phase.
In this paper we propose a hybrid solution to the problem of the verification of the derivation by restriction in presence of conditional declarations. We call our solution Optimized Cartesian Product (OCP). OCP, CP, and RTC have the same extensional behavior. OCP can be seen as an optimization to RTC. Indeed, at run-time the number of XPath predicates evaluated by OCP is less than or equal to the number of XPath predicates evaluated by RTC. Moreover, the OCP static phase requires an acceptable computational cost. So OCP is also an optimization to CP (and hence its name). Our paper contribute is two-fold:
	it proposes an optimization to the solution adopted by the XSD current draft;

	it answers the feedback request about RTC, discussing various possible approaches to the derivation problem, and thoroughly describing three solutions: RTC, CP and OCP;

Our paper is organized as follows. The next section describes XSD 1.1 in relation to the problem of the co-constraint definition. In particular it describes CTA and assertions. Then we introduce some XSD 1.1 specific terminology in Section “XSD Terminology”. In Section “Derivation by Restriction in XSD 1.1” we describe the problem of the derivation by restriction in presence of conditional declarations. There we describe some possible approaches and solutions. In particular, we provide a detailed Run-Time Check description, including a computational cost analysis. We also discuss about Cartesian Product. Then in Section “Optimized Cartesian Product” we describe our proposal, providing a computational cost analysis for both the static phase and the dynamic phase. Then in Section “Comparing CP, OCP, and RTC” we compare RTC, CP and OCP, mainly focusing on the number of XPath predicates evaluated at validation time by the three techniques. Then we describe a prototype implementation for OCP, which demonstrates the feasibility of our proposal. Before concluding, in Section “Related Works” we discuss about some related works.

XSD 1.1 and Co-Constraints
XSD (XML Schema Definition Language) is the schema language proposed by W3C. Its current version is 1.0, and it is described by two W3C recommendations [XSD 1.0: Structures, XSD 1.0: Datatypes]. Although there are many other schema languages (such as RELAX NG [RELAX NG ISO specification], and Schematron [Schematron ISO specification]), XSD probably is the most known and supported. XSD 1.0 provides support for the definition of a number of constraint kinds. For instance, by means of content models, it is possible to define the legal content of elements. XSD provides a rich set of built-in types for the definition of legal data values. It also provides derivation mechanisms, permitting to construct new types from existing ones. Moreover, XSD allows to define uniqueness and reference constraints on elements and attributes (cumulatively called identity-constraints).
However, XSD 1.0 is widely recognized as unable to express a particular kind of constraints: co-occurrence constraints (commonly referred to as co-constraints). According to the definition given by the ESW Wiki, co-constraints are rules which govern what kinds of markup (elements, attributes) can occur together (co-occur) in an XML document. [Co-occurrence constraints ESW Wiki]. In other words, a co-constraint relates the existence or values of an element (or attribute) to the existence or values of other elements (or attributes).
Some categorizations for co-constraints do exist. Within the ESW Wiki about 30 use-cases are listed, ranging from the mutual exclusion of attributes, to the requirement that two elements values must be in some arithmetic relation. In 2001, Norman Walsh and John Cowan identified seven kinds of co-constraints [N. Walsh and J. Cowan, 2001].
XSD 1.0 is unable to express co-constraints. Such an inability is heavily felt for in many user communities. For instance, validation of incoming data is critical for e-business infrastructures, that require also the adoption of co-constraints. Adopting XSD 1.0 as validation language requires them to implement application-specific modules, in order to provide a complete validation process.
W3C is releasing a new version of XSD: XSD 1.1. At the time of writing, it is in Last Call Working Draft [XSD 1.1: Structures, XSD 1.1: Datatypes]. One of the major improvements over 1.0, is the support for co-constraints definition. For this purpose, XSD 1.1[1] introduces two mechanisms: assertions and Conditional Type Assignment. Both mechanisms will be described in the next two sections.
Assertions
In XSD 1.1, a complex type may define a sequence of assertions. Each assertion basically is an XPath 2.0 predicate. In order to be considered valid, each element assigned to a type must satisfy all the assertions defined by that type. Syntactically, an assertion is represented by an <assert> element, whose test attribute specifies the XPath predicate.
Assertion Example: Assertion Example

<xs:element name="pages" type="PagesType" />
<xs:complexType name="PagesType">
 <xs:attribute name="from" type="xs:positiveInteger" />
 <xs:attribute name="to" type="xs:positiveInteger" />
 <xs:assert test="@from le @to" />
</xs:complexType>

An example of XSD assertions. This assertion enforces the from attribute being less than the to attribute.

For instance, suppose we want to define an XML language to represent bibliography entries. In order to specify the conference proceedings pages in which a paper appears, we might define a <pages> element with two attributes from and to. In order to enforce from being greater than to, the type definition shown in Figure “Assertion Example” might be used.
Assertions are clearly inspired by Schematron. However, there are some points of distinction. XSD associates assertions to type definitions. On the other hand, Schematron is not a typed language, and thus it associates assertions to elements, or, more precisely, to a set of elements identified by an expression. Moreover, Schematron allows to define assertions involving elements and attributes placed anywhere in the document. On the other hand, in XSD an assertion is allowed to involve only elements and attributes of the subtree rooted by the element the assertion is checked on: nodes outside that subtree are not visible.[2]

Conditional Type Assignment
XSD supports co-constraint definitions by means of another mechanism known as Conditional Type Assignment (CTA). An element declaration may specify a sequence of alternative types, each associated with an XPath predicate. Within this paper we refer to such declarations as conditional. When an element of the instance document is validated against a conditional declaration, the XPath predicates are evaluated using the element as context node. The type assigned to the element is the one corresponding to the satisfied predicate. If the element satisfies more than one predicate, the one occurring first within the schema takes precedence. A conditional declaration always specifies a default type, which is assigned when no predicates are satisfied. Each alternative type derives from the declared type.
CTA Example: CTA Example

<xs:complexType name="Entry">
 <xs:sequence>
 content model for a generic entry
 </xs:sequence>
 <xs:attribute name="kind" type="EntryKindType" />
</xs:complexType>

<xs:complexType name="ProceedingsEntry">
 <xs:complexContent>
 <xs:extension base="Entry">
 <xs:sequence>
 <xs:element name="conference" type="Conference" />
 <xs:element name="pages" type="Pages" />
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

<xs:element name="entry" type="Entry">
 <xs:alternative test="@kind = 'proceedings'" type="ProceedingsEntry" />
</xs:element>

An example of CTA usage. The conditional declaration assigns type Proceedings if the entry is of kind proceedings, otherwise it assigns type Entry.

In order to show the usefulness of CTA within the co-constraint definition, we consider again our language for bibliographic entries. Suppose we want to represent an entry through an <entry> element, whose kind attribute specifies the entry kind (i.e., conference proceedings, technical report, and so on). Suppose that we want to enforce the following co-constraint: if the entry is of kind proceedings, than the <conference> and <pages> elements must be present. Then we might define:
	an Entry type, constraining the content of a generic entry

	a ProceedingsEntry type, derived by Entry and requiring the presence of both <conference> and <pages>.

	a conditional declaration for <entry> assigning type ProceedingsEntry if the kind attribute has value "proceedings", and type Entry otherwise.

That solution is shown in Figure “CTA Example”.
Note that, by default if an element does not satisfy any alternative, then it is assigned the type specified through the type attribute (known as the declared type). In order to specify a default type other than the declared type, it is possible to explicitly define a default type alternative, i.e., a type alternative occurring in last position and without any XPath predicate.
XSD 1.1 introduces a new built-in simple type named error. No element or attribute is valid against such a type. error is typically used in default type alternatives to states that it is an error if no type alternative is selected.
The CTA mechanism is inspired by SchemaPath, an extension to XSD 1.0 introducing the concept of conditional type assignment [P. Marinelli, C. Sacerdoti Coen, and F. Vitali, 2004]. However, there are some remarkable points of distinction (besides some syntactic aspects). In SchemaPath, a conditional declaration does not have the declared type. Moreover, while SchemaPath does not put any restriction on XPath predicates, XSD allows predicates to access attribute nodes only. Thus, it is not possible to put conditions on neither preceding, ancestor, nor descending nodes.

XSD Terminology
For the reader unfamiliar with XSD, this section introduces some CTA-related definitions taken from the XSD current draft [XSD 1.1: Structures].
	Declared type
	Given an element declaration D the declared type of D is either the type referred to by the attribute type, or the anonymous type definition within D

	Context-determined type
	Given an element E and a type T, the context-determined type of E in T is the declared type of the declaration D assigned to E by the T content model.

	Type Table
	A Type Table is a property of conditional declarations, and it is a sequence of type alternatives (or simply, alternatives). Each alternative corresponds to a xs:alternative element, and it mainly consits of an XPath predicate and a type.

	Selected type
	Given an element E and a Type Table TT, the selected type of E is the type associated to the TT alternative satisfied by E.

	Context-determined Type Table
	Given an element E and a type T, the context-determined Type Table of E in T is the Type Table of the declaration D assigned to E by the T content model. If D is non-conditional, the context-determined Type Table has the default alternative only, which assigns the declared type.

Derivation by Restriction in XSD 1.1
XSD allows to define new types from existing ones through two derivation mechanisms, extension and restriction. The latter is meant to define a type whose content model accepts a subset of what the base type content model accepts.
CTA Restriction Example: CTA Restriction Example

<xs:complexType name="B">
 <xs:sequence>
 <xs:element name="e" type="xs:anyType">
 <xs:alternative test="@a > @b" type="T1" />
 <xs:alternative test="@a <= @b" type="T2" />
 </xs:element>
 </xs:sequence>
</xs:complexType>

<xs:complexType name="R">
 <xs:complexContent>
 <xs:restriction base="B">
 <xs:sequence>
 <xs:element name="e" type="xs:anyType">
 <xs:alternative test="@a > @b" type="T2" />
 <xs:alternative test="@a <= @b" type="T1" />
 </xs:element>
 </xs:sequence>
 </xs:restriction>
 </xs:complexContent>
</xs:complexType>

<xs:complexType name="T1">
 <xs:sequence>
 <xs:element name="t1" />
 </xs:sequence>
 <xs:attributeGroup ref="ab" />
</xs:complexType>

<xs:complexType name="T2">
 <xs:sequence>
 <xs:element name="t2" />
 </xs:sequence>
 <xs:attributeGroup ref="ab" />
</xs:complexType>

An example of derivation by restriction involving conditional declarations.

The presence of conditional declarations within content models immediately arises a question concerning the derivation by restriction. In order to explain the issue, let us consider the schema snippet shown in Figure “CTA Restriction Example”. We can observe that neither T1 derives from T2, nor the converse. Also it is easy to observe that whenever the conditional declaration within B assigns T1, the conditional declaration within R assigns T2, and vice versa.
Now let us consider the following XML fragment:

<p xsi:type="R">
 <e a="5" b="2"> <!-- @a > @b -->
 <t2 />
 </e>
</p>

As <p> is assigned type R, its child <e> is assigned type T2. According to the schema, <e> is valid against T2. For what previously observed, the type that would be assigned to <e> if <p> was of type B is T1. Clearly, <e> is not valid against T1. Thus we have that B rejects something R accepts. We can reasonably argue that this is a violation of the principle behind the derivation by restriction. And actually, the XSD current draft imposes constraints meant to detect as illegal situations like the one above.
Before discussing in details how the XSD current draft faces the derivation by restriction in presence of conditional declarations, we examine some general approaches to the problem.
Full Static Approach
We can think about approaches statically (i.e., at schema compile time) deciding whether a conditional declaration within a restricted type is compatible with a conditional declaration within the base type. I.e., such an approach should decide the following problem. Given two conditional declarations R and B, is there any XML document containing an element E such that if E is validated against R then it is assigned a type which is not a valid restriction of the type that would be assigned if E was validated against B?
This is not a simple problem, as it is necessary to verify logic relationships among XPath predicates. For instance consider again the conditional declarations shown in Figure “CTA Restriction Example”. Clearly, the answer to the above question is yes, as if the conditional declaration within the restricted type assigns T1, then the conditional declaration within the base type assigns T2. Thus, we can assert that the derived type is not a legal restriction of its base. In order to prove it, we should consider the semantics of the relational operators > and <=. Probably, it is not a so difficult task, as the XPath predicates involved in the example are quite simple. But if we move to the general case, the problem becomes much more difficult, as we have to consider also the other XPath functions and operators.

Expressivity Limitation Approach
It is possible to identify a class of approaches facing the problem by narrowing the CTA usage, in order to avoid the XPath predicates analysis. For instance a simple and radical solution to the problem consists in implicitly setting as final[3] every complex types containing a conditional declaration. This is the solution adopted by SchemaPath. Obviously, this solution might be felt as overly restrictive.
Less restrictive solutions may be found. The XSD Working Group discussed a number of them. One of such solutions, known as Prefix, forces the conditional declaration within the derived type to repeat all the alternatives of the conditional declaration within the base type, and allows to append new alternatives. Requiring new alternative types to be a restriction of the default type of the base declaration, ensures that every type assigned in the context of the derived type is a restriction of the type that would be assigned in the context of the base type.
CTA Restriction Use Case: CTA Restriction Use Case

<xs:complexType name="B">
 <xs:sequence>
 <xs:element name="message" type="messageType">
 <xs:alternative test="@kind='string'" type="messageTypeString"/>
 <xs:alternative test="@kind='base64'" type="messageTypeBase64"/>
 <xs:alternative test="@kind='binary'" type="messageTypeBase64"/>
 <xs:alternative test="@kind='xml'" type="messageTypeXML"/>
 <xs:alternative test="@kind='XML'" type="messageTypeXML"/>
 </xs:element>
 </xs:sequence>
</xs:complexType>

<xs:complexType name="R">
 <xs:complexContent>
 <xs:restriction base="B">
 <xs:sequence>
 <xs:element name="message" type="messageType">
 <xs:alternative test="@kind='string'" type="messageTypeString"/>
 <xs:alternative type="xs:error"/>
 </xs:element>
 </xs:sequence>
 </xs:restriction>
 </xs:complexContent>
</xs:complexType>

An example of restriction in presence of CTA. The restricted type definition is meant to accept a subset of what the base type definition accepts.

Let us consider the schema shown in Figure “CTA Restriction Use Case”, which is inspired by the example of CTA usage described in the XSD current draft. Within type B, the conditional declaration for <message> elements assigns a specific message type based on the kind attribute value. Type R is meant to accept string messages only. In this respect, we might argue that R is a legal restriction of B. However, Prefix rejects the above schema, as the alternative sequence of the base type are not listed in the alternative sequence of the restricted type.

Full Dynamic Approach
Another approach to the problem is the following: do not perform any check at compile time and let schema authors to write conditional declarations as they like, but if at run time (i.e., at validation time) there is an evidence of the fact that a type is not a legal restriction of its base type, then report the error. W.r.t. the approach described in the previous section, this one reaches the maximum expressivity degree in writing conditional declarations. Clearly, the drawback is that the same schema error might become evident only for certain instance documents, and not for others.
This is the approach adopted by the XSD current draft, and will be described in details in Section “Run-Time Check”.

Run-time Check
As already mentioned in the previous sections, the XSD current draft adopts a dynamic approach to the verification of the derivation by restriction in presence of conditional declarations. Indeed, the general problem of verifying whether a type R is legal restriction of a type B is divided in two phases. The first one is meant to be performed at schema compile time, and it considers the declared type of element declarations only, thus simply ignoring the presence of Type Tables. For the implementation of such a phase, the XSD draft refers to the algorithms described in [H. S. Thompson, and R. Tobin, 2003], [M. Fuchs, and A. Brown, 2003], and [C. M. Sperberg-McQueen, 2005].
The second phase (which we call Run-Time Check or simply RTC) is meant to be performed at run-time, and it takes into considerations Type Tables. The XSD specs describe it as a rule to decide the validity of an element w.r.t. a type. In order to be valid against a type T, an element must satisfy a number of constraints. One of such constraints states that each child E together with T must satisfy the Conditional Type Substitutable in Restriction constraint (CTSR).
Informally, given an element E and a type T, E and T satisfy CTSR if the type assigned to E in the context of T, is a valid restriction of the type assigned to E in the context of T's base type. Moreover, E and T's base type must recursively satisfy CTSR.
For instance, consider again the schema in Figure “CTA Restriction Example”, and the following XML document fragment:

<p xsi:type="R">
 <e a="5" b="2">
 <t2 />
 </e>
</p>

The first phase checks whether type R is a legal restriction of B, taking into consideration declared types only. In particular, it is checked whether the declared type of the element declaration within R (i.e., anyType) is a valid restriction of the declared type of the element declaration within B (i.e., anyType). As anyType is a valid restriction of itself, the first phase succeeds.
The second phase checks whether or not the input document is an evidence of the fact that R is not a legal restriction of B. In particular, RTC checks whether <e> and R satisfy CTSR. Thus, the Type Table determined by R is evaluated, obtaining the selected type T2. Then, also the Type Table determined by B is evaluated, obtaining the selected type T1. As T2 is not a valid restriction of T1, <e> and R does not satisfy CTSR. As a consequence, <p> is not valid against R.
An Algorithm for Run-Time Check
RTC Algorithm: RTC Algorithm

void process-element(Element e) {

 ...

 Type T = get-current-type(); // e's parent type

 TypeTable TTT = get-context-determined-type-table(e, T);
 int i = evaluate-type-table(e, TTT);
 Type ST = TTT.get-alternative(i).getType();

 boolean error = false;

 // walk on the derivation chain
 while (T is not xs:anyType and !error) do {

 Type B = T.base;
 TypeTable TTB = get-context-determined-type-table(e, B);
 int j = evaluate-type-table(e, TTB);
 Type SB = TTB.getAlternative(j).getType();

 if (validly-substitutable-as-restriction(ST, SB)) {
 T = B;
 ST = SB;
 } else {
 // CTSR violation
 error = true;
 report-schema-error("vr-cta-substitutable");
 }
 }

 ...

}

An algorithm implementing RTC.

In Figure “RTC Algorithm” we present an algorithm implementing RTC, in Java-like pseudo-code. The process-element function is meant to be invoked for each element of the instance document. The function body is a simple iterative version of the CTSR constraint definition given in the XSD draft. It iterates over the derivation chain for T, and it stops when either a violation of CTSR occurs or the type hierarchy root (i.e., anyType) is reached.

RTC Algorithm Cost Analysis
In presenting our cost analysis for the algorithm shown in the previous section, we need to introduce some notations. A Type Table TT is an ordered sequence of n pairs <c1, T1>, ..., <cn, Tn>, where cn is the always true condition. We also say that TT has size n.
Now, let E and T be an element and a type definition respectively. Consider the derivation chain for T. We indicate it with T1, ..., Tk, where T1 is anyType, Tk is T, and for each i < k, Ti is Ti+1's base type. For each i between 1 and k, we denote the context-determined Type Table for E in Ti by TTi. Moreover we denote the TTi size by di.
Now, we can start the RTC algorithm cost analysis. If there is no CTSR violation, the RTC algorithm iterates over the entire derivation chain for T. For each i between 1 and k, the following operations are performed:
	get the context-determined Type Table for E in Ti, i.e., TTi

	calculate the selected type for E according to TTi

	check whether the selected type is validly substitutable as restriction for the selected type calculated at step i - 1.

We assume the first operation has a negligible cost. Indeed, given an element E and a type T, the Element Declarations Consistent (EDC) constraint ensures that the context-determined type table for E in T depends on the E name only. Thus it suffices to scan the T content model, looking for an element declaration named as E. As we are not interested in the content model size here, we assume TTi can be found through a single memory access.
We assume the third operation has a negligible cost too. Indeed, we assume for each pair of types <A, B>, the schema compile phase already decided whether A is validly substitutable as restriction for B, and that the result is available at run-time and can be read through a single memory access.
In our analysis, we do not neglect the second operation cost. Given an element E and a Type Table TT, in order to decide the selected type for E in TT, it might be necessary to evaluate all the XPath conditions in TT.[4] Indeed if TT has the following alternatives <c1, T1>, ..., <cn, Tn>, then Ti is chosen if and only if none of the conditions c1, ..., ci-1 hold, and ci holds. Thus a correct algorithm for a Type Table evaluation is that evaluating each alternative in order, and stopping as soon as a condition is satisfied. Clearly, such an algorithm is linear in the Type Table size.
Coming back to our cost analysis, as TTi has size di, the second operation requires the evaluation of at most di XPath conditions.
Thus in our analysis, the RTC algorithm cost is given by the number of XPath predicates evaluated. By the observations above, we have that such a cost is upper-bounded by the equation shown in Equation “RTC algorithm upper-bound”.
RTC algorithm upper-bound
d1 + ... + dk

Hybrid Approach: Cartesian Product
There also exist an hybrid approach to the problem, i.e., an approach neither fully dynamic, nor fully static. A solution taking such an approach is named Cartesian Product (CP), and the XSD Working Group considered it for a period. As RTC, CP does not impose any limitation on the CTA usage.
Adopting a hybrid approach, CP consists of two phases. The former is performed at schema compile time, the latter at validation time. During the static phase, the Type Tables of the input schema are rewritten. In particular, given a Type Table TTR within a type R and the corresponding Type Table TTB within R's base type, the static phase substitutes TTR with the Type Table resulting from the Cartesian product between TTR and TTB.
The Cartesian product between TTR and TTB is a Type Table denoted by TTR × TTB whose size is the product of the sizes of TTR and TTB. For each pair of alternatives <<ri, Ri>, <bj, Bj>> (where the first item is the i-th alternative of TTR, and the second item is the j-th alternative of TTB), TTR × TTB has an alternative whose condition is the conjunction of ri and bj, and whose type is:
	Ri, if Ri is a valid restriction of Bj

	error, otherwise.

At run-time, given a type T and an element E, in order to know whether E and T satisfy CTSR, it suffices to evaluate the (rewritten) context-determined Type Table of E in T. And thus there is no need to walk on the derivation chain.
However, given a derivation chain T1, ..., Tk, and an element E, let TT1, ..., TTk be the sequence of context-determined Type Tables before the static phase rewrite them. The static phase rewrites those Type Tables in TT'1, ..., TT'k, where:
	TT'1 is TT1, and

	TT'i is TTi × TT'i-1, for every 1 < i <= k

The condition of each alternative of TT'k is the conjunction of k XPath predicates. Moreover, the TT'k size is d1 ⋅ ... ⋅ dk, where di is the TTi size. Fixing each di to a constant d, that product is dk. Such an observation makes clear that the CP static phase might be too expensive.

Optimized Cartesian Product
In this section we present our solution to the problem of the derivation by restriction in presence of conditional declarations. We call it Optimized Cartesian Product (OCP). From the expressivity point of view, our proposal is meant to be fully equivalent to Runt-Time Check and Cartesian Product. While being inspired by CP (and hence its name), it can also be seen as an RTC optimization.
General idea
Our idea is to perform a static analysis on Type Tables, anticipating at compile time those cases in which a CTSR violation occurs. Such an analysis is meant to avoid at run-time the evaluation of those XPath predicates which do not affect the CTSR checking result.
For instance, consider the schema shown in Figure “CTA Restriction Use Case”. As error is not a valid restriction of any type, it is clear that whenever at run-time a <message> element does not satisfy the @kind='string' predicate within the R context (and hence is assigned type error), a CTSR violation occurs regardless of the actual type that would be assigned within the B context.
So our approach is to perform a static analysis in order to tell the run-time phase something like: if within the context of type R the predicate a is satisfied, do not evaluate any of the predicates b, c, or d within R's base type, because such an evaluation will not affect the CTSR checking result.
Note that our approach does not consider the actual XPath predicate semantics during the static analysis. As we already observed, it would be too difficult. Moreover, note that, as seen for Cartesian Product, our approach is neither completely static, nor completely dynamic, i.e., it is a hybrid approach.
Before discussing in details our technique, it is worth considering some major problems our hybrid approach has to face
	The corresponding Type Table problem
	Given a type T and an element declaration D, our general idea is to perform a static analysis of the cases in which T and a generic element matching D violate CTSR. Thus, the context-determined Type Table of that generic element in the base type of T have to be statically decided. Put in a bit more formal way, let B be T's base type. The static analysis has to answer the following question: which is the Type Table TT' determined by B for an element matching D?

	The potential case enumeration problem
	Assume for the moment the previous problem can be solved. Thus consider a derivation chain T1, ..., Tk, and the sequence of Type Tables TT1, ..., TTk such that each TTi is the Type Table determined by Ti for a given element. If each TTi has size di, the number of cases that might potentially be verified at run-time is given by d1 ⋅ ... ⋅ dk. If the Type Tables average size is d, that product is similar to dk. Enumerating all such potential cases, might lead to an unacceptable static analysis cost. It precisely is the problem of the Cartesian Product technique.

For what concerns the first problem, both the Element Declarations Consistent (EDC) constraint and the context-determined Type Table definition provided by the XSD current draft help us. Indeed, by EDC it is possible to define for each type T a partial function tt-mapT : QName → Type Table, such that for each element name e, tt-mapT(e) returns, if any, the Type Table of an element declaration named e within T.
Given:
	T, a type;

	B, the base type of T;

	D, an element declaration within T;

	e, the name of D

the context-determined Type Table within B for any element matching D, cannot be directly calculated as tt-mapT(e), as we have to deal with wildcards (and some other minor details). However, wildcards do not pose any particular problem, as EDC states that if a type contains both an element declaration D and a wildcard W, then D's Type Table and the Type Table of any top-level declaration matching W must be the same. Moreover, the context-determined Type Table definition states that if, within a type T, an element E does not match any declaration, but matches a wildcard W, then the context-determined Type Table within T for E is the Type Table of the top-level declaration matching W, if any. Here, the match predicate is always defined in terms of string matching, and never in terms of schema component semantics.
Thus, it is easy to extend our tt-mapT function definition so that for any name e, tt-mapT(e) returns the context-determined Type Table within T for any element E named e, exactly as defined by the XSD current draft.
Note also that although the set of qualified names is infinite, tt-mapT is defined only for those qualified names matching some element declaration of the schema. As the number of element declarations within a schema is finite, also the tt-mapT domain is finite. The possibility to statically define the function tt-mapT solves the corresponding Type Table problem.
For what concerns the potential case enumeration problem, our idea is the following. Given a sequence of Type Tables TT1, ..., TTk as previously described in the problem definition, we do not consider all the k Type Tables together, but rather we analyze each pair of Type Tables TTi and TTi-1 separately. In particular, for each such pair of Type Tables, we identify the cases that would cause a CTSR violation for that single derivation step. The results of such analysis are made available at run-time as annotations on TTi. As we will see, this guarantees an acceptable cost for the static phase. Obviously, for any element E whose context-determined Type Table is TTi, we have information about CTSR for a single derivation step only, and not for the whole derivation chain. If that information is not sufficient to decide whether CTSR is satisfied or not, it is necessary to walk on the derivation chain in order the access the annotations for TTi-1.

OCP Static Phase
The static phase consists of two steps. The first step just builds for any type T of the schema type hierarchy the tt-mapT mapping. For any T of the schema type hierarchy, the second step annotates the Type Tables within the tt-mapT codomain with error conditions.
In particular, for each type T and for each name e within the tt-mapT domain, the alternatives of the Type Table tt-mapT(e) are annotated with an error condition. Such a condition specifies the cases in which CTSR is broken w.r.t. the context-determined Type Table within T's base.[5] Each error condition simply is a boolean expression built on the base Type Table predicates.
OCP Static Phase Algorithm: OCP Static Phase Algorithm

// visits a type of the schema type hierarchy
void visit-type(Type T) {

 // annotate each context-determined Type Table within the current type
 for each QName name in tt-mapT.domain {
 annotate-type-table(tt-mapT(name));
 }

 // recursive call
 for each Type D derived from T do {
 visit-type(D);
 }
}

// annotates a context-determined Type Table
void annotate-type-table(TypeTable ttr) {
 for each int i s.t. 1 <= i <= ttr.size {
 // build the error condition for the current alternative
 Expression expr = build-error-condition(ttr, i);
 // simplify the error condition
 expr = simplify(expr);
 // annotate the current alternative with the simplified condition
 ttr.get-alternative(i).error-condition = expr;
 }
}

// builds an error condition for a Type Table alternative
Expression build-error-condition(TypeTable ttr, int i) {

 // get the base Type Table
 TypeTable ttb = ttr.base;
 if (ttb is absent) {
 return Expression.FALSE; // In such a case no CTSR violation may occur
 } else {
 return build-error-condition_aux(ttr, ttb, i, Expression.FALSE, 1, STATE_OR);
 }
}

Expression build-error-condition_aux(TypeTable ttr, TypeTable ttb, int i, Expression left, int j, short state) {
 if (j > ttb.size) {
 return left;
 } else {

 Expression a;
 if (j == ttb.size) {
 a = Expression.TRUE;
 } else {
 a = ttb.get-alternative(j).getTest();
 }

 Expression right;

 Type r = ttr.get-alternative(i).getType();
 Type b = ttb.get-alternative(j).getType();

 if (r validly restricts b) {
 NotExpression negatedLiteral = new NotExpression(a);
 right = build-error-condition_aux(ttr, ttb, i, negatedLiteral, j + 1, STATE_AND);
 } else {
 right = build-error-condition_aux(ttr, ttb, i, a, j + 1, STATE_OR);
 }

 if (state == STATE_OR) {
 return new OrExpression(left, right);
 } else { state == STATE_AND
 return new AndExpression(left, right);
 }
 }
}

Pseudo-code for the static analysis of OCP.

The procedure described above is shown in Java-like pseudo-code in Figure “OCP Static Phase Algorithm”. The simplify function is not shown: its purpose is to rewrite the error condition in a simpler form. In particular, if by atom we mean a Type Table XPath predicate, the simplify purpose is to minimize the number of atoms within the input expression. simplify can be implemented visiting the structure of the expression produced by build-error-condition, and applying the lazy boolean evaluation rules shown in the following table:[6]
	Input expression	Rewritten expression
	or-rules
	FALSE or expr	expr
	TRUE or expr	TRUE
	and-rules
	FALSE and expr	FALSE
	TRUE and expr	expr
	not-rules
	not(TRUE)	FALSE
	not(FALSE)	TRUE

The evaluation of the algorithm of Figure “OCP Static Phase Algorithm” on the schema shown in Figure “CTA Restriction Use Case”, annotates the alternatives of the Type Table within R with the following error conditions:
	not(@kind='string') and (@kind='base64' or (@kind='binary' or (@kind='xml' or @kind='XML')))

	TRUE

The error condition associated to the first alternative states that an element E of the instance document and R violates CTSR whenever E is assigned one of the types messageTypeBase64 and messageTypeXML in the context of B (we are in the hypothesis that messageTypeString is not a valid restriction of any of those two types). The error condition associated to the second alternative states that regardless of the type assigned in the context of B, a CTSR violation occurs. This is because error is not a valid restriction of any of the types of the Type Table within B.
On the other hand, the algorithm annotates each alternative of the Type Table within B with the error condition FALSE. It means that for any element E, E and B do not violate CTSR. This is because B's base is anyType and obviously the types within the Type Table within B are valid restrictions of anyType.

OCP Run-Time Phase
At validation time, the annotations on context-determined Type Tables are read in order to check CTSR. In particular, let E be an element of the instance document, T be the type of E's parent, and TT be the context-determined Type Table of E in T. Firstly, TT has to be evaluated. Then, the error condition associated to the satisfied alternative is also evaluated. If the error condition evaluates to true, then it is possible to conclude that CTSR is not satisfied. Otherwise, the same procedure has to be recursively executed using T's base type. The recursive process stops either when a CTSR violation occurs, or anyType is reached.
OCP Run-time Phase Algorithm: OCP Run-time Phase Algorithm

void process-element(Element e) {

 ...

 // e's parent type
 Type T = current-type();

 // get the context determined Type Table for e
 TypeTable tt = tt-mapT(e);

 // evaluate the type table
 int i = evaluate-type-table(e, tt);

 if (!check-CTSR(e, tt, i)) {
 report-schema-error("vr-cta-substitutable");
 }

 ...

}

boolean check-CTSR(Element e, TypeTable ttr, int i) {

 Alternative alt = ttr.get-alternative(i);
 Expression err-epxr = alt.error-condition;

 if (evaluate-error-condition(e, err-expr)) {
 return false;
 } else {
 TypeTable ttb = ttr.base;
 if (ttb is absent) {
 return true; // implicitly handles the xs:anyType case
 } else {
 int j = evaluate-type-table(e, ttb);

 // recursive call
 return check-CTSR(e, ttb, j);
 }
 }
}

Algorithm for the run-time phase of OCP.

The procedure described above is shown in Java-like pseudo-code in Figure “OCP Run-time Phase Algorithm”. In order to show how it works, let us consider following document:

<messages xsi:type="R">
 <message kind="string">
 ...
 </message>
 <message kind="binary">
 ...
 </message>
</messages>

and suppose we have to validate it against the schema depicted in Figure “CTA Restriction Use Case” (the error conditions built during the static phase are described in Section “OCP Static Phase”). When the first <message> element is processed, its context-determined Type Table is evaluated. It is then checked that it satisfies the first condition @kind='string'. As a consequence, it is assigned the first alternative. So the error condition associated with that alternative is evaluated. Such a condition is not(@kind='string') and (@kind='base64' or (@kind='binary' or (@kind='xml' or @kind='XML'))). Clearly, the error condition is not satisfied (not(@kind='string') evaluates to false). Consequently, the Type Table within B has to be evaluated. Again, the first alternative is chosen, and thus its error condition is evaluated. But such a condition is FALSE. And so it is possible conclude that the first <message> element and R satisfy CTSR.
For what concerns the second <message> element, we have that it does not satisfy the first alternative predicate, and so it is assigned the default alternative. The error condition associated to such alternative is TRUE. So we have that the second <message> element and R do not satisfy CTSR.

OCP Cost Analysis
In this subsection we provide a cost analysis for the static phase and a cost analysis for the run-time phase of OCP.
OCP Static Phase Analysis
Here we are not interested in analyzing the cost of the static phase applied to the entire schema type hierarchy. Rather, we fix an element name and we consider a single path from the root to a generic leaf of the type hierarchy.
Thus, let T1, ..., Tn be a derivation chain, and e be our element name. We can now consider the sequence of Type Tables TT1, ..., TTn, where TTi is the context-determined Type Table for an element named e within Ti. The size of each TTi is denoted by di.
Given a 1 < i <= n, now we analyze the time needed to annotate TTi.
The function build-error-condition iterates over the whole alternative sequence of TTi-1, and for each alterantive it computes a number of operations whose cost is constant. Thus the function cost is linear in the TTi-1 size, i.e., di-1
The function simplify can be implemented visiting the structure of the expression returned by build-error-condition. The number of nodes of such an expression is linear in di-1. Thus, the simplify computational cost is linear in di-1 too.
As both simplify and build-error-condition are called for each alternative of TTi, the asymptotic computational cost for the function annotate-type-table is di-1⋅di.
Thus, the asymptotic cost for building and simplifying the error conditions of the whole sequence of Type Tables, is given by:
d1 + d1⋅d2 + ... + dn-1⋅dn
We believe such a cost is perfectly acceptable at schema compile time.

OCP Run-Time Phase Analysis
Here we provide a computational cost analysis of the run-time phase of OCP. As similarly done for RTC, we are interested in determining the number of XPath predicates that have to be evaluated for a generic element of the instance document.
Let E be an element of the instance document, and T be the type assigned to E's parent. Consider the derivation chain T1, ..., Tk, where T1 is anyType and Tk is T. Also consider the usual Type Table sequence TT1, ..., TTk, where TTi is the context-determined Type Table for E within Ti.
If E and T satisfy CTSR, the entire Type Table sequence is processed. For any 1 < i <= k, TTi is evaluated to obtain the assigned alternative. The cost of such an operation is linear in di. Once the assigned alternative has been determined, the algorithm evaluates the corresponding error condition. As already discussed, such a condition is a boolean expression over the XPath predicates of TTi-1. In our analysis, the cost of evaluating an error condition with n predicates is linear in n. As by construction none XPath predicate appear more than once within the same error condition, we have that the error condition associated to the assigned alternative contains at most di-1 predicates of TTi-1. So its evaluation cost is linear in di-1. Thus, the number of predicates evaluated for TTi is upper-bounded by di + di-1.
Considering the whole Type Table sequence, the number of evaluated XPath predicates is given by the formula shown in Equation “OCP run-time phase upper-bound”.
OCP run-time phase upper-bound
2⋅d1 + ... + 2⋅dk-1 + dk

Comparing CP, OCP, and RTC
In this section we provide a comparison among the main techniques discussed so far: Optimized Cartesian Product, Run-Time Check, and Cartesian Product. The comparison focuses on the number of XPath predicates evaluated at run-time. Before starting, let us first fix some notations. Let:
	E be an element of the instance document;

	T be the type assigned to E's parent;

	T1, ..., Tk be the derivation chain for T, where T1 is anyType and Tk is T;

	TT1, ..., TTk be the sequence of context-determined Type Tables of E along the derivation chain;

	di be the TTi size, for every i;

	TT'1, ..., TT'k be the Type Tables generated by the Cartesian Product static phase.

Both OCP and RTC evaluate TTk in order to decide which type alternative E has to be assigned. Clearly, both techniques evaluate the same XPath predicates of TTk. The number of evaluated XPath predicates ranges from 1 to dk.
On the other hand, CP evaluates TT'k. If, for any i between 1 and k, E satisfies the first alternative of TTi, CP is assigned the first alternative of TTk, and thus the condition of that alternative only is evaluated. However, that condition is the conjunction of k XPath predicates. So in the best case, CP evaluates k XPath predicates. But if for every i between 1 and k E satisfies the last alternative of TTi, than CP has to process every alternative of TT'k. It means that it has to evaluate d1 ⋅ ... ⋅ dk conditions, where each condition is the conjunction of k XPath predicates.
After the TT'k evaluation, CP already knows whether E and T satisfy CTSR without the need to walk on the derivation chain: if TT'k selected type error then CTSR is violated, otherwise CTSR is satisfied. The problem is that the evaluation of TT'k might be very expensive.
On the other hand, after the TTk evaluation, both OCP and RTC execute further operations. OCP evaluates the error condition linked to the alternative returned by TTk, while RTC evaluates TTk-1. Thus, for the purposes of our comparison, it is important to understand whether evaluating the error condition is more or less expensive than evaluating TTk-1. In order deal with a clearer notation, we temporarily rename some variables:
	Tk becomes R;

	Tk-1 becomes B;

	TTk becomes TTR;

	TTk-1 becomes TTB;

	dk becomes n;

	dk-1 becomes m;

We denote the TTR alternatives by <r1, R1>, ..., <rn, Rn>; and the TTB alternatives by <b1, B1>, ..., <bm, Bm>. Moreover, let i be the (index of the) alternative selected by TTR. We denote the error condition associated to that alternative by erri.
As already observed in Section “OCP Static Phase”, erri is a boolean expression over the XPath predicates (here called atoms) of TTB. Assuming the simplification process did not rewrite it, erri contains each of the m atoms of TTB.
OCP Error Condition Example: OCP Error Condition Example
[image:]
Structure for the error condition not(@kind='string') and (@kind='base64' or (@kind='binary' or (@kind='xml' or (@kind='XML' or FALSE)))). XPath predicates have been abbreviated for conciseness reasons.

At this point it is important to study the structure of a generic error expression erri. As also shown in Figure “OCP Error Condition Example”, an error condition has a fixed structure: for each or (and) operator, its left operand is always a (negated) atom, while its right operand is either another binary operator, or FALSE (TRUE). Moreover, we can observe that the atoms appear in the same order they appear in TTB.
It is easy to implement an error condition evaluator as a lazy boolean evaluator: for any input binary operator it always evaluates the left operand first, and it evaluates the right operand only if necessary. The atoms of erri actually evaluated by such a boolean evaluator are exactly the same as those evaluated by RTC to decide the TTB selected type.
For instance, suppose that for a given j our E element does not satisfy none of b1, ..., bj-1, and it does satisfy bj. RTC evaluates b1, ...,bj. Also our technique evaluates those predicates, and it does not evaluate further ones. Indeed within erri, bj appears either in negated form as left operand of an and operator, or directly as left operand of an or operator (it depends on whether or not Ri is validly substitutable as restriction for Bj). In either case, the erri evaluation stops before processing the right operand.
Thus we can conclude that even if it is not possible to simplify erri, OCP and RTC are equivalent in terms of evaluated atoms. But there are cases in which erri is simplified by the rewriting rules described in Section “OCP Static Phase”. Indeed, if there exists a j such that either
	for each j < j' <= m, Ri is not validly substitutable as restriction for Bj'

or
	for each j < j' <= m, Ri is validly substitutable as restriction for Bj',

then the simplification process removes from erri the atmos bj+1, ..., bm.
In such cases, if E does not satisfy any of the predicates b1, ..., bj+k, for some k, then OCP does not need to evaluate the k atoms bj+1, ..., bj+k in order to decide whether CTSR is satisfied or not. On the other hand, RTC does evaluate those atoms, because it has to find the type actually selected by TTB.
Thus, we can conclude that on a single step of a derivation chain, OCP evaluates a number of predicates less than or equal to the number of predicates evaluated by RTC.
However, as can be noted from the formulas shown in Equations “RTC algorithm upper-bound” and “OCP run-time phase upper-bound”, OCP might evaluate twice the same atoms. Coming back to the notation introduced early in this section, if E does not satisfy the error condition of the alternative selected by TTk, then OCP has to evaluate TTk-1. But as the error condition previously processed was built on the atoms of TTk-1, it is clear that some predicates of TTk-1 might be processed twice.
However, it is possible to ease such an additional cost if during the processing of an error condition, the result of each atom evaluation is stored in some data structure. In this way, an XPath predicate is actually evaluated only if it has not been evaluated yet.
So we conclude that for a given derivation chain, OCP evaluates a number of XPath predicates less than or equal to the number of XPath predicates RTC evaluates.

Implementation
We realized a prototype implementation of Optimized Cartesian Product, thus demonstrating its feasibility. We implemented it in Java within Xerces [Xerces]. Our prototype patches Xerces under three aspects:
	support for XSD 1.1 related components;

	implementation of the OCP static phase;

	implementation of the OCP run-time phase within the existing validation code.

As Xerces is an XML parser for XSD 1.0, it does not handle 1.1-specific constructs. Our prototype modifies the Xerces modules delegated to the construction of schema components (package org.apache.xerces.impl.xs.traversers). It also modifies the Xerces implementation of the XML Schema API [XML Schema API], in order to represent type alternative components, and to give element declarations awareness of their Type Tables (packages org.apache.xerces.xs and org.apache.xerces.impl.xs).
The OCP static phase is implemented within a separated package it.unibo.cs.cta. The code for the error condition construction is within the class it.unibo.cs.cta.preprocessor.impl.ErrorConditionBuilder. Such a class processes an input XSD schema, associating each type with a map. That map is our implementation of tt-mapT. Indeed, it associates element names to context-determined Type Tables. ErrorConditionBuilder also annotates each context-determined Type Table with its error conditions. Error conditions are built directly using the algorithm described in Section “OCP Static Phase”. The classes handling error conditions are within the package it.unibo.cs.cta.errorexpr. In particular, the simplification of error conditions is implemented by ErrorExpressionSimplifier, while their evaluation is implemented by ErrorExpressionEvaluator.
The static phase is delegated to a pre-processor invoked when a schema document is loaded. In order to invoke it, the simple and compact code below is used:

// instantiation
PreprocessorFactory pf = PreprocessorFactory.getInstance();
fPreprocessor = pf.createPreprocessorSequence(
 new String[]{"ErrorConditionBuilder"}
);
// invocation on an XS Model
fPreprocessor.processModel(model);

The static phase result (i.e., association between types and maps) is read calling the pre-processor method getStateByName("type-table-map").
The OCP run-time phase is implemented within the class org.apache.xerces.impl.xs.OptimizedCTAXMLSchemaValidator, a patched version of the original XSD validator provided by Xerces. In particular, the code for the CTSR verification is within the method handleStartElement. XPath predicates are evaluated using the interfaces in javax.xml.xpath. Currently, our prototype does not check whether an XPath predicate has already been evaluated. Thus, as observed in Section “Comparing CP, OCP, and RTC”, an XPath predicate might be evaluated twice for the same element.
Our prototype is meant to prove the OCP feasibility, and as such it is not aimed to be XSD 1.1 conformant. In particular it has some limitations, the most important of which are:
	XPath 1.0 expressions only are accepted;

	all non CTA related syntax is ignored. E.g., <assert> elements are not considered legal within a schema;

	derivations by restriction are checked using the original Xerces code, i.e., XSD 1.0 rules are applied.[7]

We also developed a small test suite for OCP. It can be run through a simple graphic interface. Source code and jars are available from http://tesi.fabio.web.cs.unibo.it/Tesi/OptimizedCartesianProduct.

Related Works
Among the most known validation languages (DTD [XML 1.1], RELAX NG [RELAX NG ISO specification], Schematron [Schematron ISO specification], DSD [DSD 2.0], etc), the problem of verifying the subtype relation in presence of conditional declarations is very specific to XSD 1.1. Indeed, although there exist at least one language, DSD, permitting the definition of conditional content models, that language is not type-based, and consequently nor it has any concept of type derivation. We do not know works about restriction checking in presence of conditional declarations.
However, there exist works on the problem of verifying whether an XSD 1.0 type is a legal restriction of another type [H. S. Thompson, and R. Tobin, 2003], [M. Fuchs, and A. Brown, 2003], [C. M. Sperberg-McQueen, 2005]. Those works propose techniques to statically verify whether a type accepts a subset of what the base type accepts. On the same line, Neven et al present theoretical results about some basic decision problems concerning schemas, among which the problem of testing for inclusion of schemas [W. Martens, F. Neven, and T. Schwentick, 2005].

Conclusions
In XSD 1.1, the presence of conditional declarations increases the difficulty in verifying whether a type is a legal restriction of its base. We discussed about three main approaches to the problem: CTA usage limitation, run-time verification, and hybrid verification. Solutions of the first kind ensure it is possible to statically verify whether a type is a legal restriction of its base, but at the cost of limiting the CTA expressivity. Solutions of both second and third kinds allow the highest degree of expressivity, but they may recognize as legal restriction also a type accepting something its base rejects. They throw an error only for those instance documents actually proving that a type is not a legal restriction of its base. Hybrid solutions are meant to precompute during the static phase some information that might decrease the work to be done at run-time.
In particular, we described the solution adopted by the XSD current draft, which follows a run-time approach described within the specs by the Conditional Type Substitutable in Restriction (CTSR) constraint. We discussed about an algorithm verifying CTSR, and we called it Run-Time Check (RTC). Then we proposed an alternative solution to RTC, named Optimized Cartesian Product (OCP). OCP is a hybrid solution. Its idea is to analyze conditional declarations in order to statically decide which XPath predicates can be ignored at run-time. We showed as, contrary to Cartesian Product (CP) - another hybrid solution OCP can be seen as an optimization of - the OCP static analysis cost is perfectly acceptable.
We than compared the RTC, OCP and CP techniques, focusing on the number of XPath predicates evaluated at run-time. We showed as CP is the worst technique, as it inherits from the static phase a high volume of information that might heavily slow down the run-time phase. We also showed that although OCP might process the same alternatives twice, storing the XPath predicate evaluation results, we can assert that OCP evaluates a number of predicates less than or equal to the number of predicates RTC evaluates.
An interesting future work is the experimental comparison among RTC, OCP and CP on a base of real schema documents. Moreover it is interesting to improve our error condition simplification process. For instance, our simplification rules are not able to rewrite expressions like not(@a = 'v1') and (@a = 'v2') into (@a = 'v2'). There are also error conditions that are clearly unsatisfiable when associated to a particular alternative. For instance, if the alternative predicate is (@a = 'v1') and the error condition is (@a = 'v2'), it is clear that the error condition will never be satisfied. Improving the simplification rule set should increase the number of situations in which OCP is preferable to RTC.

Acknowledgements
We would like to thank Stefano Zacchiroli for the technical discussions we had during the design of the Optimized Cartesian Product technique, the anonymous reviewers for their comments, and the XML Schema Working Group for the several and inspiring discussions on the topics covered by this paper.

References
[Co-occurrence constraints ESW Wiki] Co-occurrence constraints ESW Wiki. http://esw.w3.org/topic/Co-occurrence_constraints
[DSD 2.0] Møller, A. 2002. Document Structure Description 2.0. BRICS, Department of Computer Science, University of Aarhus, Aarhus, Denmark. http://www.brics.dk/DSD/.
[M. Fuchs, and A. Brown, 2003] M. Fuchs, and A. Brown. Supporting UPA and restriction on an extension of XML Schema. In Proceedings of Extreme Markup Languages. August, 2003. Montréal, Québec. http://www.idealliance.org/papers/extreme03/html/2003/Fuchs01/EML2003Fuchs01.html.
[P. Marinelli, C. Sacerdoti Coen, and F. Vitali, 2004] P. Marinelli, C. Sacerdoti Coen, and F. Vitali. SchemaPath, a Minimal Extension to XML Schema for Conditional Constraints. In Proceedings of the Thirteenth International World Wide Web Conference. New York, NY, USA. May, 2004. Pages 164-174. ACM Press.
[W. Martens, F. Neven, and T. Schwentick, 2005] W. Martens, F. Neven, and T. Schwentick. Which XML Schemas Admit 1-Pass Preorder Typing? In Proceedings of the 10th International Conference on Database Theory. Edinburgh, UK, January 5-7, 2005. LNCS. Volume 3363. Pages 68-82.
[RELAX NG ISO specification] Information technology -- Document Schema Definition Language (DSDL) -- Part 2: Regular-grammar-based validation -- RELAX NG. ISO/IEC 19757-2:2003, JTC1/SC34 Committee. Publicly available at http://standards.iso.org/ittf/PubliclyAvailableStandards/c037605_ISO_IEC_19757-2_2003(E).zip
[Schematron ISO specification] Information technology -- Document Schema Definition Language (DSDL) -- Part 3: Rule-based validation -- Schematron. ISO/IEC 19757-3:2006, JTC1/SC34 Committee. Publicly available at http://standards.iso.org/ittf/PubliclyAvailableStandards/c040833_ISO_IEC_19757-3_2006(E).zip.
[C. M. Sperberg-McQueen, 2005] C. M. Sperberg-McQueen. Applications of Brzozowski derivatives to XML Schema processing. In Proceedings of Extreme Markup Languages. August, 2005. Montréal, Québec. http://www.mulberrytech.com/Extreme/Proceedings/html/2005/SperbergMcQueen01/EML2005SperbergMcQueen01.html.
[H. S. Thompson, and R. Tobin, 2003] H. S. Thompson, and R. Tobin. Using Finite State Automata to Implement W3C XML Schema Content Model Validation and Restriction Checking. In Proceedings of XML Europe. London, England. May, 2003. http://www.idealliance.org/papers/dx_xmle03/papers/02-02-05/02-02-05.html.
[N. Walsh and J. Cowan, 2001] N. Walsh, and J. Cowan. Schema Language Comparison. December, 2001. http://nwalsh.com/xml2001/schematownhall/slides/.
[Xerces] The Apache Software Foundation. Apache Xerces. http://xml.apache.org.
[XML Schema API] Elena Litani. XML Schema API. W3C Member Submission. 22 January 2004. http://www.w3.org/Submission/2004/SUBM-xmlschema-api-20040122/.
[XML 1.1] Extensible Markup Language (XML) 1.1 (Second Edition). W3C Recommendation. 16 August 2006. http://www.w3.org/TR/xml11/.
[XSD 1.0: Structures] XML Schema Part 1: Structures Second Edition. W3C Recommendation. 28 October 2004. http://www.w3.org/TR/xmlschema-1/
[XSD 1.0: Datatypes] XML Schema Part 2: Datatypes Second Edition. W3C Recommendation. 28 October 2004. http://www.w3.org/TR/xmlschema-2/
[XSD 1.1: Structures] W3C XML Schema Definition Language (XSD) 1.1 Part 1: Structures. W3C Working Draft. 20 June 2008. http://www.w3.org/TR/2008/WD-xmlschema11-1-20080620/
[XSD 1.1: Datatypes] W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes. W3C Working Draft. 20 June 2008. http://www.w3.org/TR/2008/WD-xmlschema11-2-20080620/

[1] From here on, we refer to XSD 1.1 just as XSD.
[2] This limitation is not enforced by a syntactic limitation on the XPath expression, but rather by the way the XPath Data Model is constructed.
[3] In XSD, if a type is set as final, it cannot be derived.
[4] To be more precise, as the last predicate of a Type Table is the always true condition, it suffices to evaluate n-1 predicates, where n is the Type Table size.
[5] From here on, given a type T, an element E and the context-determined Type Table TT of E in T, by “TT's base Type Table” we mean the context-determined Type Table of E in T's base.
[6] Symmetric rules for binary operators are not shown.
[7] XSD 1.0 defines the derivation by restriction in terms of ad hoc rules provided by the recommendation itself. XSD 1.1 allows processors to choose the algorithm they like to check whether a content model includes another content model.

Balisage: The Markup Conference

Optimized Cartesian product: A hybrid approach to derivation-chain checking in XSD 1.1
Maurizio Casimirri
Graduate student
Department of Computer Science, University of Bologna

<mcasimir@cs.unibo.it>
Maurizio Casimirri is a graduate student in Computer Science, at the University of Bologna.

Paolo Marinelli
Temporary research associate
Department of Computer Science, University of Bologna

<pmarinel@cs.unibo.it>
Paolo Marinelli holds a Master Degree in Computer Science from the University of Bologna. He is a temporary research associate at the Department of Computer Science of the University of Bologna.

Fabio Vitali
Associate professor
Department of Computer Science, University of Bologna

<fabio@cs.unibo.it>
Fabio Vitali is an associate professor at the Department of Computer Science at the University of Bologna. He holds a Laurea degree in Mathematics and a Ph.D. in Computer and Law, both from the University of Bologna. His research interests include markup languages; distributed, coordinated systems; and the World Wide Web. He is the author of several papers on hypertext functionalities, the World Wide Web, and XML.

Balisage: The Markup Conference

content/images/Marinelli01-001.png
string

bases4|

binary

xml

XML

FALSE

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

